## $512 \mathrm{~K} \times 8$ Static RAM

## Features

- $4.5 \mathrm{~V}-5.5 \mathrm{~V}$ operation
- CMOS for optimum speed/power
- Low active power
- 660 mW (max.)
- Low standby power (Commercial $L$ version) - 2.75 mW (max.)
- Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with CE and OE options


## Functional Description

The CY62148 is a high-performance CMOS static RAM organized as 524,288 words by 8 bits. Easy memory expansion is provided by an active LOW chip enable ( $\overline{\mathrm{CE}}$ ), an active LOW output enable ( $\overline{\mathrm{OE}})$, and three-state drivers. This device has
an automatic power-down feature that reduces power consumption by more than $99 \%$ when deselected.
Writing to the device is accomplished by taking chip enable $(\overline{\mathrm{CE}})$ and write enable ( $\overline{\mathrm{WE}}$ ) inputs LOW. Data on the eight I/O pins ( $\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{7}$ ) is then written into the location specified on the address pins ( $\mathrm{A}_{0}$ through $\mathrm{A}_{18}$ ).
Reading from the device is accomplished by taking chip enable ( $\overline{\mathrm{CE}}$ ) and output enable $(\overline{\mathrm{OE}})$ LOW while forcing write enable ( $\overline{\mathrm{WE}})$ HIGH for read. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.
The eight input/output pins $\left(I / O_{0}\right.$ through $\left.I / O_{7}\right)$ are placed in a high-impedance state when the device is deselected ( $\overline{\mathrm{CE}}$ HIGH), the outputs are disabled ( $\overline{\mathrm{OE}} \mathrm{HIGH}$ ), or during a write operation ( $\overline{\mathrm{CE}} \mathrm{LOW}$, and $\overline{W E}$ LOW).
The CY62148 is available in a standard 32 pin 450 -mil-wide body width SOIC and 32 pin TSOP II packages.

Logic Block Diagram


## Pin Configuration



## Selection Guide

|  |  |  | CY62148-55 | CY62148-70 | CY62148-100 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Maximum Access Time (ns) |  |  | 55 | 70 | 100 |
| Maximum Operating Current (mA) |  |  | 120 | 120 | 120 |
|  |  | L | 90 | 90 | 90 |
|  |  | LL | 90 | 90 | 90 |
| Maximum CMOS Standby Current |  |  | 2 mA | 2 mA | 2 mA |
|  |  | L | $100 \mu \mathrm{~A}$ | $100 \mu \mathrm{~A}$ | $100 \mu \mathrm{~A}$ |
|  | Com'l | LL | $20 \mu \mathrm{~A}$ | $20 \mu \mathrm{~A}$ | $20 \mu \mathrm{~A}$ |
|  | Ind'I | LL | $40 \mu \mathrm{~A}$ | $40 \mu \mathrm{~A}$ | $40 \mu \mathrm{~A}$ |

Shaded areas contain advance information.

## Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\qquad$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $\qquad$ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Supply Voltage on $\mathrm{V}_{\mathrm{CC}}$ to Relative GND........ -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State ${ }^{[1]}$ $\qquad$ -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Voltage ${ }^{[1]}$
-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$

Current into Outputs (LOW)........................................... 20 mA
Static Discharge Voltage ........................................... >2001V
(per MIL-STD-883, Method 3015)
Latch-Up Current
>200 mA
Operating Range

| Range | Ambient <br> Temperature ${ }^{[2]}$ | $\mathbf{V}_{\text {CC }}$ |
| :--- | :---: | :---: |
| Commercial | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | $4.5 \mathrm{~V}-5.5 \mathrm{~V}$ |
| Industrial | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  |

Electrical Characteristics Over the Operating Range


Notes:

[^0]Capacitance ${ }^{[5]}$

| Parameter | Description | Test Conditions | Max. | Unit |
| :--- | :--- | :--- | :---: | :---: |
| $\mathrm{C}_{\mathrm{IN}}$ | Input Capacitance | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$, | 6 | pF |
| $\mathrm{C}_{\text {OUT }}$ | Output Capacitance | $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ | 8 | pF |

## AC Test Loads and Waveforms



Equivalent to: THÉVENIN EQUIVALENT


Switching Characteristics ${ }^{[6]}$ Over the Operating Range

| Parameter | Description | 62148-55 |  | 62148-70 |  | 62148-100 |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Max. | Min. | Max. | Min. | Max. |  |
| READ CYCLE |  |  |  |  |  |  |  |  |
| $\mathrm{t}_{\mathrm{RC}}$ | Read Cycle Time | 55 |  | 70 |  | 100 |  | ns |
| $\mathrm{t}_{\mathrm{AA}}$ | Address to Data Valid |  | 55 |  | 70 |  | 100 | ns |
| $\mathrm{t}_{\text {OHA }}$ | Data Hold from Address Change | 10 |  | 10 |  | 10 |  | ns |
| $\mathrm{t}_{\text {ACE }}$ | $\overline{\mathrm{CE}}$ LOW to Data Valid |  | 55 |  | 70 |  | 100 | ns |
| $\mathrm{t}_{\text {DOE }}$ | $\overline{\text { OE LOW to Data Valid }}$ |  | 20 |  | 35 |  | 50 | ns |
| tizoe | $\overline{\mathrm{OE}}$ LOW to Low $\mathrm{Z}^{[8]}$ | 5 |  | 5 |  | 5 |  | ns |
| $t_{\text {Hzoe }}$ | $\overline{\mathrm{OE}}$ HIGH to High $\mathrm{Z}^{[7,8]}$ |  | 20 |  | 25 |  | 30 | ns |
| tlzce | $\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[8]}$ | 10 |  | 10 |  | 10 |  | ns |
| $\mathrm{t}_{\text {HZCE }}$ | $\overline{\mathrm{CE}}$ HIGH to High $\mathrm{Z}^{[7,8]}$ |  | 20 |  | 25 |  | 30 | ns |
| $t_{\text {PU }}$ | $\overline{\text { CE }}$ LOW to Power-Up | 0 |  | 0 |  | 0 |  | ns |
| $\mathrm{t}_{\text {PD }}$ | $\overline{\mathrm{CE}}$ HIGH to Power-Down |  | 55 |  | 70 |  | 100 | ns |
| WRITE CYCLE ${ }^{[9]}$ |  |  |  |  |  |  |  |  |
| $\mathrm{t}_{\text {Wc }}$ | Write Cycle Time | 55 |  | 70 |  | 100 |  | ns |
| $\mathrm{t}_{\text {SCE }}$ | $\overline{\text { CE }}$ LOW to Write End | 45 |  | 60 |  | 80 |  | ns |
| $\mathrm{t}_{\text {AW }}$ | Address Set-Up to Write End | 45 |  | 60 |  | 80 |  | ns |
| $\mathrm{t}_{\mathrm{HA}}$ | Address Hold from Write End | 0 |  | 0 |  | 0 |  | ns |
| $\mathrm{t}_{\text {SA }}$ | Address Set-Up to Write Start | 0 |  | 0 |  | 0 |  | ns |
| tPWE | $\overline{\text { WE Pulse Width }}$ | 45 |  | 55 |  | 60 |  | ns |
| $\mathrm{t}_{\text {SD }}$ | Data Set-Up to Write End | 25 |  | 25 |  | 25 |  | ns |

Notes
5. Tested initially and after any design or process changes that may affect these parameters.
6. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 100 pF load capacitance.
7. $t_{H Z O E}, t_{H Z C E}$, and $t_{H Z W E}$ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
8. At any given temperature and voltage condition, $t_{\text {HZCE }}$ is less than $t_{L Z C E}$, $t_{H Z O E}$ is less than $t_{L Z O E}$, and $t_{H Z W E}$ is less than $t_{\text {LZWE }}$ for any given device.
9. The internal write time of the memory is defined by the overlap of CE LOW, and WELOW. CE and $\bar{W} E$ must be LOW to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.

Switching Characteristics ${ }^{[6]}$ Over the Operating Range (continued)

| Parameter | Description | 62148-55 |  | 62148-70 |  | 62148-100 |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Max. | Min. | Max. | Min. | Max. |  |
| $t_{\text {HD }}$ | Data Hold from Write End | 0 |  | 0 |  | 0 |  | ns |
| tliwe | $\overline{\text { WE }}$ HIGH to Low ${ }^{[8]}$ | 5 |  | 5 |  | 5 |  | ns |
| thZWE | $\overline{\text { WE L L }}$ LOW to High $\mathrm{Z}^{[7,8]}$ |  | 20 |  | 25 |  | 30 | ns |

Data Retention Characteristics Over the Operating Range

| Parameter | Description |  |  | Conditions | Min. | Typ ${ }^{[3]}$ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{DR}}$ | $\mathrm{V}_{\mathrm{CC}}$ for Data Retention |  |  |  | 2.0 |  |  | V |
| $\mathrm{I}_{\text {CCDR }}$ | Data Retention Current | Com'l |  | $\begin{aligned} & \text { No input may exceed } \mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DR}}=3.0 \mathrm{~V}, \\ & \mathrm{CE} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V} \end{aligned}$ |  | $1.6 \mu \mathrm{~A}$ | 1.7 | mA |
|  |  |  | L |  |  |  | 80 | $\mu \mathrm{A}$ |
|  |  |  | LL |  |  |  | 20 | $\mu \mathrm{A}$ |
|  |  | Ind'l | LL |  |  |  | 40 | $\mu \mathrm{A}$ |
| $\mathrm{t}_{\mathrm{CDR}}{ }^{[5]}$ | Chip Deselect to Data Retention Time |  |  |  | 0 |  |  | ns |
| $\mathrm{t}_{\mathrm{R}}$ | Operation Recovery Time |  |  |  | $\mathrm{t}_{\mathrm{RC}}$ |  |  | ns |

Data Retention Waveform


## Switching Waveforms

Read Cycle No. $1^{[10,11]}$


## Notes:

10. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}=\mathrm{V}_{\text {IL }}$.
11. WE is HIGH for read cycle.

## Switching Waveforms (continued)

Read Cycle No. 2 ( $\overline{\mathrm{OE}}$ Controlled) ${ }^{[11,12]}$


Write Cycle No. 1 ( $\overline{\text { CE Controlled) }}{ }^{[13,14]}$


## Notes:

12. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
13. Data $I / O$ is high impedance if $O E=V$
14. If $\overline{C E}$ goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.

## Switching Waveforms (continued)

Write Cycle No. 2 (WE Controlled, $\overline{\mathrm{OE}}$ HIGH During Write) ${ }^{[13,14]}$


Write Cycle No. 3 ( $\overline{\mathrm{WE}}$ Controlled, $\overline{\mathrm{OE}}$ LOW) ${ }^{[13,14]}$


Notes:
15. During this period the $\mathrm{I} / \mathrm{Os}$ are in the output state and input signals should not be applied

## Truth Table

| $\overline{\mathbf{C E}}$ | $\overline{\mathrm{OE}}$ | $\overline{\text { WE }}$ | $\mathrm{I} / \mathrm{O}_{0}-\mathrm{l} / \mathrm{O}_{7}$ | Mode | Power |
| :---: | :---: | :---: | :---: | :---: | :---: |
| H | X | X | High Z | Power-Down | Standby ( $\mathrm{I}_{\text {SB }}$ ) |
| L | L | H | Data Out | Read | Active ( $\mathrm{I}_{\mathrm{CC}}$ ) |
| L | X | L | Data In | Write | Active ( $\mathrm{I}_{\mathrm{CC}}$ ) |
| L | H | H | High Z | Selected, Outputs Disabled | Active ( $\mathrm{I}_{\mathrm{CC}}$ ) |

Document \#: 38-00564
Ordering Information

| $\begin{gathered} \text { Speed } \\ \text { (ns) } \end{gathered}$ | Ordering Code | Package Name | Package Type | Operating Range |
| :---: | :---: | :---: | :---: | :---: |
| 70 | CY62148-70SC | S34 | 32-Lead (450-Mil) Molded SOIC | Commercial |
|  | CY62148-70ZSC | ZS32 | 32-Lead TSOP II |  |
|  | CY62148L-70SC | S34 | 32-Lead (450-Mil) Molded SOIC |  |
|  | CY62148L-70ZSC | ZS32 | 32-Lead TSOP II |  |
|  | CY62128LL-70SC | S34 | 32-Lead (450-Mil) Molded SOIC |  |
|  | CY62148LL-70ZSC | ZS32 | 32-Lead TSOP II |  |
|  | CY62148-70SI | S34 | 32-Lead (450-Mil) Molded SOIC | Industrial |
|  | CY62148-70ZSI | ZS32 | 32-Lead TSOP II |  |
|  | CY62148L-70SI | S34 | 32-Lead (450-Mil) Molded SOIC |  |
|  | CY62148L-70ZSI | ZS32 | 32-Lead TSOP II |  |
|  | CY62128LL-70SI | S34 | 32-Lead (450-Mil) Molded SOIC |  |
|  | CY62148LL-70ZSI | ZS32 | 32-Lead TSOP II |  |
| 100 | CY62148-100SC | S34 | 32-Lead (450-Mil) Molded SOIC | Commercial |
|  | CY62148-100ZSC | ZS32 | 32-Lead TSOP II |  |
|  | CY62148L-100SC | S34 | 32-Lead (450-Mil) Molded SOIC |  |
|  | CY62148L-100ZSC | ZS32 | 32-Lead TSOP II |  |
|  | CY62128LL-100SC | S34 | 32-Lead (450-Mil) Molded SOIC |  |
|  | CY62148LL-100ZSC | ZS32 | 32-Lead TSOP II |  |
|  | CY62148-100SI | S34 | 32-Lead (450-Mil) Molded SOIC | Industrial |
|  | CY62148-100ZSI | ZS32 | 32-Lead TSOP II |  |
|  | CY62148L-100SI | S34 | 32-Lead (450-Mil) Molded SOIC |  |
|  | CY62148L-100ZSI | ZS32 | 32-Lead TSOP II |  |
|  | CY62128LL-100SI | S34 | 32-Lead (450-Mil) Molded SOIC |  |
|  | CY62148LL-100ZSI | ZS32 | 32-Lead TSOP II |  |

## Package Diagrams

32-Lead (450-Mil) Molded SOIC S34


Package Diagrams (continued)

## 32-Lead TSOP II ZS32




[^0]:    1. $\quad \mathrm{V}_{\mathrm{IL}}(\min )=.-2.0 \mathrm{~V}$ for pulse durations of less than 20 ns .
    2. $T_{A}$ is the "instant on" case temperature.
    3. Typical values are measured at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, and are included for reference only and are not tested or guaranteed.
    4. Not more than one output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
