

LSTTL TO

TTL BUFFER
TTL INVERTER
CMOS BUFFER
CMOS INVERTER

74OL6000 74OL6001 74OL6010 74OL6011

DESCRIPTION

OPTOLOGIC™ is the first family of truly logic compatible optically coupled logic interface gates.

The family consists of four device types offering LSTTL to TTL and LSTTL to CMOS interfacing. Each of these interfacing functions is available as a buffer (A=B), or as an inverter ($A=\overline{B}$).

The LSTTL input compatibility is provided by an input integrated circuit, with industry standard logic levels. This input amplifier IC switches a temperature compensated current source driving a high speed 850 nm AlGaAs LED emitter. This novel integration scheme eliminates CTR degradation over time and temperature.

The emitter is optically coupled to an integrated photodetector/high-gain, high-speed output amplifier IC. The superior 15kV/µS common-mode noise rejection is ensured through the use of an optically transparent noise shield.

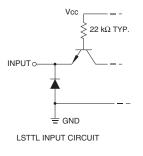
The TTL compatible output has a totem-pole with a fan-out of 10. The CMOS compatible output has an open collector Schottky-clamped transistor that interfaces to any CMOS logic between 4.5 and 15 volts. The 74OL6010/11 may also by used to drive power MOSFETS or transistors up to 15 volts.

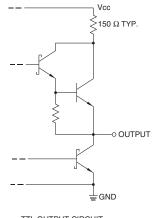
The Optologic coupler family typically offers propagation of delays of 60 ns and can support 15 MBaud data communication.

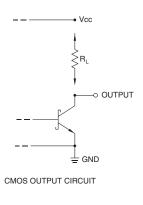
The two input chips and the output chip are assembled in a 6-pin DIP high insulation voltage plastic package. Fairchild's proprietary $OPTOPLANAR^{@}$ construction provides a withstand test voltage of 5300 VRMS (1 minute).

FEATURES

- Industry first LSTTL to TTL and LSTTL to CMOS complete logic-to-logic optocoupler
- Incorporates LED drive circuitry use as logic gate
- Very high speed
- · Choice of buffer or inverter
- Choice of TTL or CMOS compatible output up to 15 volts
- Fan-out of 10 TTL loads, fan-in 1 LSTTL load
- Internal noise shield very high CMR of $\pm 15 \text{ kV/}\mu\text{S}$
- UL recognized (File #E90700)
- Same noise immunity as LSTTL/TTL.


APPLICATIONS


- Transmission line interface receiver and driver
- · Excellent as bridged receiver in fast LAN highways
- Bus interface
- Logic family interface with ground loop noise elimination
- High speed AC/DC voltage sensing
- Driver for power semiconductor devices
- · Level shifting
- · Replaces fast pulse transformers



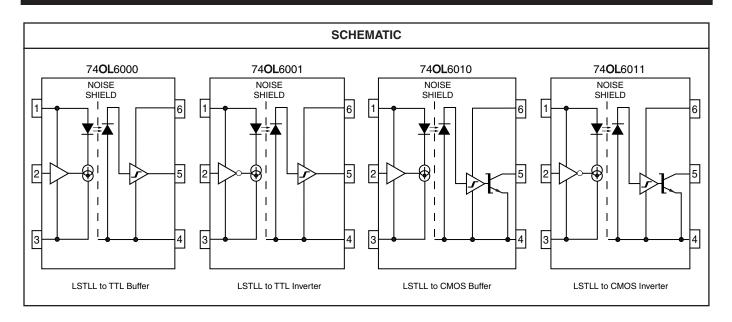
LSTTL TO

TTL BUFFER
TTL INVERTER
CMOS BUFFER
CMOS INVERTER

All Inputs

TTL OUTPUT CIRCUIT
74OL6000/01 Output

74OL6010/11 Output


PIN CONFIGURATION					
1-V _{CCI} (Input V _{CC})	6-V _{CCO} (Output V _{CC})				
2-V _{IN} (Data In)	5-V _O (Data Out)				
3-GND, (Input GND)	4-GND _O (Output GND)				

DEVICE CONFIGURATION							
Part Number	Logic Co	ompatibility	Logio Eunotion	Output Configuration			
	Input	Output	Logic Function	Output Configuration			
74OL 6000	LSTTL	TTL	BUFFER	TOTEM POLE			
74OL 6001	LSTTL	TTL	INVERTER	TOTEM POLE			
74OL 6010	LSTTL	CMOS	BUFFER	OPEN COLLECTOR			
74OL 6011	LSTTL	CMOS	INVERTER	OPEN COLLECTOR			

LSTTL TO

TTL BUFFER 740L6000
TTL INVERTER 740L6001
CMOS BUFFER 740L6010
CMOS INVERTER 740L6011

LSTTL TO

TTL BUFFER
TTL INVERTER
CMOS BUFFER
CMOS INVERTER

Parameter	Symbol	Min	Tvo*	Max	Units		Test Co	onditions	Notes
rarameter	Symbol	IVIIII	Тур*	IVIAX	Units	74OL6000	74OL6001	74OL6000/01	Notes
TTL OUTPUT 74OL6000/01									
Input Supply Voltage	V _{CCI}	4.5	5.0	5.5	V				1
Output Supply Voltage	V _{CCO}	4.5	5.0	5.5	٧				1
High-Level Input Voltage	V _{IH}	2.0			٧				1
Low-Level Input Voltage	V _{IL}			0.8	٧				1
Input Clamp Voltage	V _{IK}			-1.2	٧			$V_{CCI} = 4.5 \text{ V}, I_I = -18 \text{ mA}$	1
High-Level Input Current	I _{IH}		1.0	40.0	μA			$V_{CCI} = 5.5 \text{ V}, V_{IH} = 4.5 \text{ V}$	1
Low-Level Input Current	I _{IL}		-200.0	-400.0	μΑ			$V_{CCI} = 5.5 \text{ V}, V_{IL} = 0.4 \text{ V}$	1
Input Supply Current (high)	I _{CCIH}		10.0	14.0	mA			$V_{CCI} = 5.5 \text{ V}, V_{IN} = V_{IH}$	1
Input Supply Current (low)	I _{CCIL}		10.0	14.0	mA			$V_{CCI} = 5.5 \text{ V}, V_{IN} = V_{IL}$	1
High-Level Output Voltage	V _{OH}	2.4	3.0		٧	V _{IN} = 2.0 V	V _{IN} = 0.8 V	$V_{CCI} = 4.5 \text{ V}, V_{CCO} = 4.5 \text{ V}, $ $I_{OH} = -400 \text{ mA}$	1
Low-Level Output Voltage	V _{OL}		0.3	0.6	V	V _{IN} = 0.8V	V _{IN} = 2.0V	$V_{CCI} = 4.5 \text{ V}, V_{CCO} = 4.5 \text{ V},$ $I_{OL} = 16 \text{ mA}$ $V_{CCI} = 4.5 \text{ V}, V_{CCO} = 4.5 \text{ V},$	1
				0.5				$I_{OL} = 4 \text{ mA}$	
High-Level Output Current	I _{OH}		-8.0	-10.0	mA	$V_{IN} = V_{IH}$	$V_{IN} = V_{IL}$	$V_{CCI} = 4.5 \text{ V}, V_{CCO} = 4.5 \text{ V}, V_{OH} = 2.4 \text{ V}$	1
Low-Level Output Current	l _{OL}	16.0			mA	$V_{IN} = 0.8 V$	V _{IN} = 2.0V	$V_{CCI} = 4.5 \text{ V}, V_{CCO} = 4.5 \text{ V}, V_{OL} = 0.6 \text{ V}$	1
Short-Circuit Output Current	Ios	-5.0	-25.0	-40.0	mA	$V_{IN} = V_{IH}$	$V_{IN} = V_{IL}$	$V_{CCI} = 5.5 \text{ V}, V_{CCO} = 5.5 \text{ V},$	1
Output Supply Current (high)	Іссон		9.0	15.0	mA	$V_{IN} = V_{IH}$	$V_{IN} = V_{IL}$	$V_{CCI} = 5.5 \text{ V}, V_{O} = V_{OH}, V_{CCO} = 5.5 \text{ V}$	1
Output Supply Current (low)	I _{CCOL}		8.0	12.0	mA	$V_{IN} = V_{IL}$	$V_{IN} = V_{IH}$	$V_{CCI} = 5.5 \text{ V}, V_{O} = V_{OL},$ $V_{CCO} = 5.5 \text{ V}$	1

^{*}All typical values are at T_A=25°C

SWITCHING CHARACTERISTCS (T _A = 25°C Unless otherwise specified)								
Parameter	Symbol	Min	Тур	Max	Units	Test Conditions	Fig.	Notes
TTL OUTPUT 74OL6000/01								
Propagation Delay Time For Output Low Level	t _{PHL}		60	100	ns		15, 17	1
Propagation Delay Time For Output High Level	t _{PLH}		70	100	ns	$V_{CCI} = 5 \text{ V}, V_{CCO} = 5 \text{ V}$	15, 17	1
Output Rise Time For Output High Level	t _r		45		n		15, 17	1
Output Fall Time For Output Low Level	t _f		5		ns		15, 17	1

LSTTL TO

TTL BUFFER
TTL INVERTER
CMOS BUFFER
CMOS INVERTER

Davamatav	Cumbal			Mox	Max Units		onditions	Notes	
Parameter	Symbol	IVIIN	Тур*	IVIAX		74OL6010	74OL6011	74OL6010/11	Notes
CMOS OUTPUT 740L6010/11									
Input Supply Voltage	V _{CCI}	4.5	5.0	5.5	V				1
Output Supply Voltage	V _{CCO}	4.5		15.0	V				1,3
High-Level Input Voltage	V _{IH}	2.0			V				1
Low-Level Input Voltage	V _{IL}			0.8	V				1
Input Clamp Voltage	V _{IK}			-1.2	V			$V_{CCI} = 4.5 \text{ V}, I_{I} = -18 \text{ mA}$	1
High-Level Input Current	I _{IH}		1.0	40.0	μΑ			$V_{CCI} = 5.5 \text{ V}, V_{IH} = 4.5 \text{ V}$	1
Low-Level Input Current	I _{IL}		-200.0	-400.0	μΑ			$V_{CCI} = 5.5 \text{ V}, V_{IL} = -0.4 \text{ V}$	1
Input Supply Current (high)	I _{CCIH}		10.0	14.0	mA			$V_{CCI} = 5.5 \text{ V}, V_{IN} = V_{IH}$	1
Input Supply Current (low)	I _{CCIL}		10.0	14.0	mA			$V_{CCI} = 5.5 \text{ V}, V_{IN} = V_{IL}$	1
Low-Level Output Voltage	V _{OL}		0.4	0.6	V	V _{IN} = 0.8V	V 2 0V	$V_{CCI} = 4.5 \text{ V}, V_{CCO} = 4.5 \text{ V}, I_{OL} = 16 \text{ mA}$	1
Low-Level Output voltage	VOL		0.4	0.5	V	VIN - 0.0 V	VIN - 2.0 V	$V_{CCI} = 4.5 \text{ V}, V_{CCO} = 4.5 \text{ V},$ $I_{OL} = 4 \text{ mA}$	
High-Level Output Current	I _{OH}		1.0	100.0	μΑ	$V_{IN} = V_{IH}$	$V_{IN} = V_{IL}$	$V_{CCI} = 4.5 \text{ V}, V_{OH} = 15 \text{ V}, V_{CCO} = 4.5 - 15 \text{ V}$	1
Low-Level Output Current	I _{OL}	16.0			mA	V _{IN} = 0.8 V	V _{IN} = 2.0V	$V_{CCI} = 4.5 \text{ V}, V_{OL} = 0.6 \text{V}, V_{CCO} = 4.5 - 15 \text{ V}$	1
Output Supply Current (high)	lassu		9.0	12.0	mA	$V_{IN} = V_{IH}$	V – V	$V_{CCI} = 5.5 \text{ V}, V_{O} = V_{OH},$ $V_{CCO} = 4.5 \text{ V}$	1
Output Outpiy Ourient (high)	Іссон		11.0	18.0	IIIA	VIN — VIH	VIN - VIL	$V_{CCI} = 5.5 \text{ V}, V_{O} = V_{OL},$ $V_{CCO} = 15 \text{ V}$	'
Output Supply Current (low)	laas.		8.0	12.0	mA	V - V	V – V	$V_{CCI} = 5.5 \text{ V}, V_{O} = V_{OL},$ $V_{CCO} = 4.5 \text{ V}$	1
Output Supply Current (IOW)	ICCOL		11.0	18.0	111/4	$V_{IN} = V_{IL}$	NIN = NIH	$V_{CCI} = 5.5 \text{ V}, V_{O} = V_{OL},$ $V_{CCO} = 15 \text{ V}$	'

^{*}All typical values are at T_A=25°C

SWITCHING CHARACTERISTCS (T _A = 25°C Unless otherwise specified)								
Parameter	Symbol	Min	Тур	Max	Units	Test Conditions	Fig.	Notes
TTL OUTPUT 74OL6010/11								
Propagation Delay Time For Output Low Level	t _{PHL}		60	120	ns	V 5.V	15, 18	1
Propagation Delay Time For Output High Level	t _{PLH}		100	180	ns	$V_{CCI} = 5 \text{ V},$ $V_{CCO} = 5 \text{ V}, R_L = 470 \Omega$	15, 18	1
Output Rise Time For Output High Level	t _r		50		ns	VCCO = 3 v, 11L = 470 22	15, 18	1
Output Fail Time For Output Low Level	t _f		5		ns		15, 18	1

LSTTL TO

TTL BUFFER
TTL INVERTER
CMOS BUFFER
CMOS INVERTER

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C unless otherwise specified)							
Parameter	Symbol	Device	Value	Units			
TOTAL DEVICE							
Storage Temperature	T _{STG}	All	-55 to +125	°C			
Operating Temperature	T _{OPR}	All	0 to +70	°C			
Lead Solder Temperature	T _{SOL}	All	260 for 10 sec	°C			
Power Dissipation	P _D	All	350	mW			
EMITTER							
Input Supply Voltage	V _{CCI}	All	7	V			
Input Voltage	V _{IN}	All	7	V			
DETECTOR							
Average Output Current	I _{O (avg)}	All	40	mA			
Output Supply Voltage		74OL6000/01	7	V			
Output Supply Voltage	V _{cco}	74OL6010/11	18	V			
Output Voltage	V	74OL6000/01	7	V			
Output Voltage	Vo	74OL6010/11	18	V			

ELECTRICAL CHARACERISTICS (T _A = 0°C to 70°C Unless otherwise specified)								
Parameter	Symbol	Min	Тур	Max	Units	Test Conditions	Fig.	Notes
74OL6000/01/10/11								
Common Mode Transient Immunity at Logic High Level Output	CM _H	5000	15000		V/µS	$V_{CCI} = 5 \text{ V}, V_{CCO} = 5 \text{ V},$	16, 19	
Common Mode Transient Immunity at Logic Low Level Output	CML	-5000	-15000		V/µS	$V_{CCI} = 5 \text{ V}, V_{CCO} = 5 \text{ V},$ $V_{CM} = 50 \text{ Vp-p}$	16, 19	
Common Mode Coupling Capacitance	C _{CM}		0.005		pF			
Capacitance (input-output)	C _{I-O}		0.7		pF	VI-O = 0, f = 1 MHz		2
Withstand Insulation Test Voltage	V _{ISO}	5300			VRMS	$T_A = 25^{\circ}C$, $t = 1 \text{ min, } I_{I-O} \le 1\text{mA}$		2
Insulation Resistance	R _{ISO}		10 ¹¹		Ω	V _{I-O} = 500 VDC		2

I₁ - INPUT CURRENT (µA)

-300

OPTOPLANAR® HIGH-SPEED LOGIC-TO-LOGIC OPTOCOUPLERS

LSTTL TO

100

TTL BUFFER
TTL INVERTER
CMOS BUFFER
CMOS INVERTER

740L6000 740L6001 740L6010 740L6011

Figure 1. Input Current vs. Ambient Temperature

100

0

V_{CCI} = 5.5V
V_H = 4.5V
V_L = 0.4V

-200

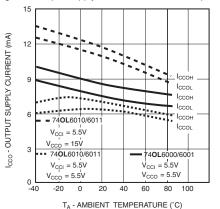

T_A - AMBIENT TEMPERATURE (°C)

Figure 2. Input Supply Current vs. Ambient Temperature

T_A - AMBIENT TEMPERATURE (°C)

20 40

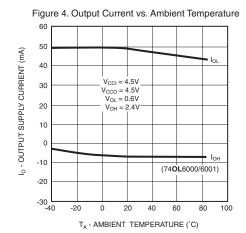


Figure 5. High-Level Output Voltage vs. Ambient Temperature

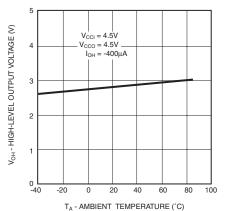
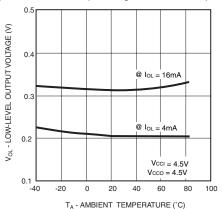



Figure 6. Low-Level Output Voltage vs. Ambient Temperature

LSTTL TO

TTL BUFFER TTL INVERTER **CMOS BUFFER CMOS INVERTER** 74OL6000 74OL6001 740L6010 740L6011

Figure 7. 74**OL**6010/11 Leakage Current vs. Ambient Temperature

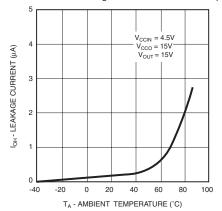


Figure 8. 74**OL**6000/01 Switching Times vs. Ambient Temperature

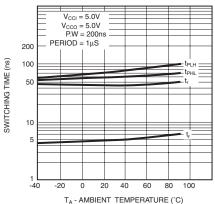


Figure 9. 74**0L**6010/11 Switching Times vs. Ambient Temperature

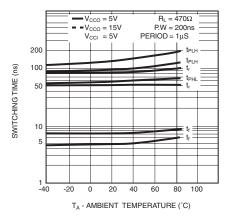


Figure 10. Common Mode Rejection vs. Common Mode Voltage

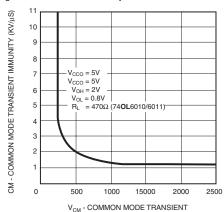


Figure 11. Supply Current vs. Supply Voltage

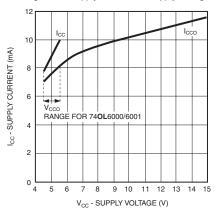
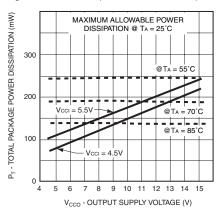



Figure 12. Power Dissipation vs. Ambient Temperature

LSTTL TO

TTL BUFFER
TTL INVERTER
CMOS BUFFER
CMOS INVERTER

Figure 13. Input Threshold Voltage vs. Ambient Temperature

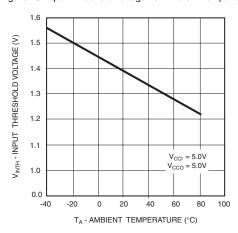


Figure 14. Input Current vs. Input Voltage

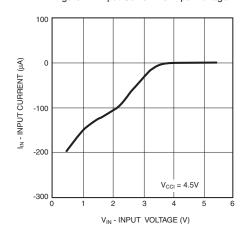


Figure 15. Switching Time Test Circuit

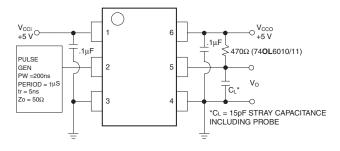
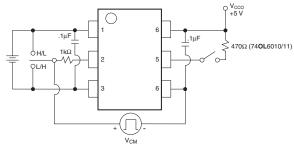



Figure 16. Common Mode Rejection Test Circuit

LSTTL TO

TTL BUFFER
TTL INVERTER
CMOS BUFFER
CMOS INVERTER

740L6000 740L6001 740L6010 740L6011

Figure 17. 740L6000/01 Switching Times vs. Ambient Temperature

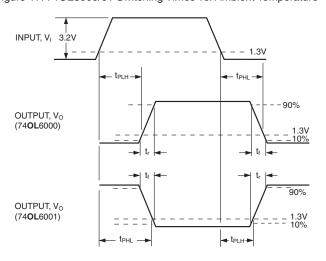


Figure 18. Switching Parameters 740L6010/11

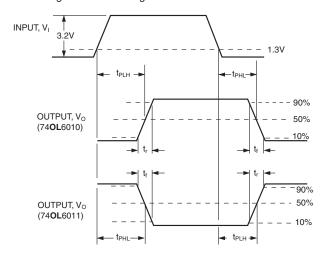


Figure 19. Common Mode Rejection Waveforms

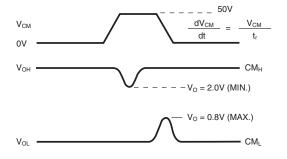
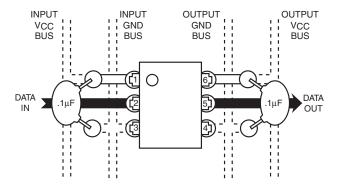
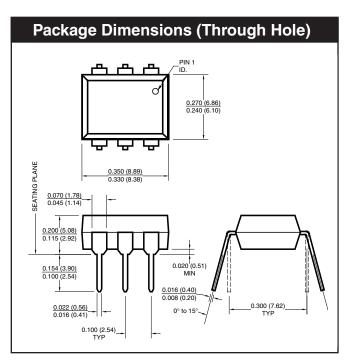
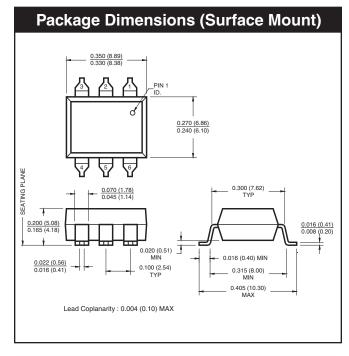
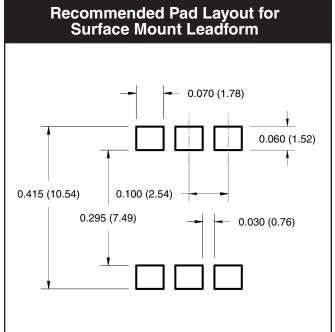



Figure 20. Suggested PCB Lay-Out


NOTE


- 1. The VCCO and VCCI supply voltages to the device must each be bypassed by a 0.1µF capacitor or larger. This can be either a ceramic or solid tantalum capacitor with good high frequency characteristics. Its purpose is to stabilize the operation of the high-gain amplifiers. Failure to provide the bypass will impair the DC and switching properties. The total lead length between capacitor and optocoupler should not exceed 1.5mm. See Fig. 20.
- 2. Device considered a two-terminal device. Pins 1, 2 and 3 shorted together, and Pins 4, 5 and 6 shorted together.
- 3. For example, assuming a V_{CCI} of 5.0V, and an ambient temperature of 70°C, the maximum allowable V_{CCO} is 12.1V.

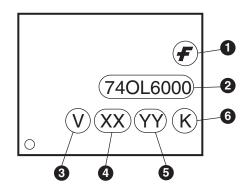

LSTTL TO

TTL BUFFER 740L6000
TTL INVERTER 740L6001
CMOS BUFFER 740L6010
CMOS INVERTER 740L6011

NOTE

All dimensions are in inches (millimeters)

LSTTL TO

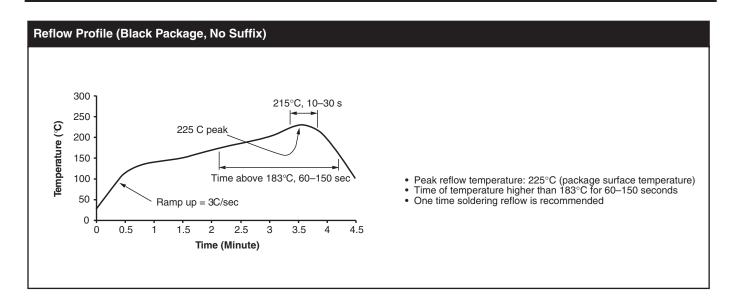

TTL BUFFER
TTL INVERTER
CMOS BUFFER
CMOS INVERTER

74OL6000 74OL6001 74OL6010 74OL6011

ORDERING INFORMATION

Option	Order Entry Identifier	Description
S	.S	Surface Mount Lead Bend
SD	.SD	Surface Mount; Tape and Reel
W	.W	0.4" Lead Spacing
300	.300	VDE 0884
300W	.300W	VDE 0884, 0.4" Lead Spacing
3S	.3S	VDE 0884, Surface Mount
3SD	.3SD	VDE 0884, Surface Mount, Tape and Reel

MARKING INFORMATION



Definiti	Definitions						
1	Fairchild logo						
2	Device number						
3	VDE mark (Note: Only appears on parts ordered with VDE option – See order entry table)						
4	Two digit year code, e.g., '03'						
5	Two digit work week ranging from '01' to '53'						
6	Assembly package code						

LSTTL TO

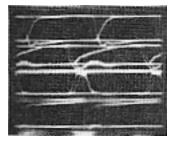
TTL BUFFER 740L6000
TTL INVERTER 740L6001
CMOS BUFFER 740L6010
CMOS INVERTER 740L6011

LSTTL TO

TTL BUFFER
TTL INVERTER
CMOS BUFFER
CMOS INVERTER

74OL6000 74OL6001 74OL6010 74OL6011

APPLICATION


Local area data communication systems can greately improve their noise immunity by including OPOTOLOGIC gates in the design.

The Optologic input amplifier offers the feature of very high input impedance that permits their use as bridged line receivers. The system show above illustrates an optically isolated transmitter and multidrop receiver system. The network uses a 740L6000 and buffer (Figure D) to isolate the transmitter and drive the 75Ω coax cable. This application uses a 1000 ft. aerial suspension 75Ω CATV coax cable with data taps at 250 ft. intervals. The 740L6001s function as bridged receivers, and as many as 30 receivers could be placed along the line with minimal signal degradation. The communication cable is terminated with a single 75Ω load at the far end of the line.

Signal quality "Eye Pattern" is shown in Figures A, B and C with a 10MBaud NRZ Psuedo-Random Sequence (PRS). Traces 1-3 in Figure A describes the transmitter section. Traces 4-7 in Figure B show the output of the four Optologic bridged terminations. Traces 8-11 in Figure C illustrate "Eye Pattern" as seen at the output of a 74LS04 logic gate. The data quality is well preserved in that only a 30% Eye closure is seen at the receiver located 1000 ft. from the transmitter.

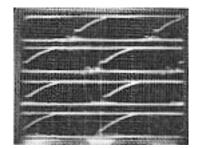

The data communication system is completely optically isolated from all of the terminal equipments. Power for the transmitter (V_{CCO}) and receiver (V_{CCO}) is taken from an isolated power supply and distributed through a drain or messenger wire.

Figure A

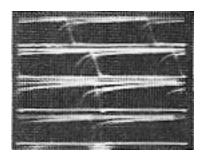
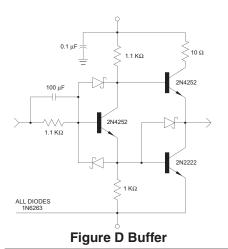

HORIZONTAL = 20 ns/DIV 42-11 VERTICAL = 2 V/DIV

Figure B



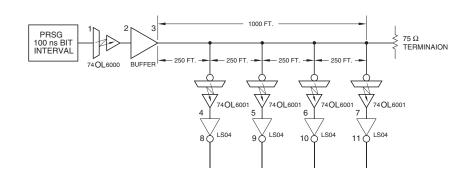

HORIZONTAL = 20 ns/DIV 42-12, 02 VERTICAL = 2 V/DIV

Figure C

HORIZONTAL = 20 ns/DIV 42-13/03 VERTICAL = 2 V/DIV

LSTTL TO

TTL BUFFER
TTL INVERTER
CMOS BUFFER
CMOS INVERTER

74OL6000 74OL6001 74OL6010 74OL6011

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Search:

Go

DATASHEETS, SAMPLES, BUY

TECHNICAL INFORMATION APPLICATIONS DESIGN CENTER SUPPORT COMPANY INVESTORS MY F.

Home >> Find products >>

74OL6001

6-Pin DIP LSTTL to TTL Inverter High-Speed Logic-To-Logic Output Optocoupler

Contents

- General description
- Features
- Applications
- Ordering information

- Product status/pricing/packaging
- Order Samples
- Safety agency certificates
- Qualification Support

BUY

Datasheet

Download this datasheet

e-mail this datasheet

This page Print version

General description

OPTOLOGIC™ is the first family of truly logic compatible optically coupled logic interface gates.

The family consists of four devices types offering LSTTL to TTL and LSTTL to CMOS interfacing. Each of these interfacing functions is available as a buffer (A=B) or as an inverter (A= \overline{B}).

The LSTTL input compatibility is provided by an input integrated circuit, with industry standard logic levels. This input amplifier IC switches a temperature compensated current source driving a high speed 850nm AlGaAs LED emitter. This novel integration scheme eliminates CTR degradation over time and temperature.

The emitter is optically coupled to an integrated photodetector/high gain. high-speed output amplifier IC. The superior 15kV/µS common-mode noise rejection is ensured through the use of an optically transparent noise shield.

The TTL compatible output has a totem-pole with a fan-out of 10. The CMOS compatible output has an open collector Schottky-clamped transistor that interfaces to any CMOS logic between 4.5 and 15 volts. The 74OL6010/11 may also be used to drive power MOSFETS or transistors up to 15 volts.

Related Links

Request samples

How to order products

Product Change Notices (PCNs)

Support

Sales support

Quality and reliability

Design center

The Optologic coupler family typically offers propagation of delays of 60ns and can support 15MBaud data communication.

The two input chips and the output chip are assembled in a 6-pin DIP high insulation voltage plastic package. Fairchild's proprietary OPTOPLANAR® construction provides a withstand test voltage of 5300 VRMS (1 minute).

back to top

Features

- Industry first LSTTL to TTL and LSTTL to CMOS complete logic-tologic optocoupler
- Incorporates LED drive circuitry use a logic gate
- Very high speed
- Choice of buffer or inverter
- Choice of TTL or CMOS compatible output up to 15 volts
- Fan-out of 10 TTL loads, fan-in 1 LSTTL load
- Internal noise shield very high CMR of \pm 15 kV/ μ S
- UL recognized (File #E90700)
- Same noise immunity as LSTTL/TTL

back to top

Applications

- Transmission line interface receiver and driver
- Excellent as bridged receiver in fast LAN highways
- Bus interface
- Logic family interface with ground loop noise elimination
- High speed AC/DC voltage sensing
- Driver for power semiconductor devices
- Level shifting
- Replaces fast pulse transformers

back to top

Ordering information

The following options can be ordered with this part:

Option	Order Entry Identifier	Description
S	.S	Surface Mount Lead Bend

SD	.SD	Surface Mount; Tape and Reel	
W	.W	0.4" Lead Spacing	
300	.300	VDE 0884	
300W	.300W	OVDE 0884, 0.4" Lead Spacing	
3S	.3S	VDE 0884, Surface Mount	
3SD	.3SD	VDE 0884, Surface Mount, Tape and Reel	

back to top

Product status/pricing/packaging

BUY

Product	Product status	Pb-free Status	Package type	Leads	Packing method
74OL6001	Lifetime Buy		DIP-B	6	BULK
74OL6001300	Lifetime Buy	Ø	DIP-B	6	BULK
74OL6001300W	Lifetime Buy	Ø	DIP-B	6	BULK
74OL60013S	Lifetime Buy	Ø	SMDIP-B	6	BULK
74OL60013SD	Lifetime Buy	Ø	SMDIP-B	6	TAPE REEL
74OL6001S	Lifetime Buy	Ø	SMDIP-B	6	BULK
74OL6001SD	Lifetime Buy	Ø	SMDIP-B	6	TAPE REEL
74OL6001W	Lifetime Buy	Ø	DIP-B	6	BULK

Indicates product with Pb-free second-level interconnect. For more information click here.

back to top

Safety agency certificates

Certificate	Agency		
<u>E90700, Vol. 1</u> (936 K)	UL (1577)	Underwriters Laboratories Inc.	
E90700, Vol. 1 (936 K)	C-UL	Underwriters Laboratories Inc.	
<u>0122085</u> (677 K)	SEMKO	SEMKO	

<u>P01101067</u> (1638 K)	NEMKO	NEMKO
<u>FI 16812</u> (964 K)	FIMKO	FIMKO
310684-02 (623 K)	DEMKO	DEMKO Testing & Certification
<u>1027742</u> (2305 K)	CSA	Canadian Standards Association
<u>94766</u> (1673 K)	VDE	VDE Pruf-und Zertifizierungsinstitut

back to top

Qualification Support

Click on a product for detailed qualification data

Product
74OL6001
74OL6001300
74OL6001300W
74OL60013S
74OL60013SD
74OL6001S
74OL6001SD
74OL6001W

back to top

© 2007 Fairchild Semiconductor

Products | Design Center | Support | Company News | Investors | My Fairchild | Contact Us | Site Index | Privacy Policy | Site Terms & Conditions | Standard Terms & Conditions |