Signetics

74LS363 Latch

Octal Transparent Latch With 3-State Outputs Product Specification

Logic Products

FEATURES

- 8-bit transparent latch
- 3-state MOS compatible output buffers
- Common Latch Enable input with hysteresis
- Common 3-state Output Enable control
- Independent latch and 3-state buffer operation

DESCRIPTION

The '363 is an octal transparent latch coupled to eight 3-state output buffers. The two sections of the device are controlled independently by Latch Enable (E) and Output Enable (OE) control gates.

The data on the D inputs is transferred to the Latch outputs when the Latch Enable (E) input is HIGH. The latch remains transparent to the Data inputs while E is HIGH, and stores the data

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74LS363	19ns	42mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE V _{CC} = 5V ±5%; T _A = 0°C to +70°C
Plastic DIP	N74LS363N

NOTE:

For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74LS
Ali	Inputs	1LSul
All	Outputs	30LSul

NOTE:

A 74LS unit load (LSul) is 20 µA IIH and -0.4mA IIL.

present one set-up time before the HIGH-to-LOW enable transition. The enable gate has about 400mV of hysteresis

built in to help minimize problems that signal and ground noise can cause on the latching operation.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

5

Latch 74LS363

The 3-state output buffers are designed to drive heavily loaded 3-state buses, MOS memories, or MOS microprocessors. The output HIGH level differs from the normal 3-state buffer by driving the output about 1V closer to V_{CC} , or to over 3.5V at minimum V_{CC} . This

feature makes these devices ideal for driving MOS memories or microprocessors with thresholds of 2.4V to 3.5V.

The active LOW Output Enable (OE) controls all eight 3-state buffers independent of the

latch operation. When \overline{OE} is LOW, the latched or transparent data appears at the outputs. When \overline{OE} is HIGH, the outputs are in the HIGH impedance "off" state, which means they will neither drive nor load the bus.

LOGIC DIAGRAM

MODE SELECT - FUNCTION TABLE

OPERATING MODES	INPUTS				OUTPUTS	
OPERATING MODES	ŌĒ	E	D _n	INTERNAL REGISTER	Q ₀ - Q ₇	
Enable and read register	L	Н	L H	L H	L H	
Latch and read register	L L	L L	l h	L H	L H	
Latch register and disable outputs	H	L L	l h	L H	(Z) (Z)	

H = HIGH voltage level

h = HIGH voltage level one set-up time prior to the HIGH-to-LOW enable transition

L = LOW voltage level

I = LOW voltage level one set-up time prior to the HIGH-to-LOW enable transition

(Z) = HIGH impedance "off" state

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

	PARAMETER	74LS	UNIT
V _{CC}	Supply voltage	7.0	٧
V _{IN}	Input voltage	-0.5 to +7.0	٧
I _{IN}	Input current	-30 to +1	mA
V _{OUT}	Voltage applied to output in HIGH output state	-0.5 to +V _{CC}	٧
TA	Operating free-air temperature range	0 to 70	°C

Latch 74LS363

RECOMMENDED OPERATING CONDITIONS

	DADAMETED	74LS			
	PARAMETER	Min	Nom	Max	UNIT
V _{CC}	Supply voltage	4.75	5.0	5.25	V
V _{IH}	HIGH-level input voltage	2.0			V
V _{IL}	LOW-level input voltage			+0.8	V
lık	Input clamp current			-18	mA
Юн	HIGH-level output voltage			-2.6	V
l _{OL}	LOW-level output current			24	mA
TA	Operating free-air temperature	0		70	°C

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

PARAMETER		Trot coupirous!		74LS363			
		TEST CO	TEST CONDITIONS ¹			Max	UNIT
V _{OH}	HIGH-level output current	V _{CC} = MIN, V _{IH} = MIN, V _{IL} = MAX, I _{OH} = MAX		3.65			٧
V _{OL}	LOW-level output voltage	V _{CC} = MIN, V _{IH} = MIN,	I _{OL} = MAX		0.35	0.5	٧
V OL	LOW-level output voltage	V _{IL} = MAX	I _{OL} = 12mA (74LS)		0.25	0.4	٧
V_{IK}	input clamp voitage	V _{CC} = MIN, I _I = I _{IK}				-1.5	٧
lozh	Off-state output current, HIGH-level voltage applied	V _{CC} = MAX, V _{IL} = MAX, V _O = 3.65V				20	μΑ
l _{OZL}	Off-state output current, LOW-level voltage applied	V _{CC} = MAX, V _{IH} = MIN, V _O = 0.4V				-20	μΑ
l _l	Input current at maximum input voltage	V _{CC} = MAX, V ₁ = 7.0V				0.1	mA
l _{іН}	HIGH-level inut current	V _{CC} = MAX, V _I = 2.7V				20	μΑ
I _{IL}	LOW-level input current	V _{CC} = MAX, V _I = 0.4V				-0.4	mA
los	Short-circuit output current ³	V _{CC} = MAX		-30		-130	mA
Icc	Supply current (total)	V _{CC} = MAX, \overline{OE} = 4.5V			42	70	mA

NOTES:

- 1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
- 2. All typical values are at $V_{\rm CC}$ = 5V, $T_{\rm A}$ = 25°C.
- 3. los is tested with V_{OUT} = +0.5V and V_{CC} = V_{CC} MAX + 0.5V. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.

AC ELECTRICAL CHARACTERISTICS $T_A = 25$ °C, $V_{CC} = 5.0$ V

			74LS		
PARAMETER		TEST CONDITIONS	$C_L = 15pF, R_L = 2k\Omega$		UNIT
			Min	Max	
t _{PLH} t _{PHL}	Propagation delay Latch enable to output	Waveform 1		30 36	ns
t _{PLH} t _{PHL}	Propagation delay Data to output	Waveform 4		23 27	ns
t _{PZH}	Enable time to HIGH level	Waveform 2		28	ns
t _{PZL}	Enable time to LOW level	Waveform 3		36	ns
t _{PHZ}	Disable time from HIGH level	Waveform 2, C _L = 5pF		20	ns
t _{PZL}	Disable time from LOW level	Waveform 3, C _I = 5pF		25	ns

December 4, 1985 5-514

Latch

74LS363

AC SET-UP REQUIREMENTS $T_A = 25$ °C, $V_{CC} = 5.0$ V

PARAMETER		TEST CONDITIONS	74LS			
	PARAMETER	TEST CONDITIONS	Min	Max	UNIT	
t _W	Latch enable pulse width	Waveform 1	15		ns	
ts	Set-up time, data to latch enable	Waveform 5	0		ns	
th	Hold time, data to latch enable	Waveform 5	10		ns	

AC WAVEFORMS

Latch

74LS363

TEST CIRCUITS AND WAVEFORMS

 $V_{\rm M}$ = 1.3V for 74LS; $V_{\rm M}$ = 1.5V for all other TTL families.

Input Pulse Definition

Test Circuit For 3-State Outputs

SWITCH POSITION

TEST	SWITCH 1	SWITCH 2
t _{PZH}	Open	Closed
tpzL	Closed	Open
t _{PHZ}	Closed	Closed
t _{PLZ}	Closed	Closed

	ION	

 R_L = Load resistor to V_{CC} ; see AC CHARACTERISTICS for value.

C_L = Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.

 R_T = Termination resistance should be equal to Z_{OUT} of Pulse Generators.

D = Diodes are 1N916, 1N3064, or equivalent.

 $R_X = 1k\Omega$ for 74, 74S, $R_X = 5k\Omega$ for 74LS.

 $t_{\text{TLH}},\ t_{\text{THL}}$ Values should be less than or equal to the table entries.

F4140 V	INPUT PULSE REQUIREMENTS						
FAMILY	Amplitude	Rep. Rate	Pulse Width	trun	t _{THL}		
74	3.0V	1MHz	500ns	7ns	7ns		
74LS	3.0V	1MHz	500ns	15ns	6ns		
74S	3.0V	1MHz	500ns	2.5ns	2.5ns		