

74ABT2541 Octal Buffer/Line Driver with 25 Ω Series Resistors in the Outputs

General Description

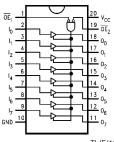
The 'ABT2541 is an octal buffer and line driver designed to drive the capacitive inputs of MOS memory drivers, address drivers, clock drivers, and bus-oriented transmitters/receivers. Functionally identical to the 'ABT541.

The 25Ω series resistors in the outputs reduce ringing and eliminate the need for external resistors.

Features

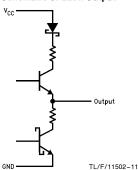
- Guaranteed output skew
- Guaranteed multiple output switching specifications

- Output switching specified for both 50 pF and 250 pF loads
- Guaranteed simultaneously switching noise level and dynamic threshold performance
- Guaranteed latchup protection
- High impedance glitch free bus loading during entire power up and power down cycle
- Nondestructive hot insertion capability
- Disable time less than enable time to avoid bus contention


Commercial	Package Number	Package Description
74ABT2541CSC (Note 1)	M20B	20-Lead (0.300" Wide) Molded Small Outline, JEDEC
74ABT2541CSJ (Note 1)	M20D	20-Lead (0.300" Wide) Molded Small Outline, EIAJ
74ABT2541CMSA (Note 1)	MSA20	20-Lead Molded Shrink Small Outline, EIAJ Type II
74ABT2541CMTC (Notes 1, 2)	MTC20	20-Lead Molded Thin Shrink Small Outline, JEDEC

Note 1: Devices also available in 13" reel. Use suffix = SCX, SJX, MSAX and MTCX.

Note 2: Contact factory for package availability.


Connection Diagram

Pin Assignment for SOIC and SSOP

TL/F/11502-1

Schematic of Each Output

Truth Table

	Inputs	Outputs	
OE ₁	\overline{OE}_2	ABT2541C	
L	L	Н	Н
Н	X	Χ	Z
Х	Н	Χ	Z
L	L	L	L

- H = HIGH Voltage Level
- L = LOW Voltage Level
- X = Immaterial
- Z = High Impedance

Pin Names	Description
$\overline{OE}_1, \overline{OE}_2$	Output Enable
	Input (Active Low)
I ₀ -I ₇	Inputs
00-07	Outputs

FRI-STATE® is a registered trademark of National Semiconductor Corporation

Absolute Maximum Ratings (Note 1)

Storage Temperature -65°C to $+\,150^{\circ}\text{C}$ Ambient Temperature under Bias -55°C to +125°C

Junction Temperature under Bias

-55°C to +150°C Plastic

V_{CC} Pin Potential to Ground Pin -0.5V to +7.0VInput Voltage (Note 2) -0.5V to +7.0VInput Current (Note 2) -30 mA to +5.0 mA

Voltage Applied to Any Output

in the Disabled or

Power-off State -0.5V to 5.5Vin the HIGH State $- \, \text{0.5V}$ to $V_{\mbox{\footnotesize CC}}$

Current Applied to Output

in LOW State (Max) twice the rated I_{OL} (mA) DC Latchup Source Current Over Voltage Latchup (I/O)

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

-500~mA

10V

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature

Commercial -40°C to +85°C

Supply Voltage +4.5V to +5.5V Commercial Minimum Input Edge Rate $(\Delta V/\Delta t)$ Data Input 50 mV/ns 20 mV/ns Enable Input

DC Electrical Characteristics

Symbol	Dara	Parameter ABT2541 Units		Units	V	Conditions		
Зупівої	Para	meter	Min	Тур	Max	Ullits	V _{CC}	Conditions
V_{IH}	Input HIGH Voltage		2.0			٧		Recognized HIGH Signal
V_{IL}	Input LOW Voltage				0.8	V		Recognized LOW Signal
V_{CD}	Input Clamp Diode Vo	Itage			-1.2	V	Min	$I_{IN} = -18 \text{ mA}$
V _{OH}	Output HIGH Voltage	74ABT	2.5			V	Min	$I_{OH} = -3 \text{ mA}$
		74ABT	2.0			٧	Min	$I_{OH} = -32 \text{ mA}$
V _{OL}	Output LOW Voltage	74ABT			0.8	V	Min	I _{OL} = 15 mA
I _{IH}	Input HIGH Current				5 5	μΑ	Max	V _{IN} = 2.7V (Note 2)
I _{BVI}	Input HIGH Current Breakdown Test				7	μΑ	Max	$V_{IN} = V_{CC}$ $V_{IN} = 7.0V$
IIL	Input LOW Current				-5 -5	μΑ	Max	V _{IN} = 0.5V (Note 2) V _{IN} = 0.0V
V _{ID}	Input Leakage Test		4.75			٧	0.0	$I_{\text{ID}} = 1.9 \mu\text{A}$ All Other Pins Grounded
lozh	Output Leakage Curre	ent			50	μΑ	0 - 5.5V	$V_{OUT} = 2.7V; \overline{OE}_n = 2.0V$
l _{OZL}	Output Leakage Curre	ent			-50	μΑ	0 - 5.5V	$V_{OUT} = 0.5V; \overline{OE}_n = 2.0V$
los	Output Short-Circuit C	Current	-100		-275	mA	Max	V _{OUT} = 0.0V
I _{CEX}	Output High Leakage	Current			50	μΑ	Max	$V_{OUT} = V_{CC}$
I_{ZZ}	Bus Drainage Test				100	μΑ	0.0	V _{OUT} = 5.5V; All Others GND
Icch	Power Supply Current				50	μΑ	Max	All Outputs HIGH
I _{CCL}	Power Supply Current				30	mA	Max	All Outputs LOW
I _{CCZ}	Power Supply Current				50	μΑ	Max	$\overline{OE}_n = V_{CC};$ All Others at V_{CC} or GND
Гсст	Additional I _{CC} /Input	Outputs Enabled Outputs TRI-STATE® Outputs TRI-STATE			2.5 2.5 50	mA mA μA	Max	$\begin{array}{l} V_{I} = V_{CC} - 2.1V \\ \text{Enable Input } V_{I} = V_{CC} - 2.1V \\ \text{Data Input } V_{I} = V_{CC} - 2.1V \\ \text{All Others at } V_{CC} \text{ or GND} \end{array}$
I _{CCD}	Dynamic I _{CC} (Note 2)	No Load			0.1	mA/ MHz	Max	$\label{eq:outputsOpen} \begin{split} & \overline{\text{OE}}_{\text{n}} = \text{GND} \text{(Note 1)} \\ & \text{One Bit Toggling, 50\% Duty Cycle} \end{split}$

Note 1: For 8 bit toggling, $I_{CCD} < 0.8 \text{ mA/MHz}.$

Note 2: Guaranteed, but not tested.

DC Electrical Characteristics (SOIC package) (Continued)

Symbol	Parameter	Min	Тур	Max	Units	v _{cc}	Conditions $\mathbf{C_L} = 50\mathbf{pF}, \mathbf{R_L} = 500\Omega$
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}		0.6	8.0	٧	5.0	T _A = 25°C (Note 1)
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	-0.5	-0.4		V	5.0	T _A = 25°C (Note 1)
V _{OHV}	Minimum High Level Dynamic Output Voltage	2.7	3.1		V	5.0	T _A = 25°C (Note 3)
V _{IHD}	Minimum High Level Dynamic Input Voltage	2.0	1.4		V	5.0	T _A = 25°C (Note 2)
V _{ILD}	Maximum Low Level Dynamic Input Voltage		1.2	0.8	٧	5.0	T _A = 25°C (Note 2)

Note 1: Max number of outputs defined as (n). n-1 data inputs are driven 0V to 3V. One output at LOW. Guaranteed, but not tested.

Note 2: Max number of data inputs (n) switching. n-1 inputs switching 0V to 3V. Input-under-test switching: 3V to threshold (V_{ILD}), 0V to threshold (V_{IHD}). Guaranteed, but not tested.

Note 3: Max number of outputs defined as (n), n-1 data inputs are driven 0V to 3V. One output HIGH. Guaranteed, but not tested.

AC Electrical Characteristics (SOIC and SSOP package)

Symbol	Parameter	$74ABT$ $T_A = +25^{\circ}C$ $V_{CC} = +5V$ $C_L = 50 \text{ pF}$		74 T _A = -40 V _{CC} = C _L =	Units		
		Min	Тур	Max	Min	Max	
t _{PLH}	Propagation Delay Data to Outputs	1.0 1.0	2.3 3.3	3.6 4.1	1.0 1.0	3.6 4.1	ns
t _{PZH}	Output Enable Time	1.5 1.5	3.7 4.3	6.0 6.5	1.5 1.5	6.0 6.5	ns
t _{PHZ}	Output Disable Time	1.0 1.0	3.5 3.7	6.0 5.6	1.0 1.0	6.0 5.6	ns

Extended AC Electrical Characteristics (SOIC package)

	` ' ' ' ' '								
			74ABT	74ABT		ВТ	74ABT		
Symbol	Parameter	V _{CC}	0°C to + { = 4.5V- C _L = 50 p puts Swit (Note 4)	5.5V F ching	$T_{A} = -40^{\circ}\text{C to} + 85^{\circ}\text{C}$ $V_{CC} = 4.5\text{V} - 5.5\text{V}$ $C_{L} = 250 \text{ pF}$ 1 Output Switching (Note 5)		$\begin{aligned} \mathbf{T_A} &= -40^{\circ}\mathbf{C} \text{ to } +85^{\circ}\mathbf{C} \\ \mathbf{V_{CC}} &= 4.5\mathbf{V} -5.5\mathbf{V} \\ \mathbf{C_L} &= 250 \text{ pF} \\ 8 \text{ Outputs Switching} \\ \text{(Note 6)} \end{aligned}$		Units
		Min	Тур	Max	Min	Max	Min	Max	
f _{toggle}	Max Toggle Frequency		100						MHz
t _{PLH}	Propagation Delay Data to Outputs	1.5 1.5		5.0 5.5	1.5 1.5	6.0 10.0	2.5 2.5	8.5 11.0	ns
t _{PZH}	Output Enable Time	1.5 1.5		6.5 7.0	2.5 2.5	7.5 11.0	2.5 2.5	9.5 12.5	ns
t _{PHZ}	Output Disable Time	1.0 1.0		6.0 6.0	(Note	e 7)	(Note	e 7)	ns

Note 4: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all low-to-high, high-

Note 5: This specification is guaranteed but not tested. The limits represent propagation delay with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load. This specification pertains to single output switching only.

Note 6: This specification is guaranteed but not tested. The limits represent propagation delays for all paths described switching in phase (i.e., all low-to-high, high-to-low, etc.) with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load.

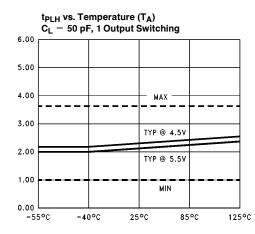
Note 7: The TRI-STATE delays are dominated by the RC network (500\Omega, 250 pF) on the output and have been excluded from the datasheet.

Skew (SOIC package)

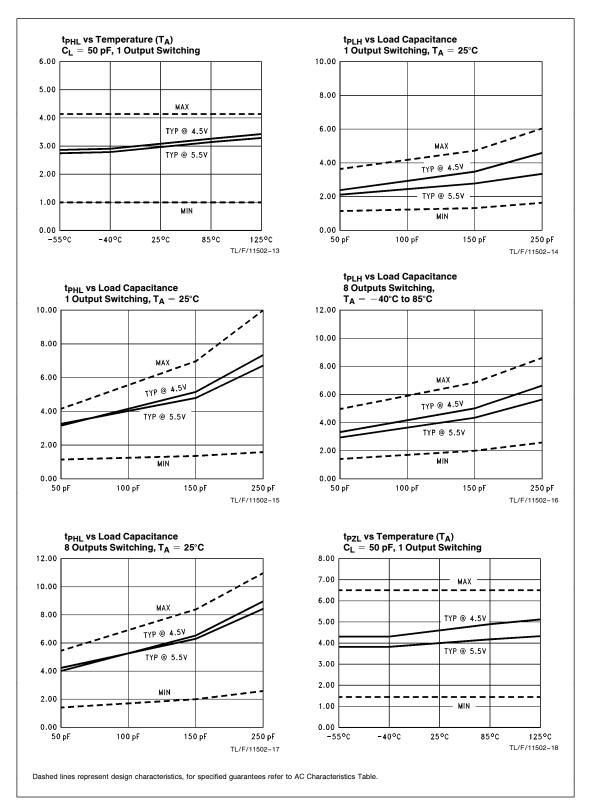
Symbol	Parameter	$74ABT$ $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $V_{CC} = 4.5V - 5.5V$ $C_L = 50 \text{ pF}$ $8 \text{ Outputs Switching}$ (Note 3)	74ABT T _A = -40°C to +85°C V _{CC} = 4.5V-5.5V C _L = 250 pF 8 Outputs Switching (Note 4)	Units
		Max	Max	
^t OSHL (Note 1)	Pin to Pin Skew HL Transitions	1.3	2.3	ns
t _{OSLH} (Note 1)	Pin to Pin Skew LH Transitions	1.0	1.8	ns
t _{PS} (Note 5)	Duty Cycle LH-HL Skew	2.0	5.0	ns
t _{OST} (Note 1)	Pin to Pin Skew LH/HL Transitions	2.0	5.0	ns
t _{PV} (Note 2)	Device to Device Skew LH/HL Transitions	2.0	5.0	ns

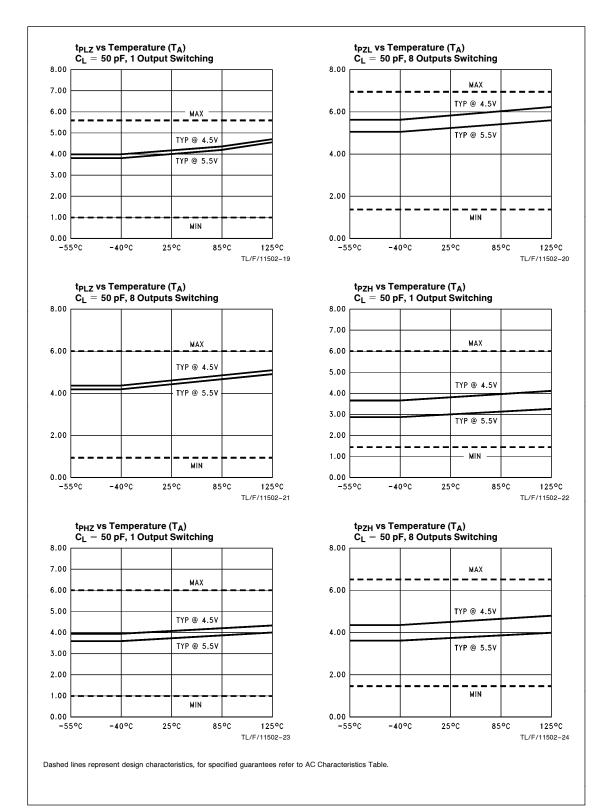
Note 1: Skew is defined as the absolute value of the difference between the actual propagation delays for any two separate outputs of the same device. The specification applies to any outputs switching HIGH to LOW (toshL), LOW to HIGH (toslh), or any combination switching LOW to HIGH and/or HIGH to LOW (tosh). The specification is guaranteed but not tested.

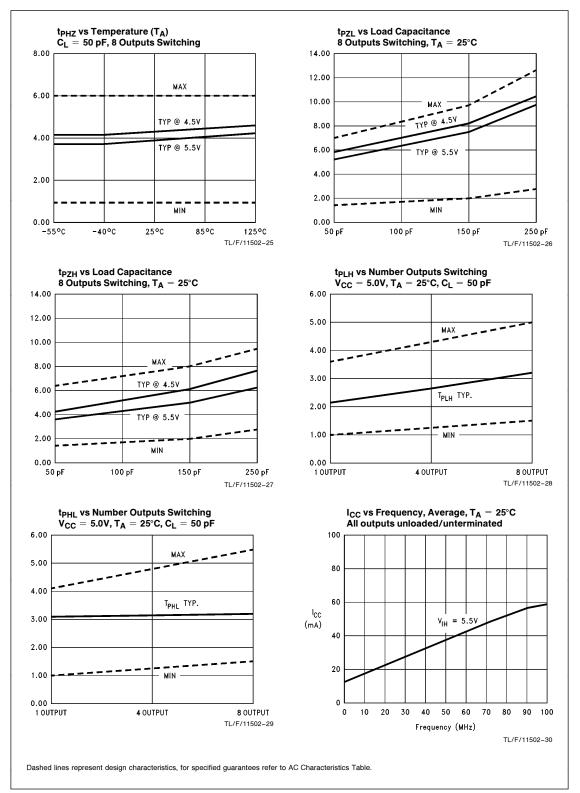
Note 2: Propagation delay variation for a given set of conditions (i.e., temperature and V_{CC}) from device to device. This specification is guaranteed but not tested. Note 3: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all low-to-high, high-to-low, etc.)

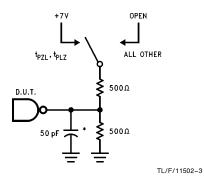

Note 4: These specifications guaranteed but not tested. The limits represent propagation delays with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load.

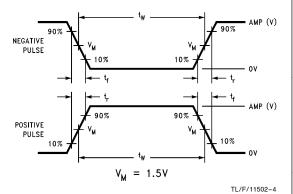
Note 5: This describes the difference between the delay of the LOW-to-HIGH and the HIGH-to-LOW transition on the same pin. It is measured across all the outputs (drivers) on the same chip, the worst (largest delta) number is the guaranteed specification. This specification is guaranteed but not tested.


Capacitance


Symbol	Symbol Parameter		Units	Conditions T _A = 25°C
C _{IN}	Input Capacitance	5.0	pF	$V_{CC} = 0V$
C _{OUT} (Note 1)	Output Capacitance	9.0	pF	V _{CC} = 5.0V


Note 1: C_{OUT} is measured at frequency f = 1 MHz; per MIL-STD-883B, Method 3012.


TL/F/11502-12



AC Loading

*Includes jig and probe capacitance.

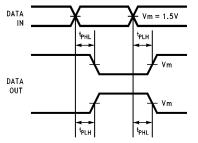

FIGURE 1. Standard AC Test Load

FIGURE 2a. Test Input Signal Levels

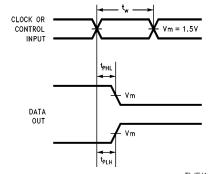

Amplitude	Rep. Rate	t _w	t _r	t _f
3.0V	1 MHz	500 ns	2.5 ns	2.5 ns

FIGURE 2b. Test Input Signal Requirements

AC Waveforms

TL/F/11502-5
FIGURE 3. Propagation Delay Waveforms for Inverting and Non-Inverting Functions

TL/F/11502-6 FIGURE 4. Propagation Delay, Pulse Width Waveforms

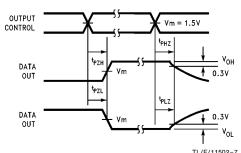
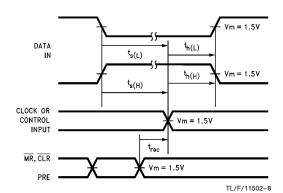
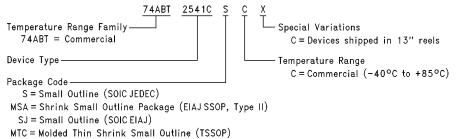
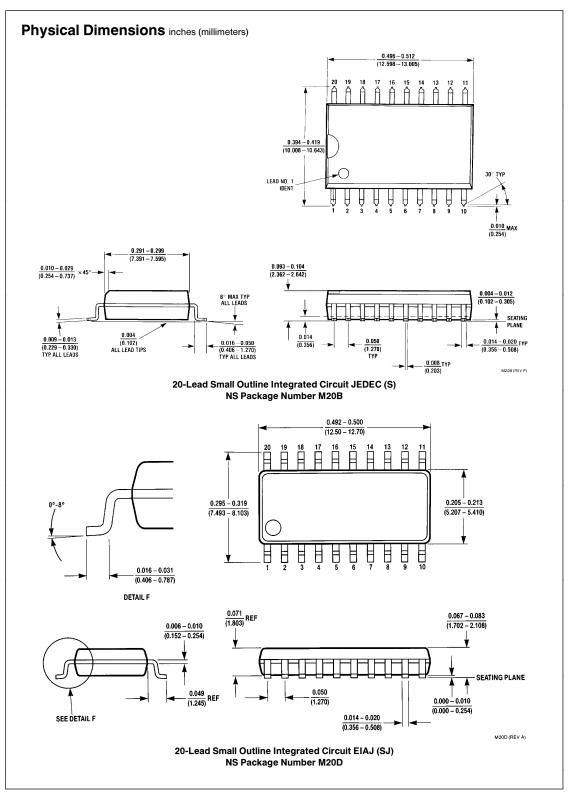
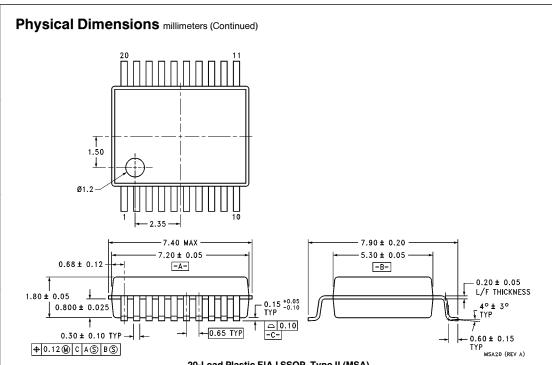


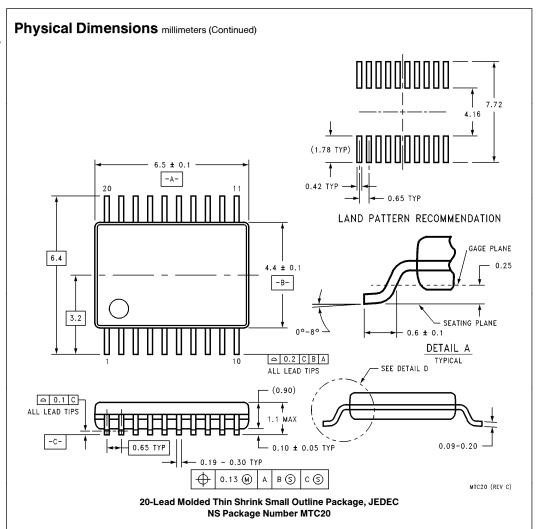
FIGURE 5. TRI-STATE Output HIGH and LOW Enable and Disable Times


FIGURE 6. Setup Time, Hold Time and Recovery Time Waveforms


Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are derived as follows:



TL/F/11502-31

20-Lead Plastic EIAJ SSOP, Type II (MSA) NS Package Number MSA20

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor

National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) 0-180-530 85 86 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 35 Italiano Tel: (+49) 0-180-534 16 80 National Semiconductor Hong Kong Ltd.

13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.
Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408