

LC²MOS Single +5 V Supply, Low Power, 12-Bit Sampling ADC

AD7880

FEATURES

12-Bit Monolithic A/D Converter 66 kHz Throughput Rate 12 μs Conversion Time 3 μs On-Chip Track/Hold Amplifier Low Power

Power Save Mode: 2 mW typ Normal Operation: 25 mW typ

70 dB SNR

Fast Data Access Time: 57 ns

Small 24-Lead SOIC and 0.3" DIP Packages

APPLICATIONS
Battery Powered Portable Systems
Digital Signal Processing
Speech Recognition and Synthesis
High Speed Modems
Control and Instrumentation

GENERAL DESCRIPTION

The AD7880 is a high speed, low power, 12-bit A/D converter which operates from a single +5 V supply. It consists of a 3 µs track/hold amplifier, a 12 µs successive-approximation ADC, versatile interface logic and a multiple-input-range circuit. The part also includes a power save feature.

An internal resistor network allows the part to accept both unipolar and bipolar input signals while operating from a single +5 V supply. Fast bus access times and standard control inputs ensure easy interfacing to modern microprocessors and digital signal processors.

The AD7880 features a total throughput time of 15 µs and can convert full power signals up to 33 kHz with a sampling frequency of 66 kHz.

In addition to the traditional de accuracy specifications such as linearity, full-scale and offset errors, the AD7880 is also fully specified for dynamic performance parameters including harmonic distortion and signal-to-noise ratio.

The AD7880 is fabricated in Analog Devices' Linear Compatible CMOS (LC²MOS) process, a mixed technology process that combines precision bipolar circuits with low power CMOS logic. The part is available in a 24-pin, 0.3 inch-wide, plastic or hermetic dual-in-line package (DIP) as well as a small 24-lead SOIC package.

FUNCTIONAL BLOCK DIAGRAM

PRODUCT HIGHLIGHTS

1. Fast Conversion Time.

12 µs conversion time and 3 µs acquisition time allow for large input signal bandwidth. This performance is ideally suited for applications in areas such as telecommunications, audio, sonar and radar signal processing.

2. Low Power Consumption.

2 mW power consumption in the power-down mode makes the part ideally suited for portable, hand held, battery powered applications.

3. Multiple Input Ranges.

The part features three user-determined input ranges, 0 V to \pm 5 V, 0 V to 10 V and \pm 5 V. These unipolar and bipolar ranges are achieved with a 5 V only power supply.

ORDERING GUIDE

Model	Temperature Range	Full-Scale Error (LSBs)	Bipolar Zero Error (LSBs)	Package Option*
AD7880BN	-40°C to +85°C	± 15	±10	N-24
AD7880BQ	-40°C to +85°C	±15	±10	Q-24
AD7880CN	-40°C to +85°C	±5	± 5	N-24
AD7880CO	-40°C to +85°C	±5	± 5	Q-24
AD7880BR	-40°C to +85°C	±15	±10	R-24
AD7880CR	-40°C to +85°C	± 5	± 5	R-24

*N = Plastic DIP; Q = Cerdip; R = SOIC (Small Outline Integrated Circuit). For outline information see Package Information section.

$\textbf{AD7880-SPECIFICATIONS} \ \, \overset{(V_{DD}\ =\ +5\ V\ \pm\ 5\%,\ V_{REF}\ =\ V_{DD},\ AGND\ =\ DGND\ =\ 0\ V,\ f_{CLXIN}\ =\ 2.5\ MHz,\ MODE\ =\ V_{DD}\ } \\ \textbf{and} \ \, \text{and} \ \, \text{and} \ \, \text{becifications}\ T_{MIN}\ \text{to}\ T_{MAX}\ \text{unless otherwise noted.})$

Parameter	B Versions	C Versions ¹	Units	Test Conditions/Comments
DYNAMIC PERFORMANCE ²				
Signal-to-Noise Ratio ³ (SNR)	70	70	dB min	Typically SNR Is 72 dB
0. g (0.1.1.)		1		V _{IN} = 1 kHz Sine Wave, f _{SAMPLE} = 66 kHz
Total Harmonic Distortion (THD)	-80	80	dB typ	V _{IN} = 1 kHz Sine Wave, f _{SAMPLE} = 66 kHz
Peak Harmonic or Spurious Noise	-80	-80	dB typ	$V_{IN} = 1 \text{ kHz}, f_{SAMPLE} = 66 \text{ kHz}$
Intermodulation Distortion (IMD)	00		GD () P	VIN I WILL ISAMPLE: OF INTE
Second Order Terms	-80	- 80	dB typ	fa = 0.983 kHz, fb = 1.05 kHz, f _{SAMPLE} = 66 kHz
Third Order Terms	-80	-80	dB typ	fa = 0.983 kHz, fb = 1.05 kHz, fsample = 66 kHz
			ub ijp	TA 0.703 KT12, TO = 1.03 KT12, ISAMPLE = 00 KT12
DC ACCURACY				All Do Loov Brown 10 10 1 1 1 1
Resolution	12	12	Bits	All DC ACCURACY Specifications Apply for
				the Three Analog Input Ranges
Integral Nonlinearity	±1	±1	LSB max	
Differential Nonlinearity	±1	±1	LSB max	Guaranteed Monotonic
Full-Scale Error	±15	±5	LSB max	
Bipolar Zero Error	±10	±5	LSB max	
Unipolar Offset Error	±5	±5	LSB max	
ANALOG INPUT	_			
Input Voltage Ranges	0 to V _{REF}	0 to V _{REF}	Volts	See Figure 5
input voltage ranges	0 to 2 V _{REF}	0 to 2 V _{REF}	Volts	See Figure 6
	±V _{REF}	±V _{REF}	Volts	See Figure 7
Input Resistance	10	10	MΩ min	0 to V _{REF} Range
input Resistance	5/12	5/12	kΩ min/max	8 kΩ typical: 0 to 2 V _{REF} Range
	5/12	5/12	kΩ min/max	
	3/12	3/12	K12 IIIII/IIIax	8 kΩ typical: ± V _{REF} Range
REFERENCE INPUT				
V _{REF} (For Specified Performance)	5	5	V	$\pm 5\%$: Normally $V_{REF} = V_{DD}$ (See Reference Input Section)
I_{RFF}	1.5	1.5	mA max	
Nominal Reference Range	2.5/V _{DD}	2.5/V _{DD}	V min/max	See Figure 3 for Degradation in Performance Down to 2.5 V
LOGIC INPUTS				
CONVST, RD, CS, CLKIN		\	}	
Input High Voltage, V _{INH}	2.4	2.4	V min	
Input Low Voltage, V _{INI}	0.8	0.8	V max	
Input Current, I _{IN}	±10	±10	μA max	$V_{IN} = 0 \text{ V or } V_{DD}$
Input Capacitance, C _{IN} ⁴	10	10	pF max	AIN - 0 A OL ADB
MODE INPUT	10	10	pr max	
Input High Voltage, V _{INH}	4	4	V min	
	1	1	V max	
Input Low Voltage, V _{INL}		_		N 0 N N
Input Current, I _{IN}	±125	±125	μA max	$V_{IN} = 0 \text{ V or } V_{DD}$
Input Capacitance, C _{IN} ⁴	10	10	pF max	
LOGIC OUTPUTS			Ì	
DB11-DB0, BUSY				
Output High Voltage, Von	4.0	4.0	V min	$I_{SOURCE} = 400 \mu\text{A}$
Output Low Voltage, Vol.	0.4	0.4	Vmax	$I_{SINK} = 1.6 \text{ mA}$
DB11-DB0			Ì	
Floating-State Leakage Current	±10	±10	μA max	
Floating-State Output Capacitance ⁴	10	10	pF max	
CONVERSION				
	1.0		l	C - 25 MAI
Conversion Time	12	12	µs max	$f_{CLKIN} = 2.5 \text{ MHz}$
Track/Hold Acquisition Time	3	3	µs max	
POWER REQUIREMENTS				
V_{DD}	+5	+5	V nom	±5% for Specified Performance
I _{DD}				
Normal Power Mode (w +25°C	7.5	7.5	mA max	Typically 4 mA; MODE = V _{DD}
T _{MIN} to T _{MAX}	10	10	mA max	Typically 5 mA; MODE = V _{DD}
Power Save Mode (w +25°C	750	750	μA max	Logic Inputs (a) 0 V or V _{DD} ; MODE = 0 V
T _{MIN} to T _{MAX}	1	1	mA max	Logic Inputs (a) 0 V or V _{DD} ; MODE = 0 V
Power Dissipation	•	1 '		Eogic Inputs to 1 of 100, MODE - 0 1
Normal Power Mode (a) +25°C	37.5	37.5	mW max	V = 5 V: Tunically 20 mW: MODE = V-
	50	50		V _{DD} = 5 V: Typically 20 mW; MODE = V _{DD}
T _{MIN} to T _{MAX}			mW max	$V_{DD} = 5 \text{ V: Typically 25 mW; MODE} = V_{DD}$
Power Save Mode (a) +25°C T _{MIN} to T _{MAX}	3.75 5	3.75	mW max	$V_{DD} = 5 \text{ V}$: Typically 2 mW; MODE = 0 V
		5	mW max	$V_{DD} = 5 \text{ V}$: Typically 2.5 mW; MODE = 0 V

NOTES

Temperature ranges are as follows: B/C Versions, -40° C to $+85^{\circ}$ C. 2 V_{IN} = 0 to V_{REF} 2 SNR calculation includes distortion and noise components. 4 Sample tested ω +25 $^{\circ}$ C to ensure compliance.

Specifications subject to change without notice.