

Absolute Maximum Ratings (Note 1)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature under Bias	
Plastic	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
V_{CC} Pin Potential to	
Ground Pin	-0.5 V to +7.0 V
Input Voltage (Note 2)	-0.5 V to +7.0 V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Any Output in the Disabled or	
Power-off State	-0.5 V to 5.5 V
in the HIGH State	-0.5 V to V_{CC}
Current Applied to Output in LOW State (Max)	twice the rated $\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$

DC Latchup Source Current -500 mA
Over Voltage Latchup (I/O) 10V
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating

 ConditionsFree Air Ambient Temperature

Commercial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage	+4.5 V to +5.5 V
Commercial	$(\Delta \mathrm{V} / \Delta \mathrm{t})$
Minimum Input Edge Rate	$50 \mathrm{mV} / \mathrm{ns}$
Data Input	$20 \mathrm{mV} / \mathrm{ns}$

DC Electrical Characteristics

Symbol	Parameter		ABT2541		Units	V_{cc}	Conditions
			Min	Typ Max			
V_{IH}	Input HIGH Voltage		2.0		V		Recognized HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	V		Recognized LOW Signal
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage			-1.2	V	Min	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltag	74ABT	2.5		V	Min	$\mathrm{IOH}=-3 \mathrm{~mA}$
		74ABT	2.0		V	Min	$\mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA}$
V_{OL}	Output LOW Voltage 74ABT			0.8	V	Min	$\mathrm{IOL}=15 \mathrm{~mA}$
I_{H}	Input HIGH Current			$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\mu \mathrm{A}$	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}(\text { Note } 2) \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \end{aligned}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test			7	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
IIL	Input LOW Current			$\begin{aligned} & -5 \\ & -5 \end{aligned}$	$\mu \mathrm{A}$	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}(\text { Note } 2) \\ & \mathrm{V}_{\mathrm{IN}}=0.0 \mathrm{~V} \\ & \hline \end{aligned}$
$\mathrm{V}_{\text {ID }}$	Input Leakage Test		4.75		V	0.0	$\begin{aligned} & \mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A} \\ & \text { All Other Pins Grounded } \end{aligned}$
$\underline{\mathrm{IOZH}}$	Output Leakage Current			50	$\mu \mathrm{A}$	0-5.5V	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V} ; \overline{O E}_{\mathrm{n}}=2.0 \mathrm{~V}$
lozL	Output Leakage Current			-50	$\mu \mathrm{A}$	0-5.5V	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V} ; \overline{\mathrm{OE}}_{\mathrm{n}}=2.0 \mathrm{~V}$
los	Output Short-Circuit Current		-100	-275	mA	Max	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
$\mathrm{I}_{\text {CEX }}$	Output High Leakage Current			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
lzz	Bus Drainage Test			100	$\mu \mathrm{A}$	0.0	$\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$; All Others GND
ICCH	Power Supply Current			50	$\mu \mathrm{A}$	Max	All Outputs HIGH
$\mathrm{I}_{\text {CCL }}$	Power Supply Current			30	mA	Max	All Outputs LOW
ICCZ	Power Supply Current			50	$\mu \mathrm{A}$	Max	$\begin{aligned} & \overline{\mathrm{OE}}_{\mathrm{n}}=\mathrm{V}_{\mathrm{CC}} ; \\ & \text { All Others at } \mathrm{V}_{\mathrm{CC}} \text { or GND } \end{aligned}$
${ }^{\text {ICCT }}$	Additional $\mathrm{I}_{\mathrm{CC}} /$ Input Outputs Enabled Outputs TRI-STATE® Outputs TRI-STATE			$\begin{aligned} & 2.5 \\ & 2.5 \\ & 50 \end{aligned}$	mA mA $\mu \mathrm{A}$	Max	$\begin{array}{\|l} \hline \mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V} \\ \text { Enable Input } \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V} \\ \text { Data Input } \mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V} \\ \text { All Others at } \mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ \hline \end{array}$
${ }^{\text {ICCD }}$	Dynamic ICC (Note 2)	No Load		0.1	$\begin{aligned} & \mathrm{mA/} \\ & \mathrm{MHz} \end{aligned}$	Max	Outputs Open $\overline{\mathrm{OE}}_{\mathrm{n}}=\mathrm{GND}$ (Note 1) One Bit Toggling, 50\% Duty Cycle

Note 1: For 8 bit toggling, $\mathrm{I}_{\mathrm{CCD}}<0.8 \mathrm{~mA} / \mathrm{MHz}$.
Note 2: Guaranteed, but not tested.

DC Electrical Characteristics (Solc package) (Continued)

Symbol	Parameter	Min	Typ	Max	Units	$\mathbf{V}_{\mathbf{C C}}$	Conditions $\mathbf{C}_{\mathbf{L}}=\mathbf{5 0} \mathbf{p F}, \mathbf{R}_{\mathbf{L}}=\mathbf{5 0 0 \Omega}$
$\mathrm{V}_{\mathrm{OLP}}$	Quiet Output Maximum Dynamic V_{OL}		0.6	0.8	V	5.0	$\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 1)
$\mathrm{V}_{\mathrm{OLV}}$	Quiet Output Minimum Dynamic V_{OL}	-0.5	-0.4		V	5.0	$\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 1)
$\mathrm{V}_{\mathrm{OHV}}$	Minimum High Level Dynamic Output Voltage	2.7	3.1		V	5.0	$\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 3)
$\mathrm{V}_{\text {IHD }}$	Minimum High Level Dynamic Input Voltage	2.0	1.4		V	5.0	$\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 2)
$\mathrm{V}_{\text {ILD }}$	Maximum Low Level Dynamic Input Voltage		1.2	0.8	V	5.0	$\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 2)

Note 1: Max number of outputs defined as (n). $\mathrm{n}-1$ data inputs are driven 0 V to 3 V . One output at LOW. Guaranteed, but not tested.
Note 2: Max number of data inputs (n) switching. $n-1$ inputs switching $0 V$ to 3 V . Input-under-test switching: 3 V to threshold ($\mathrm{V}_{\mathrm{ILD}}$), 0 V to threshold ($\mathrm{V}_{\text {IHD }}$). Guaranteed, but not tested.
Note 3: Max number of outputs defined as (n). $n-1$ data inputs are driven $0 V$ to $3 V$. One output HIGH. Guaranteed, but not tested.
AC Electrical Characteristics (solc and SSOP package)

Symbol	Parameter	74ABT			74ABT		Units
		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \hline \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$		
		Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Data to Outputs	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.3 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 4.1 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 4.1 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZZ}} \end{aligned}$	Output Enable Time	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.6 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.6 \end{aligned}$	ns

Extended AC Electrical Characteristics (solc package)

Symbol	Parameter	74ABT			74ABT		74ABT		Units
		$\begin{gathered} -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$ 8 Outputs Switching (Note 4)			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF} \end{gathered}$ 1 Output Switching (Note 5)		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF} \end{gathered}$ 8 Outputs Switching (Note 6)		
		Min	Typ	Max	Min	Max	Min	Max	
$\mathrm{f}_{\text {toggle }}$	Max Toggle Frequency	100							MHz
tpLH $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Data to Outputs	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{gathered} 6.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{gathered} 8.5 \\ 11.0 \end{gathered}$	ns
$\begin{aligned} & \text { tPZH } \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$		$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{gathered} 7.5 \\ 11.0 \end{gathered}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{gathered} 9.5 \\ 12.5 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	(Note 7)		(Note 7)		ns

Note 4: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all low-to-high, high-to-low, etc.).
Note 5: This specification is guaranteed but not tested. The limits represent propagation delay with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load. This specification pertains to single output switching only.
Note 6: This specification is guaranteed but not tested. The limits represent propagation delays for all paths described switching in phase (i.e., all low-to-high, high-to-low, etc.) with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load.
Note 7: The TRI-STATE delays are dominated by the RC network ($500 \Omega, 250 \mathrm{pF}$) on the output and have been excluded from the datasheet.

Skew (SOIC package)				
Symbol	Parameter	74ABT	74ABT	Units
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$ 8 Outputs Switching (Note 3)	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF} \end{gathered}$ 8 Outputs Switching (Note 4)	
		Max	Max	
toshl (Note 1)	Pin to Pin Skew HL Transitions	1.3	2.3	ns
tosth (Note 1)	Pin to Pin Skew LH Transitions	1.0	1.8	ns
tps (Note 5)	Duty Cycle LH-HL Skew	2.0	5.0	ns
tost (Note 1)	Pin to Pin Skew LH/HL Transitions	2.0	5.0	ns
tpV (Note 2)	Device to Device Skew LH/HL Transitions	2.0	5.0	ns

Note 1: Skew is defined as the absolute value of the difference between the actual propagation delays for any two separate outputs of the same device. The specification applies to any outputs switching HIGH to LOW (tOSHL), LOW to HIGH ($\mathrm{t}_{\mathrm{OSLH}}$), or any combination switching LOW to HIGH and/or HIGH to LOW (tost). The specification is guaranteed but not tested.

Note 2: Propagation delay variation for a given set of conditions (i.e., temperature and V_{CC}) from device to device. This specification is guaranteed but not tested. Note 3: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all low-to-high, high-to-low, etc.)

Note 4: These specifications guaranteed but not tested. The limits represent propagation delays with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load
Note 5: This describes the difference between the delay of the LOW-to-HIGH and the HIGH-to-LOW transition on the same pin. It is measured across all the outputs (drivers) on the same chip, the worst (largest delta) number is the guaranteed specification. This specification is guaranteed but not tested.

Capacitance

Symbol	Parameter	Typ	Units	Conditions $\mathbf{T}_{\mathbf{A}}=\mathbf{2 5} \mathbf{C}$
C_{IN}	Input Capacitance	5.0	pF	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$
$\mathrm{C}_{\text {OUT }}$ (Note 1)	Output Capacitance	9.0	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Note 1: COUT is measured at frequency $\mathrm{f}=1 \mathrm{MHz}$; per MIL-STD-883B, Method 3012.

tphL vs Load Capacitance
8 Outputs Switching, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

tpLH vs Load Capacitance
8 Outputs Switching,

Dashed lines represent design characteristics, for specified guarantees refer to AC Characteristics Table.

Dashed lines represent design characteristics, for specified guarantees refer to AC Characteristics Table.

Icc vs Frequency, Average, $\mathbf{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ All outputs unloaded/unterminated

TL/F/11502-30

[^0]
AC Loading

TL/F/11502-3
*Includes jig and probe capacitance.
FIGURE 1. Standard AC Test Load

TL/F/11502-4
FIGURE 2a. Test Input Signal Levels

Amplitude	Rep. Rate	$\mathbf{t}_{\mathbf{w}}$	$\mathbf{t}_{\mathbf{r}}$	$\mathbf{t}_{\mathbf{f}}$
3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

FIGURE 2b. Test Input Signal Requirements

AC Waveforms

FIGURE 3. Propagation Delay Waveforms for Inverting and Non-Inverting Functions

TL/F/11502-6
FIGURE 4. Propagation Delay, Pulse Width Waveforms

Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are derived as follows:

Physical Dimensions millimeters (Continued)

Physical Dimensions millimeters (Continued)

20-Lead Molded Thin Shrink Small Outline Package, JEDEC NS Package Number MTC20

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: $(+49)$ 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: (+49) 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

[^0]: Dashed lines represent design characteristics, for specified guarantees refer to AC Characteristics Table.

