INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT564

Octal D-type flip-flop; positive-edge trigger; 3-state; inverting

Product specification
File under Integrated Circuits, IC06

December 1990

74HC/HCT564

FEATURES

- 3-state inverting outputs for bus oriented applications
- 8-bit positive-edge triggered register
- Common 3-state output enable input
- Independent register and 3-state buffer operation
- · Output capability: bus driver
- · I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT564 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT564 are octal D-type flip-flops featuring separate D-type inputs for each flip-flop and inverting 3-state outputs for bus oriented applications. A clock (CP) and an output enable (OE) input are common to all flip-flops.

The 8 flip-flops will store the state of their individual D-inputs that meet the set-up and hold times requirements on the LOW-to-HIGH CP transition.

When $\overline{\text{OE}}$ is LOW, the contents of the 8 flip-flops are available at the outputs.

When \overline{OE} is HIGH, the outputs go to the high impedance OFF-state. Operation of the \overline{OE} input does not affect the state of the flip-flops.

The "564" is functionally identical to the "574" but has inverting outputs. The "564" is functionally identical to the "534", but has a different pinning.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \, ^{\circ}C$; $t_r = t_f = 6 \, \text{ns}$

SYMBOL	PARAMETER	CONDITIONS	TYP	LINIT	
STIMBOL	PARAIVIETER	CONDITIONS	нс	нст	UNIT
t _{PHL} / t _{PLH}	propagation delay CP to $\overline{\overline{Q}}_n$	C _L = 15 pF; V _{CC} = 5 V	15	16	ns
f _{max}	maximum clock frequency		127	62	MHz
C _I	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per flip-flop	notes 1 and 2	27	27	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$
 where:

f_i = input frequency in MHz

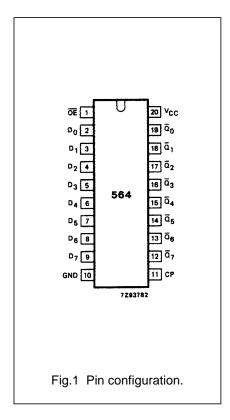
f_o = output frequency in MHz

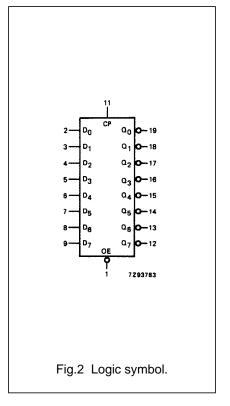
 $\sum (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs}$

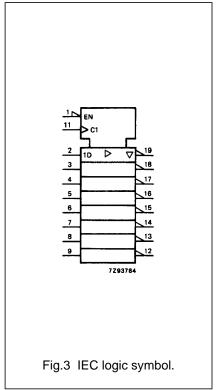
C_L = output load capacitance in pF

 V_{CC} = supply voltage in V

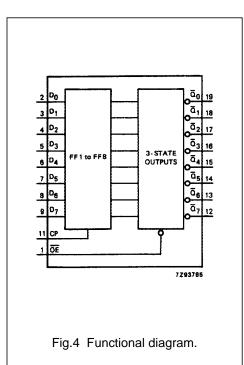
2. For HC the condition is $V_I = GND$ to V_{CC} ; for HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V


ORDERING INFORMATION

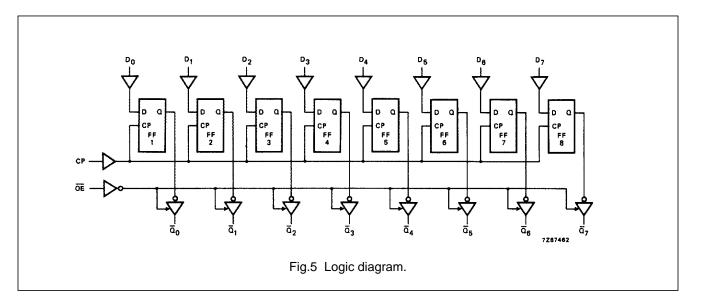

See "74HC/HCT/HCU/HCMOS Logic Package Information".


74HC/HCT564

PIN DESCRIPTION


PIN NO. SYMBOL		NAME AND FUNCTION					
1	ŌĒ	3-state output enable input (active LOW)					
2, 3, 4, 5, 6, 7, 8, 9	D ₀ to D ₇	data inputs					
10	GND	ground (0 V)					
11	CP	clock input (LOW-to-HIGH, edge-triggered)					
19, 18, 17, 16, 15, 14, 13, 12	\overline{Q}_0 to \overline{Q}_7	3-state flip-flop outputs					
20	V _{CC}	positive supply voltage					

74HC/HCT564



FUNCTION TABLE

OPERATING		INPUT	3	INTERNAL	OUTPUTS		
MODES	ŌĒ	СР	D _n	FLIP-FLOPS	\overline{Q}_0 to \overline{Q}_7		
load and read	L	1	I	L	Н		
register	L	↑	h	Н	L		
load register and	Н	1	I	L	Z		
disable outputs	Н	↑	h	Н	Z		

Notes

- 1. H = HIGH voltage level
 - h = HIGH voltage level one set-up time prior to the LOW-to-HIGH CP transition
 - L = LOW voltage level
 - I = LOW voltage level one set-up time prior to the LOW-to-HIGH CP transition
 - Z = high impedance OFF-state
 - ↑ = LOW-to-HIGH clock transition

Philips Semiconductors Product specification

Octal D-type flip-flop; positive-edge trigger; 3-state; inverting

74HC/HCT564

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
SYMBOL											
		+25			-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(' /	
t _{PHL} / t _{PLH}	propagation delay $ \text{CP to } \overline{\mathbb{Q}}_n $		50 18 14	165 33 28		205 41 35		250 50 43	ns	2.0 4.5 6.0	Fig.6
t _{PZH} / t _{PZL}			44 16 13	140 28 24		175 35 30		210 42 36	ns	2.0 4.5 6.0	Fig.8
t _{PHZ} / t _{PLZ}			50 18 14	135 27 23		170 34 29		205 41 35	ns	2.0 4.5 6.0	Fig.8
t _{THL} / t _{TLH}	output transition time		14 5 4	60 12 10		75 15 13		90 18 15	ns	2.0 4.5 6.0	Fig.6
t _W	clock pulse width HIGH or LOW	80 16 14	14 5 4		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.6
t _{su}	set-up time D _n to CP	60 12 10	6 2 2		75 15 13		90 18 15		ns	2.0 4.5 6.0	Fig.7
t _h	hold time D _n to CP	5 5 5	0 0 0		5 5 5		5 5 5		ns	2.0 4.5 6.0	Fig.7
f _{max}	maximum clock pulse frequency	6.0 30 35	38 115 137		4.8 24 28		4.0 20 24		MHz	2.0 4.5 6.0	Fig.6

Philips Semiconductors Product specification

Octal D-type flip-flop; positive-edge trigger; 3-state; inverting

74HC/HCT564

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

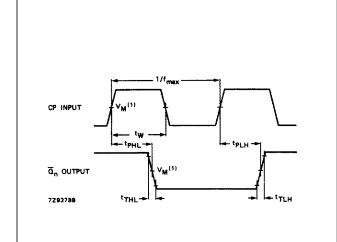
Output capability: bus driver

I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
ŌĒ	0.80
D ₀ to D ₇	0.25
CP	1.00


AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
SYMBOL			74HCT								
		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(-)	
t _{PHL} / t _{PLH}	propagation delay CP to \overline{Q}_n		19	35		44		53	ns	4.5	Fig.6
t _{PZH} / t _{PZL}	3-state output enable time \overline{OE} to \overline{Q}_n		19	35		44		53	ns	4.5	Fig.8
t _{PHZ} / t _{PLZ}	3-state output disable time \overline{OE} to \overline{Q}_n		19	30		38		45	ns	4.5	Fig.8
t _{THL} / t _{TLH}	output transition time		5	12		15		18	ns	4.5	Fig.6
t _W	clock pulse width HIGH or LOW	18	8		23		27		ns	4.5	Fig.6
t _{su}	set-up time D _n to CP	12	3		15		18		ns	4.5	Fig.7
t _h	hold time D _n to CP	3	-2		3		3		ns	4.5	Fig.7
f _{max}	maximum clock pulse frequency	27	56		22		18		MHz	4.5	Fig.6

74HC/HCT564

AC WAVEFORMS

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.

Fig.6 Waveforms showing the clock (CP) to output (\overline{Q}_n) propagation delays, the clock pulse width, the output transition times and the maximum clock pulse frequency.

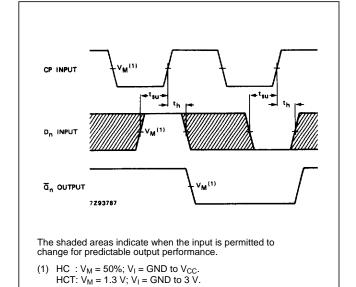
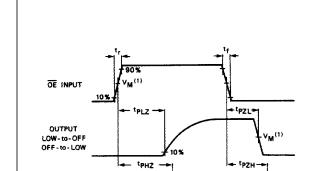



Fig.7 Waveforms showing the data set-up and hold times for the data input (D_n) .

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.

Fig.8 Waveforms showing the 3-state enable and disable times.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

OUTPUT HIGH-to-OFF

7293786