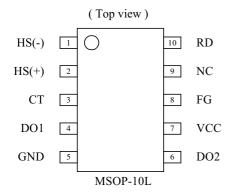


AP1303

Single-Phase Full-Wave Fan Motor Driver

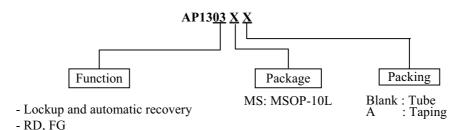
(Preliminary)


■ Features

- Operating voltage: 3.8V to 16.8V
- Built-in regenerative circuit allows use of reverseconnection protection diode
- Built-in Hall amplifier with hysteresis (supports core without auxiliary electrode)
- Built-in rotor-lock shutdown and automatic recovery
- Rotation detection (RD) output
- Frequency generator (FG) output
- Built-in thermal shutdown protection

General Descriptions

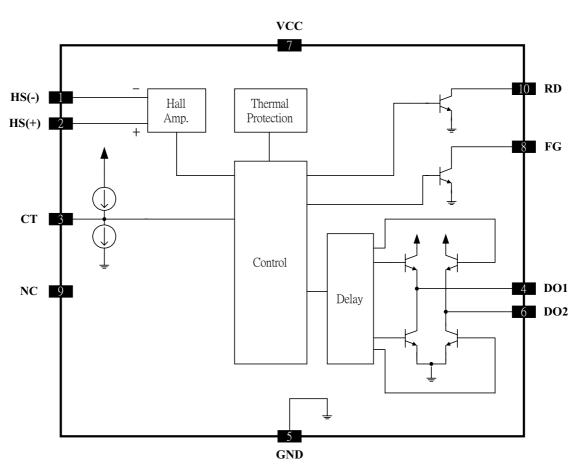
The AP1303 is single-phase full-wave drive design and a compact package makes the IC optimal for small fans (especially cooling fans). Low switching noise and effective motor drive are further advantages. To avoid coil burning, rotor-lock detection shut down the output driver and then automatic recovery circuit will restart during locked state. The AP1303 features the RD, FG outputs and thermal shutdown for protecting the IC.


■ Pin Assignments

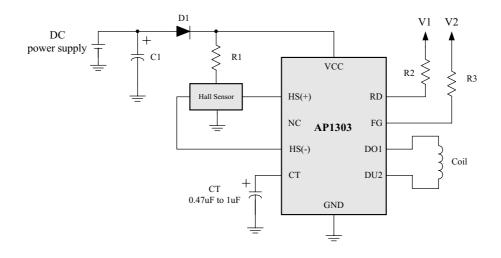
■ Pin Descriptions

Name	Function
HS(+)	Hall sensor input
HS(-)	Hall sensor input
CT	Timing capacitor
DO1	Bipolar Driver Output
DO2	Bipolar Driver Output
VCC	Power input
FG	Frequency Generation
RD	Rotation Detection
NC	No Connecting
GND	Ground

■ Ordering Information



- Thermal Shutdown



(Preliminary)

■ Block Diagram

■ Application Circuit

AP1303

Single-Phase Full-Wave Fan Motor Driver

(Preliminary)

■ Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit
Maximum supply voltage	$V_{\text{CC(max)}}$	17	V
Maximum output current	I _{out(max)}	0.5	A
Maximum output withstand voltage	$V_{out(max)}$	15	V
DD/CC in to the idea of	V _{R (max)}	15	V
RD/FG maximum output withstand voltage	$V_{F(max)}$	17	V
DD/CC	I _{R(max)}	5	mA
RD/FG maximum output current	I _{F(max)}	5	mA
Allowable power dissipation	$P_{D(max)}$	500	mW
Thermal resistance (Junction to Ambient)	ϑ_{JA}	150	°C/W
Operating temperature	T_{opr}	-30 to +85	°C
Storage temperature	$T_{ m stg}$	-55 to +150	°C

■ Allowable Operating Conditions (Ta=25°C)

Parameter	Symbol	Rating	unit
Supply voltage	V_{cc}	3.8 to 16.8	V
Hall input common mode voltage range	V_{HCM}	0.2 to (VCC-1.5)	V

Single-Phase Full-Wave Fan Motor Driver

(Preliminary)

■ Electrical Characteristics (Ta=25°C, VCC=5V)

Parameter	Crimbal	Conditions		Unit			
rarameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Current drain	ī	Drive mode (CT=L)		6.5	9.1	mA	
Current drain	I_{cc}	Lock protection mode (CT=H)		2.2	3.1	mA	
Lock detection Capacitor charge current	I_{CT1}		1.9	2.8	3.7	uA	
Capacitor discharge current	$\rm I_{CT2}$		0.32	0.46	0.60	uA	
Capacitor change/discharge current ratio	R_{CT}	$R_{CT} = \frac{I_{CT1}}{I_{CT2}}$	5	6	7		
CT charge voltage	V_{CT1}		2.55	2.75	2.95	V	
CT discharge voltage	V_{CT2}		1.6	1.8	2.0	V	
Output Low level voltage	V _{OL}	I _O =200mA		0.2	0.3	V	
Output High level voltage	V_{OH}	I _O =200mA	3.9	4.1		V	
Hall input sensitivity	$V_{_{\mathrm{HN}}}$	Zero Peak value (including offset and hysteresis)		7	15	mV	
RD/FG output pin low voltage	V_{RD} , V_{FG}	I_{RD} , I_{FG} =5mA		0.1	0.3	V	
RD/FG output pin leakage current	I_{RDL} , I_{FGL}	V_{RD} , V_{FG} =15V			30	uA	

■ Truth Table

Mode	HS(+)	HS(-)	CT	DO1	DO2	RD	FG
Datatina	Н	L	Ţ	Н	L	L	L
Rotating	L	Н	L	L	Н		Н
Lock	-	-	Н	Off	Off	Off	-

AP1303

ATC

Single-Phase Full-Wave Fan Motor Driver

(Preliminary)

■ Function Descriptions

(1). HS(+), HS(-) pins

Hall input signal pins

The Hall signal is amplified into a square wave by the Hall amplifier with hysteresis characteristics of ± 3.5 mv (typ.). The Hall input signal amplitude should be 70 mV or more.

(2). VCC pin

Power supply pin for control block and motor drive. Accepts a wide operation voltage range from 3.8 to 16.8V, for 5V/12V dual power supply support.

(3) DO1, DO2 pins

Single-coil output pins.

Bipolar driver output with upper side inverted and lower side single output. Built-in regenerative circuit regenerates kickback current between lower side NPN outputs when a diode is used for protection against reverse connection.

(4) CT pin

This pin serves for connecting a capacitor between CT and GND.

The capacitor determines the characteristics of the built-in Lock protection circuit for preventing coil burnout in the case of motor restraint. Once normal motor load is restored, the automatic recovery circuit resets itself. Changing the capacitance alters the lock detection time. When a 0.47 uF capacitor is connected between CT and GND

Lock detection time: approx. 0.5s

Lock protection time/automatic recovery time: approx. 0.16s (output ON)

approx. 1s (output OFF)

When not using Lock protection function, this pin should be connected to ground.

(5) RD pin

Open-collector output pin for rotation detection.

This pin is pulled low during rotation and pulled high when rotor-lock is detected.

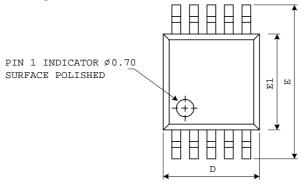
(6) FG pin

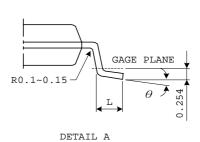
Open-collector output pin for rotation frequency detection.

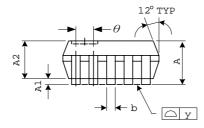
When HS(-) = High and HS(+) = Low, then FG = Low

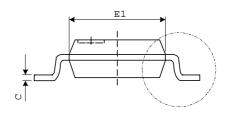
When HS(-) = Low and HS(+) = High, then FG = High

(7) Thermal protection circuit

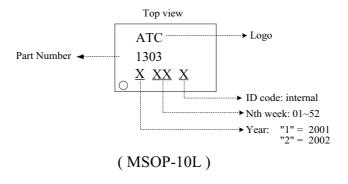

When internal temperature Tj of IC reaches 180°C, output current limiter is activated to protect against damage.


Single-Phase Full-Wave Fan Motor Driver


(Preliminary)


■ Package Diagrams

MSOP-10L Package



SYMBOLS	DIMENSIC	NS IN MIL	LIMETERS	DIMENSIONS IN INCHES			
STMBOLS	MIN	NOM	MAX	MIN	NOM	MAX	
A	0.81	1.02	1.22	0.032	0.040	0.048	
A1	0.05		0.15	0.002		0.006	
A2	0.76	0.86	0.97	0.030	0.034	0.038	
b	0.15	0.20	0.25	0.0059	0.0078	0.0098	
С	0.13	0.15	0.23	0.005	0.006	0.009	
D	2.90	3.00	3.10	0.114	0.118	0.122	
Е	4.80	4.90	5.00	0.189	0.193	0.197	
E1	2.90	3.00	3.10	0.114	0.118	0.122	
e		0.50			0.0196		
L	0.40	0.53	0.66	0.016	0.021	0.026	
у			0.076			0.003	
θ	0°	3°	6°	0°	3°	6°	

■ Marking Information

