FAIRCHILD

SEMICONDUCTOR

July 2001 Revised February 2002

74LCX760 Low Voltage Buffer/Line Driver with 5V Tolerant Inputs and Open Drain Outputs

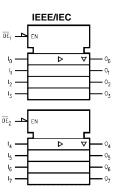
General Description

The LCX760 is the Open Drain version of the LCX244. The LCX760 contains eight non-inverting buffers with 3-STATE outputs. The device may be employed as a memory address driver, clock driver and bus-oriented transmitter/ receiver. The LCX760 is designed for low voltage (2.5V or 3.3V) V_{CC} applications with capability of interfacing to a 5V signal environment.

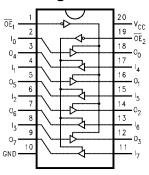
The LCX760 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

Features

- Open drain version of the LCX244
- 5V tolerant inputs and outputs
- 2.3V–3.6V V_{CC} specifications provided
- \blacksquare 8.0 ns t_{PD} max (V_{CC} = 3.3V), 10 $\mu A \mid_{CC}$ max
- Power down high impedance inputs and outputs
- Supports live insertion/withdrawal (Note 1)
- \blacksquare 24 mA output drive (V_{CC} = 3.0V)
- Implements patented noise/EMI reduction circuitry
- Latch-up conforms to JEDEC JED78
- ESD performance: Human body model > 2000V
- $\label{eq:Machine model} Machine model > 200V$ Note 1: To ensure the high-impedance state during power up or down, $\overline{\text{OE}}$


should be tied to V_{CC} through a pull-up resistor: the minimum value or the resistor is determined by the current-sourcing capability of the driver.

Ordering Code:


Order Number	Package Number	Package Description
74LCX760WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74LCX760SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 4.4mm Wide
74LCX760MSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide
74LCX760MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbol

Connection Diagram

© 2002 Fairchild Semiconductor Corporation DS500413

Pin Descriptions

74LCX760

Pin Names	Description
$\overline{OE}_1, \overline{OE}_2$	3-STATE Output Enable Inputs
I ₀ –I ₇	Inputs
O ₀ -O ₇	Outputs

Truth Tables

In	outs	Outputs
OE ₁	I _n	(Pins 12, 14, 16, 18)
L	L	L
L	н	н
Н	Х	Z
Inputs		Outputs
	5410	Outputs
	I _n	(Pins 3, 5, 7, 9)
		-
		-

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial Z = High Impedance

Absolute	Maximum	Ratings(Note 2)
----------	---------	-----------------

Symbol	Parameter	Value	Conditions	Units	
V _{CC}	Supply Voltage	-0.5 to +7.0		V	
VI	DC Input Voltage	-0.5 to +7.0		V	
Vo	DC Output Voltage	-0.5 to +7.0	Output in HIGH or LOW State (Note 3)	V	
к	DC Input Diode Current	-50	V _I < GND	mA	
ОК	DC Output Diode Current	-50	V _O < GND	m۸	
		+50	$V_{O} > V_{CC}$	mA	
0	DC Output Sink Current	50		mA	
сс	DC Supply Current per Supply Pin	±100		mA	
GND	DC Ground Current per Ground Pin	±100		mA	
Г _{STG}	Storage Temperature	-65 to +150		°C	

Recommended Operating Conditions (Note 4)

Symbol	Parameter		Min	Max	Units
V _{CC}	Supply Voltage	Operating	2.0	3.6	V
		Data Retention	1.5	3.6	v
VI	Input Voltage		0	5.5	V
Vo	Output Voltage		0	5.5	V
I _{OL}	Output Current	$V_{CC} = 3.0V - 3.6V$		24	
		$V_{CC} = 3.0V - 3.6V$ $V_{CC} = 2.7V - 3.0V$ $V_{CC} = 2.3V - 2.7V$		12	mA
		$V_{CC}=2.3V-2.7V$		8	
T _A	Free-Air Operating Temperature		-40	85	°C
$\Delta t / \Delta V$	Input Edge Rate, $V_{IN} = 0.8V - 2.0V$, $V_{CC} = 3.0V$		0	10	ns/V

Note 2: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 3: I_O Absolute Maximum Rating must be observed.

Note 4: Unused inputs or I/Os must be held HIGH or LOW. They may not float.

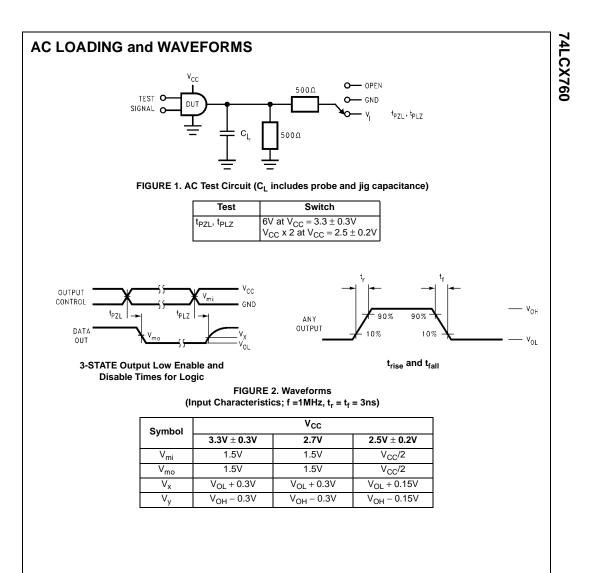
DC Electrical Characteristics

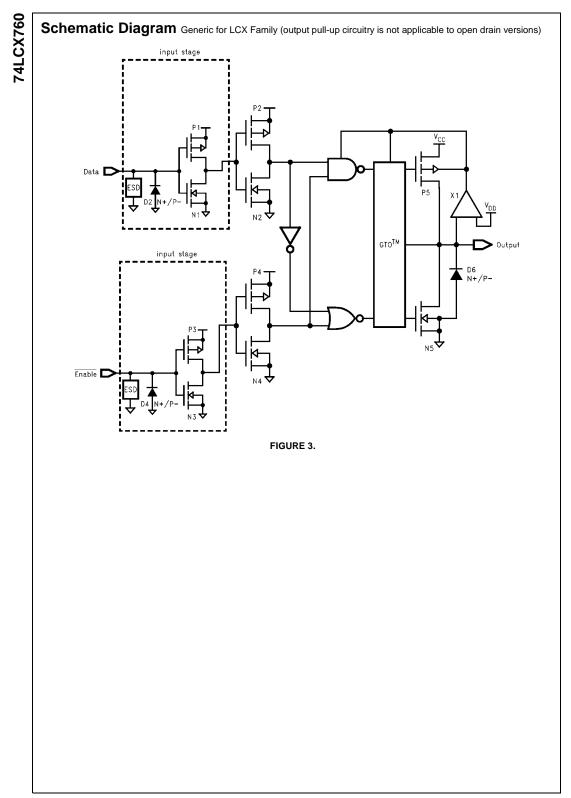
Symbol	Parameter	Conditions	V _{CC}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units
Symbol		Conditions	(V)	Min Max		Units
V _{IH}	HIGH Level Input Voltage		2.3 – 2.7	1.7		v
			2.7 - 3.6	2.0		v
V _{IL}	LOW Level Input Voltage		2.3 – 2.7		0.7	V
			2.7 - 3.6		0.8	v
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	2.3 - 3.6 0.2	0.2		
		I _{OL} = 8 mA	2.3		0.6	
		I _{OL} = 12 mA	2.7		0.4	V
		I _{OL} = 16 mA	3.0		0.4	ĺ
		I _{OL} = 24 mA	3.0		0.55	
I _I	Input Leakage Current	$0 \le V_1 \le 5.5V$	2.3 - 3.6		±5.0	μA
oz	3-STATE Output Leakage	$0 \le V_O \le 5.5V$	2.3 - 3.6		±5.0	μA
		$V_I = V_{IH} \text{ or } V_{IL}$	2.5 - 3.0			
I _{OFF}	Power-Off Leakage Current	V _I or V _O = 5.5V	0		10	μA
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND	2.3 - 3.6		10	μA
		$3.6V \le V_I, V_O \le 5.5V$ (Note 5)	2.3 – 3.6		±10	μА
∆l _{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.3 - 3.6		500	μA
I _{OHZ}	Off State Current	$V_0 = 5.5$	2 - 3.6		10	μA

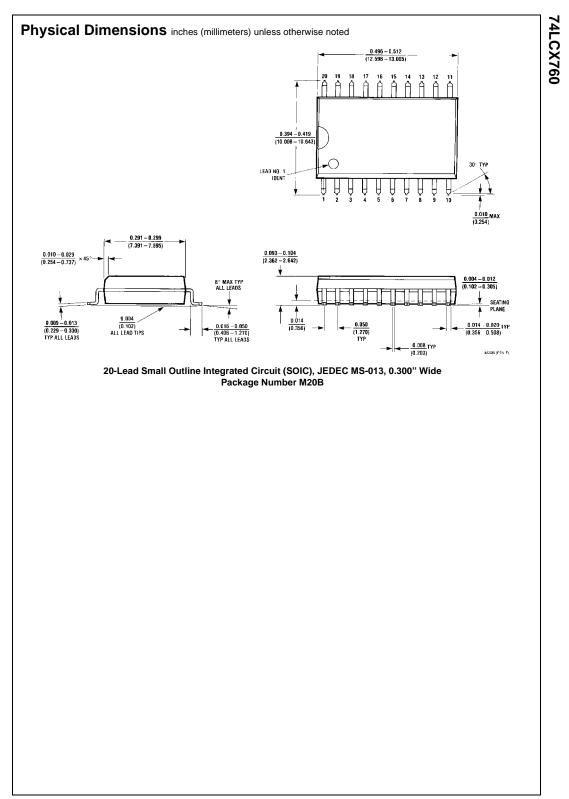
74LCX760

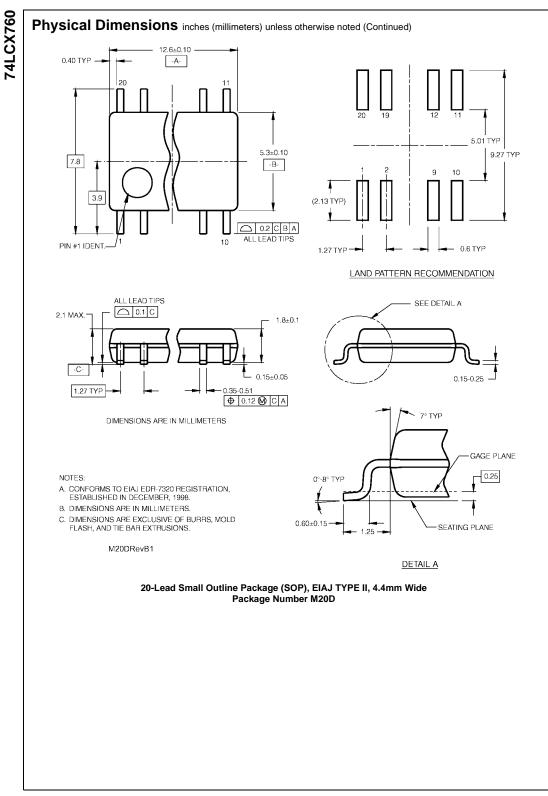
AC Electrical Characteristics

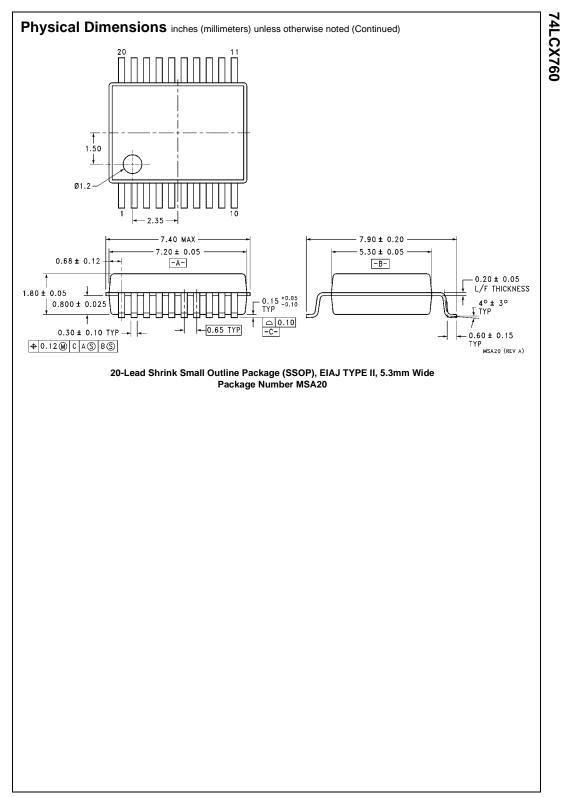
Symbol	Parameter		$T_A = -40^{\circ}C$ to $+85^{\circ}C$, $R_L = 500\Omega$					
		V _{CC} = 3.	$3V \pm 0.3V$	V _{CC} :	= 2.7V	V _{CC} = 2	.5V ± 0.2	Units
		C _L =	C _L = 50 pF		C _L = 50 pF		C _L = 30 pF	
		Min	Max	Min	Max	Min	Max	
t _{PZL}	Propagation Delay	0.5	8.0	0.5	9.0	0.5	10.0	
t _{PLZ}	Data to Output	0.5	7.0	0.5	8.0	0.5	8.4	ns
t _{PZL}	Output Enable Time	0.5	8.0	0.5	9.0	0.5	10.0	ns
	OE _n to Out							
t _{PLZ}	Output Disable Time	0.5	7.0	0.5	8.0	0.5	8.4	ns
	OE _n to Out	0.0	7.0	0.0	0.0	0.0	0.4	110
tOSHL	Output to Output Skew		1.0					ns
toslh	(Note 6)		1.0					115


Note 6: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).


Dynamic Switching Characteristics


Symbol	Parameter	Conditions	V _{cc} (V)	T _A = 25°C Typical	Units
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	C _L = 50 pF, V _{IH} = 3.3V, V _{IL} = 0V	3.3	0.8	
		$C_L = 30 \text{ pF}, V_{IH} = 2.5 \text{V}, V_{IL} = 0 \text{V}$	2.5	0.6	V
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_L = 50 \text{ pF}, \text{ V}_{IH} = 3.3 \text{ V}, \text{ V}_{IL} = 0 \text{ V}$	3.3	-0.8	V
		$C_{L} = 30 \text{ pF}, V_{IH} = 2.5 \text{V}, V_{IL} = 0 \text{V}$	2.5	-0.6	v


Capacitance


Symbol	Parameter	Conditions	Typical	Units
CIN	Input Capacitance	$V_{CC} = Open, V_I = 0V \text{ or } V_{CC}$	7	pF
C _{OUT}	Output Capacitance	$V_{CC} = 3.3V$, $V_{I} = 0V$ or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC} , f = 10 MHz	10	pF

