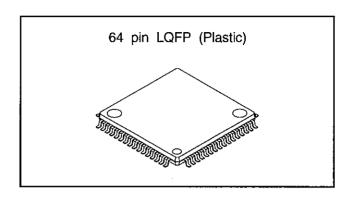
CXB1589R

10 Bit 1.25 Gbaud Transceiver

Description

The CXB1589R is a transceiver IC with a built-in PLL for Gigabit Ethernet. For a receiver 1.25 Gbaud serial data is received and output it as the 10-bit parallel data; for transmitter 1.25 Gbaud 10-bit parallel data is output as the serial data.

Features


- Transmitter and receiver in a single chip
- . Conforms to 10-bit interface specification
- TTL / ECL compatible
- Single +3.3 V power supply
- PLL for clock generation and clock / data recovery
- Byte sync detector (positive character of comma)
- · Local loop back circuit
- Low power consumption(0.8 W typ.)
- 64-pin plastic LQFP package (14 mm × 14 mm)

Applications

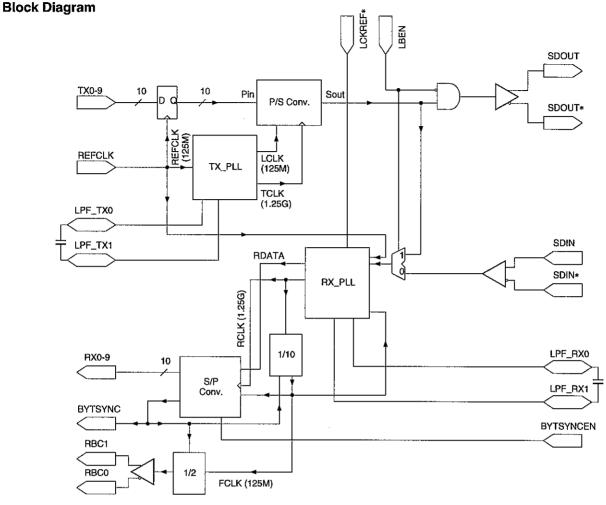
1.25 Gbaud Gigabit Ethernet

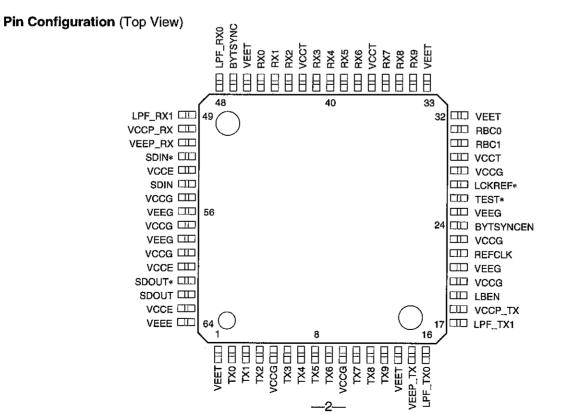
Structure

Bipolar silicon monolithic IC

Absolute Maximum Ratings (Ta=25 °C)

 Supply voltage 	Vcc	-0.3 to 4	V				
Operating temperature	Topr	-55 to +70	°C				
Storage temperature	Tstg	65 to +150	°C				
Allowable power dissipation							

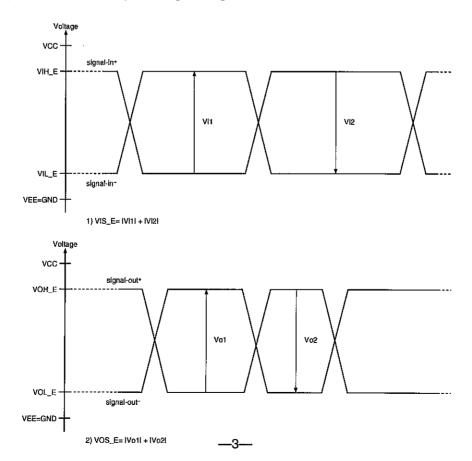

 P_{D}


to 1109 mW

Operating Conditions

Supply voltage Vcc 3.14 to 3.46 \

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.


DC Characteristics

(under the recommended conditions)

Item	Symbol	Min.	Тур.	Max.	Unit	Conditions
TTL high level input voltage	VIH_T	2		5.5	٧	
TTL low level input voltage	VIL_T	0		0.8	٧	
TTL high level input current	IIH_T			20	μA	Vin=Vcc
TTL low level input current	IIL_T	-400			μΑ	Vin=0
TTL high level output voltage	VOH_T	2.2			٧	IOH=-0.4 mA
TTL low level output voltage	VOL_T			0.5	٧	IOL=2 mA
ECL high level input voltage	VIH_E	Vcc-1.17		Vcc-0.88	V	
ECL low level input voltage	VIL_E	Vcc-1.81		Vcc-1.48	٧	
ECL peak-to-peak differential	VIS E 1)	400		2000	mV	AC coupling input
input voltage swing	VIO_L "	400		2000	IIIV	AC coupling input
ECL high level output voltage	VOH E	Vcc-1.05		Vcc-0.81	٧	50 Ω terminated
Lot mgm lever output voltage	VO11_L VCC=1.03			VCC0.01	\ \ \	to Vcc-2 V
ECL low level output voltage	VOL_E	Vcc-1.81		Vcc-1.55	٧	50 Ω terminated
Lot low level output voltage	VOL_L	VCC1.01		1 400-1.55	V	to Vcc-2 V
ECL peak-to-peak differential	VOS_E 2)	1200		1900	mV	
output voltage swing	V OO_L -/	1200		1900		:
Current consumption	Icc		250	320	mA	Output pins open
Power dissipation	Po		825	1109	mW	Output pins open

Note:

- 1) ECL peak-to-peak differential input voltage swing
- 2) ECL peak-to-peak differential output voltage swing

AC Characteristics

(under the recommended operating conditions)

Item	Symbol	Min.	Тур.	Max.	Unit	Conditions
TTL input rise time of TX	Tir_TX	0.7		4.8	ns	0.8 V to 2.0 V
TTL input fall time of TX	Tif_TX	0.7		4.8	ns	2.0 V to 0.8V
TTL input rise time of REFCLK	Tir_REF	0.7		2.4	ns	0.8 V to 2.0 V
TTL input fall time of REFCLK	Tif_REF	0.7		2.4	ns	2.0 V to 0.8 V
TTL output rise time	Tor_T			3.5	ns	0.8 V to 2.0 V,
11 L Output fise time	1011			3.5	118	CL=10 pF
TTL output fall time	Tof_T			3.5	ns	2.0 V to 0.8 V,
	101_1			3.5	115	CL=10 pF
ECL output rise time	Tor_E			400	ps	20 % to 80 %, CL=2 pF
ECL output fall time	Tof_E			400	ps	20 % to 80 %, CL=2 pF
REFCLK period	Tp_REF	7.88	8.00	8.12	ns	
REFCLK duty cycle	DC_REF	40		60	%	
REFCLK frequency tolerance	Ftol_REF	-100		100	ppm	
TX setup time to REFCLK	Ts_TX	2			ns	
TX hold time to REFCLK	Th_TX	1.5			ns	
RX setup time to RBC	Ts_RX	2.5			ns	
RX hold time to RBC	Th_RX	1.5			ns	
Skew between RBC0 and 1	Tsk_RBC	Tp/2-0.5	Tp/2	Tp/2+0.5	ns	Tp is period of RBC
RBC duty cycle	DC_RBC	40		60	%	in frequency lock
Deterministic jitter (p-p)	DJ		0.02	0.07	1.11	Serial data output
Deterministic litter (p-p)	D3	:	0.02	0.07	UI	(k28.5)
Random jitter (p-p)	RJ		0.18	0.23	UI	Serial data output
Jitter tolerance	Л			0.7	Ul	Serial data input

PLL AC Characteristics

(under the recommended operating conditions)

ltem	Symbol	Min.	Тур.	Max.	Unit	Conditions
Frequency acquisition time of TX and RX PLL	Tfa			500	μs	Loop damping capacitor=0.01µF
Bit synchronization time of RX PLL	Tbs			2500	bit	

Absolute Maximum Ratings

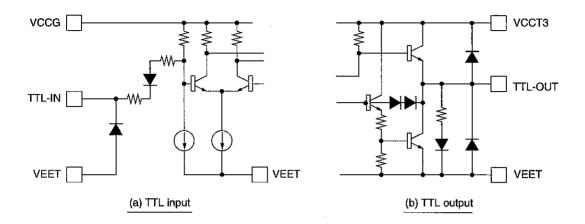
(VEEE, VEET, VEEG, VEEP=GND)

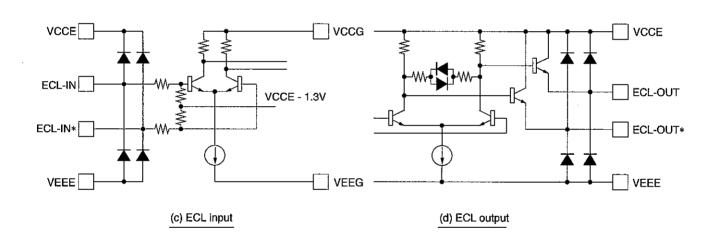
ltem	Symbol	Min.	Тур.	Max.	Unit	Remarks
Power supply voltage	Vcc	-0.3		4	V	
(Except VCCT5)	VCC	-0.3		4	"	
TTL DC input voltage	VI_T	-0.5		5.5	V	
ECL DC input voltage	VI_E	Vcc-2		Vcc	V	
ECL peak-to-peak differential	VIS E	-4		4	V	
input voltage swing	VIOE	VISE -4		4	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
TTL output current (High level)	IOH_T	-20		0	mA	
TTL output current (Low level)	IOL_T	0		20	mA	
ECL output current	IO_E	-30		0	mA	Under bias
Ambient temperature	Ta	-55		70	°C	
Storage temperature	Tstg	- 65		150	°C	

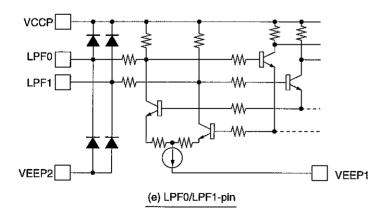
Recommended Operating Conditions

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
Supply voltage (Including VCCT5)	Vcc	3.135	3.3	3.465	٧	
Ambient temperature	Та	0		70	°C	

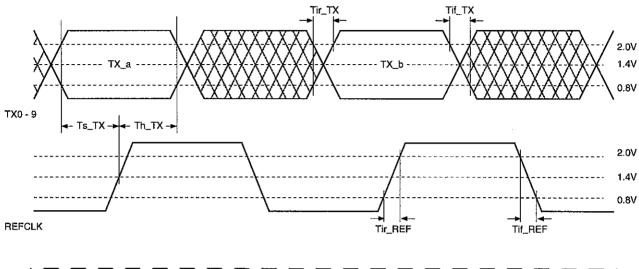
Pin Description

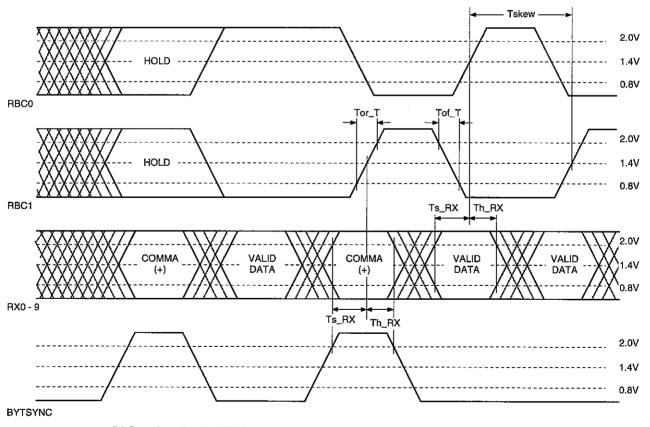

Pin No.	Symbol	Туре	Description	Equivalent circuit
1, 14, 32, 33, 46	VEET	PS	Ground for TTL output : Normally 0 V.	
2-4, 6-9, 11-13	TX0-9	I_TTL	Parallel transmit data inputs to be serialized. TX0 is serialized first and TX9 is last.	(a)
5, 10, 20, 23, 28, 55, 57, 59	VCCG	PS	Power supply for internal logic gates : Normally 3.3 V.	
15	VEEP_TX	PS	Ground for TX PLL : Normally 0 V.	
16 17	LPF_TX0 LPF_TX1	EX	Connect to external loop filter of TX PLL. Connect a capacitor (0.01 µF) between LPF_TX0 and LPF_TX1.	(e)
18	VCCP_TX	PS	Power supply for TX PLL : Normally 3.3 V.	_
19	LBEN	I_TTL	Loop back enable: When high, TX serializer output internally connects to RX deserializer input, SDOUT/SDOUT* is held low/high, and SDIN/SDIN* is disabled. When low, SDOUT/SDOUT* and SDIN/SDIN* are enabled.	(a)
21, 25, 56, 58	VEEG	PS	Power supply for internal logic gates : Normally 0 V.	
22	REFCLK	[_TTL	Reference clock for PLL and transmit byte clock (125 MHz). Supplied by the host system.	(a)
24	BYTSYNCEN	I_TTL	Byte synchronization enable: When high, the positive comma character (0011111) detection circuit is enabled to establish byte synchronization (see Timing Chart).	(a)
26	TEST*	I_TTL	Test pin: Normally 3.3 V or open.	(a)
27	LCKREF*	I_TTL	Lock to reference clock: An active low input. LCKREF* forces the PLL lock to the REFCLK supplied by the host system.	(a)
29, 37, 42	VCCT	PS	Power supply for TTL output: Normally 3.3 V.	
30 31	RBC1 RBC0	O_TTL	Receive byte clocks recovered from the serial data (62.5 MHz). These clocks are 180 degrees out of phase, and RX0-9 are alternatively clocked on the rising edge of these clocks (see Timing Chart)	(b)
34-36, 38-41, 43-45	RX0-9	O_TTL	Parallel receive data output : RX0 is received first and RX9 is last.	(b)
47	BYTSYNC	O_TTL	Byte synchronization indicator : High when a positive comma character is detected (see Timing Chart)	(b)
48 49	LPF_RX0 LPF_RX1	EX	Connect to external loop filter of RX PLL. Connect a capacitor (0.01 µF) between LPF_RX0 and LPF_RX1.	(e)
50	VCCP_RX	PS	Power supply for RX PLL : Normally 3.3 V.	
51	VEEP_RX	PS	Ground for RX PLL : Normally 0 V.	


Pin No.	Symbol	Туре	Description	Equivalent circuit
52 54	SDIN* SDIN	I_ECL (Diff.)	Serial receive data inputs : These inputs are enabled when LBEN is low.	(c)
53, 60, 63	VCCE	PS	Power supply for ECL output : Normally 3.3 V	_
61 62	SDOUT* SDOUT	O_ECL (Diff.)	Serial transmit data output: These outputs are enabled when LBEN is low. When LBEN is high, SDOUT/SDOUT* is held to low/high.	
64	VEEE	PS	Ground for ECL output : Normally 0 V.	_


Pin Type Definition

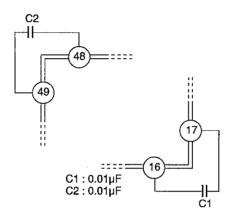
Type	Definition
PS	Power supply or ground
I_TTL	Input TTL
O_TTL	Output TTL
I_ECL	Input ECL
O_ECL	Output ECL
EX	External circuit node


Equivalent Circuit

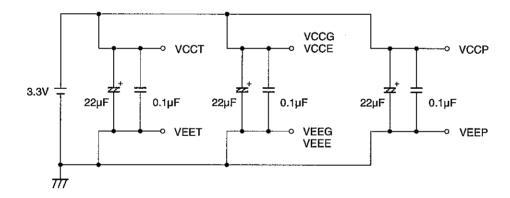


Timing Chart

(a) Transmiter Section Timing

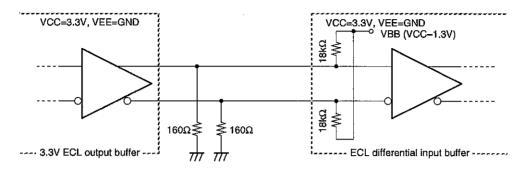


(b) Receiver Section Timing

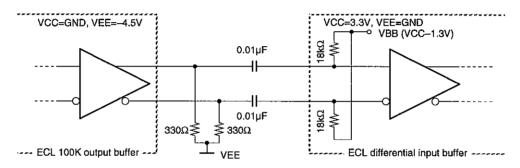

Notes on Operation

1. External loop filters for PLLs

The CXB1589R has two PLLs. One is for the transmitter and locks to the reference clock from REFCLK input pin. Another one is for the receiver and locks to the received serial data from SDIN/SDIN* input pins. They need external capacitors for the their loop filters. Typical values of the external capacitors are indicated below.

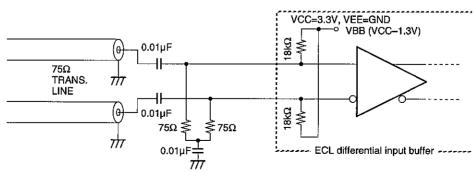


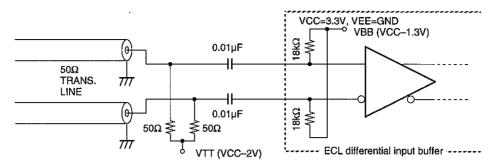
2. Example of power supply circuit

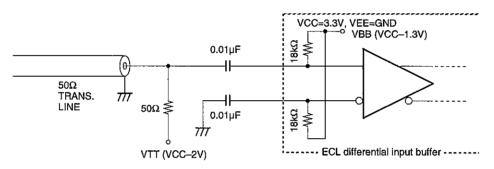


3. High-speed ECL differential input

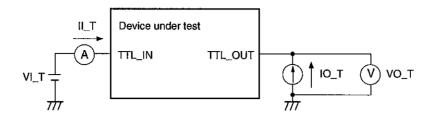
The high-speed ECL differential input pins are biased to VBB (Vcc–1.3V) via a 18 k Ω resistor in the IC. See the figures below for ECL differential input methods.


(a) ECL differential signal from 3.3V ECL output buffer

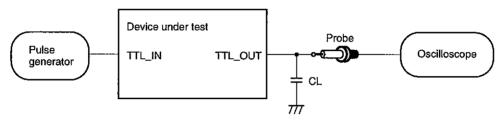

(b) ECL differential signal from ECL 100K output buffer


(c) differential signal from 75 Ω transmission line (AC/DC termination)

(d) differential signal from 75Ω transmission line (AC termination)

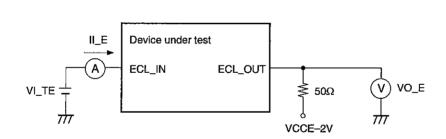


(e) ECL differential signal from 50Ω transmission line

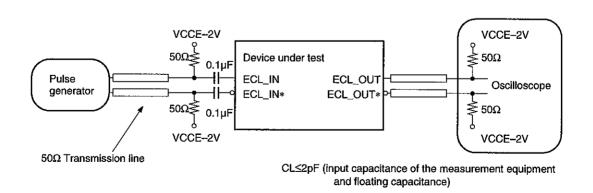


(f) ECL single signal from 50Ω transmission line

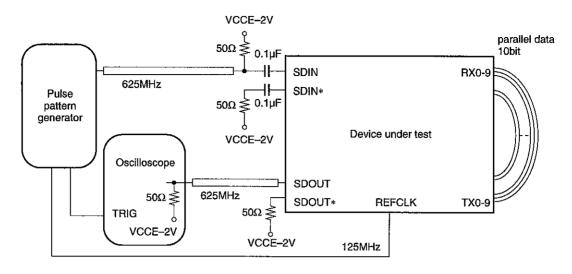
Electrical Characteristics Measurement Circuit

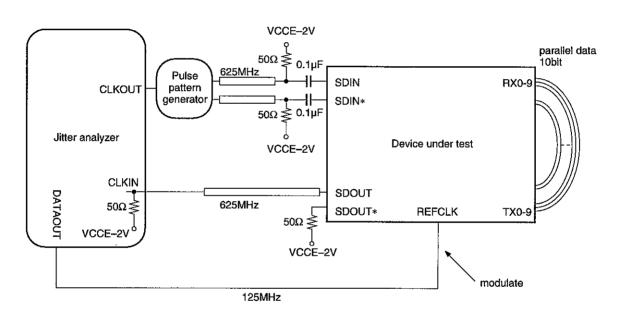


(a) TTL I/O DC characteristics measurement circuit

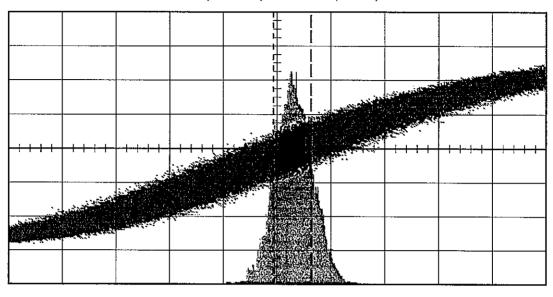


CL=10pF (including the probe capacitance)


(b) TTL I/O AC characteristics measurement circuit


(c) ECL I/O DC characteristics measurement circuit

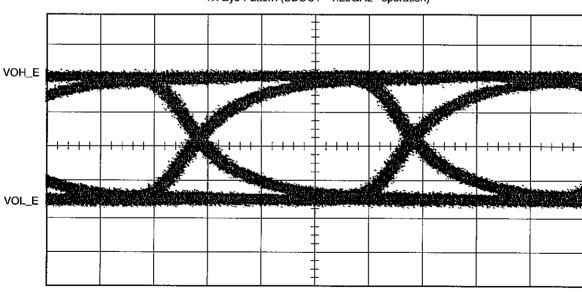
(d) ECL I/O AC characteristics measurement circuit


(e) TX random jitter measurement circuit

(f) TX jitter transfer measurement circuit

Example of Representative Characteristics

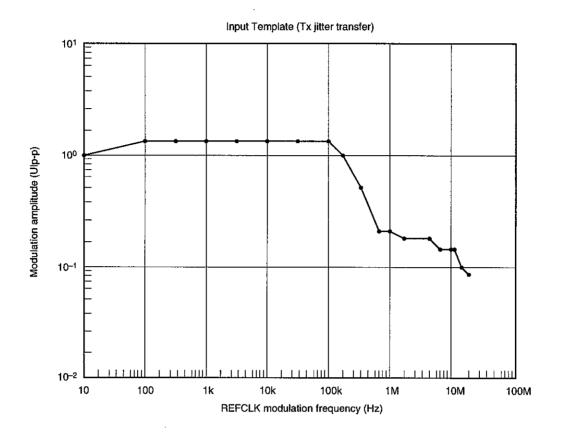
Example of TX Rj measurement (SDOUT)

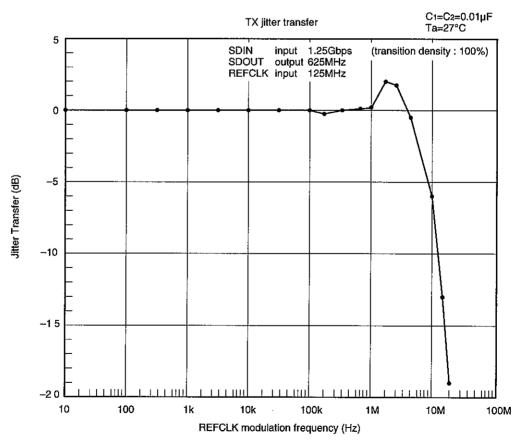

 $C_1 = C_2 = 0.01 \mu \text{F}$

SDIN input 1.25Gbps (Transition Density : 100%) REFCLK input 125MHz

Rj = 10.5psec

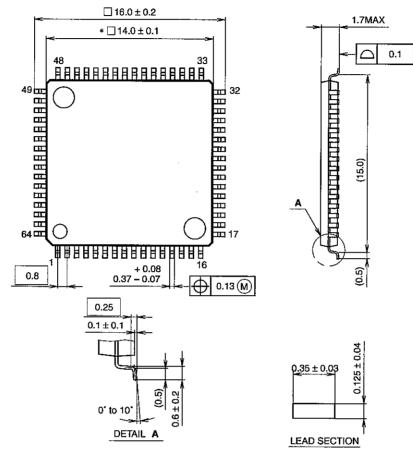
x:30psec/div y:100mV/div


TX Eye Pattern (SDOUT 1.25GHz operation)



 $C_1 = C_2 = 0.01 \mu F$

SDIN input 1.25Gbps Random pattern REFCLK input 125MHz


x : 200psec / div y : 200mV / div

Package Outline Unit: mm

64PIN LQFP (PLASTIC)

NOTE: Dimension "*" does not include mold protrusion.

PACKAGE STRUCTURE

		PACKAGE MATERIAL	EPOXY RESIN
SONY CODE	LQFP-64P-L02	LEAD TREATMENT	PALLADIUM PLATING
EIAJ CODE	LQFP064-P-1414	LEAD MATERIAL	COPPER ALLOY
JEDEC CODE		PACKAGE MASS	0.7g