

Hermetically Sealed, Low I_F, Wide V_{CC}, High Gain Optocouplers

Technical Data

Features

- Dual Marked with Device Part Number and DSCC Drawing Number
- Manufactured and Tested on a MIL-PRF-38534 Certified Line
- QML-38534, Class H and K
- Five Hermetically Sealed Package Configurations
- Performance Guaranteed, Over -55°C to +125°C
- Low Input Current Requirement: 0.5 mA
- High Current Transfer Ratio: 1500% Typical @ $I_F = 0.5 \text{ mA}$
- Low Output Saturation Voltage: 0.11 V Typical
- 1500 Vdc Withstand Test Voltage
- High Radiation Immunity
- 6N138/9, HCPL-2730/31 Function Compatibility
- Reliability Data

Applications

- Military and Space
- High Reliability Systems
- Telephone Ring Detection
- Microprocessor System Interface
- Transportation, Medical, and Life Critical Systems

- Isolated Input Line Receiver
- EIA RS-232-C Line Receiver
- Voltage Level Shifting
- Isolated Input Line Receiver
- Isolated Output Line Driver
- Logic Ground Isolation
- Harsh Industrial Environments
- Current Loop Receiver
- System Test Equipment Isolation
- Process Control Input/Output Isolation

Description

These units are single, dual, and quad channel, hermetically sealed optocouplers. The products are capable of operation and storage over the full military temperature range and can be purchased as either standard product or with full MIL-PRF-38534 Class Level H or K testing or from the appropriate DSCC Drawing. All devices are manufactured and tested on a MIL-PRF-38534 certified line and are included in the DSCC Qualified Manufacturers List QML-38534 for Hybrid Microcircuits.

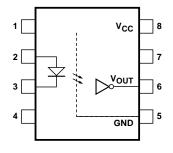
Each channel contains a GaAsP light emitting diode which is optically coupled to an integrated high gain photon detector. The high gain output stage features an open collector output providing

6N140A*	5962-89810
HCPL-675X	HCPL-573X
83024	HCPL-673X
HCPL-570X	5962-89785
HCPL-177K	5962-98002

*See matrix for available extensions.

both lower saturation voltage and higher signaling speed than possible with conventional photo-Darlington optocouplers. The shallow depth and small junctions offered by the IC process provides better radiation immunity than conventional photo transistor optocouplers.

The supply voltage can be operated as low as 2.0 V without adversely affecting the parametric performance.


Truth Table

(Positive Logic)

Input	Output
On (H)	L
Off (L)	Н

Functional Diagram

Multiple Channel Devices Available

The connection of a 0.1 μ F bypass capacitor between V_{CC} and GND is recommended.

CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

These devices have a 300% minimum CTR at an input current of only 0.5 mA making them ideal for use in low input current applications such as MOS, CMOS, low power logic interfaces or line receivers. Compatibility with high voltage CMOS logic systems is assured by specifying $I_{\rm CCH}$ and $I_{\rm OH}$ at 18 Volts.

Upon special request, the following device selections can be made: CTR minimum of up to 600% at 0.5 mA, and lower output leakage current levels to 100μ A.

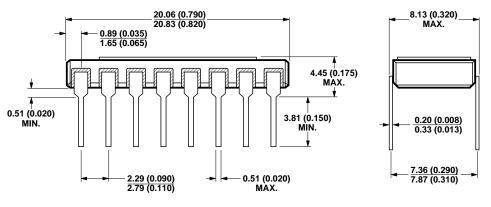
Package styles for these parts are 8 and 16 pin DIP through hole (case outlines P and E respectively), 16 pin DIP flat pack (case outline F), and leadless ceramic chip carrier (case outline 2). Devices may be purchased with a variety of lead bend and plating options. See Selection Guide table for details. Standard Military Drawing (SMD) parts are available for each package and lead style.

Because the same electrical die (emitters and detectors) are used

for each channel of each device listed in this data sheet, absolute maximum ratings, recommended operating conditions, electrical specifications, and performance characteristics shown in the figures are similar for all parts except as noted. Additionally, the same package assembly processes and materials are used in all devices. These similarities justify the use of a common data base for die related reliability and certain limited radiation test results.

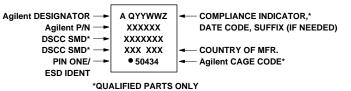
Package	16 pin DIP	8 pin DIP	8 pin DIP	16 pin Flat Pack	20 Pad LCCC
Lead Style	Through Hole	Through Hole	Through Hole	Unformed Leads	Surface Mount
Channels	4	1	2	4	2
Common Channel Wiring	V _{CC} , GND	None	V _{CC} , GND	V _{CC} , GND	None
Agilent Part # & Options					
Commercial	6N140A*	HCPL-5700	HCPL-5730	HCPL-6750	HCPL-6730
MIL-PRF-38534 Class H	6N140A/883B	HCPL-5701	HCPL-5731	HCPL-6751	HCPL-6731
MIL-PRF-38534 Class K	HCPL-177K	HCPL-570K	HCPL-573K	HCPL-675K	HCPL-673K
Standard Lead Finish	Gold Plate	Gold Plate	Gold Plate	Gold Plate	Solder Pads
Solder Dipped	Option #200	Option #200	Option #200		
Butt Cut/Gold Plate	Option #100	Option #100	Option #100		
Gull Wing/Soldered	Option #300	Option #300	Option #300		
Crew Cut/Gold Plate	Option #600	Option #600	Option #600		
Class H SMD Part #					
Prescript for all below	None	5962-	5962-	None	5962-
Either Gold or Solder	8302401EX	8981001PX	8978501PX	8302401FX	89785022X
Gold Plate	8302401EC	8981001PC	8978501PC	8302401FC	
Solder Dipped	8302401EA	8981001PA	8978501PA		89785022A
Butt Cut/Gold Plate	8302401YC	8981001YC	8978501YC		
Butt Cut/Soldered	8302401YA	8981001YA	8978501YA		
Gull Wing/Soldered	8302401XA	8981001XA	8978501ZA		
Crew Cut/Gold Plate	8302401ZC	Available	Available		
Crew Cut/Soldered	8302401ZA	Available	Available		
Class K SMD Part #					
Prescript for all below	5962-	5962-	5962-	5962-	5962-
Either Gold or Solder	9800201KEX	8981002KPX	8978503KPX	9800201KFX	8978504K2X
Gold Plate	9800201KEC	8981002KPC	8978503KPC	9800201KFC	
Solder Dipped	9800201KEA	8981002KPA	8978503KPA		8978504K2A
Butt Cut/Gold Plate	9800201KYC	8981002KYC	8978503KYC		
Butt Cut/Soldered	9800201KYA	8981002KYA	8978503KYA		
Gull Wing/Soldered	9800201KXA	8981002KXA	8978503KZA		
Crew Cut/Gold Plate	9800201KZC	Available	Available		
Crew Cut/Soldered	9800201KZA	Available	Available		

Selection Guide-Package Styles and Lead Configuration Options


*JEDEC registered part.

16 pin DIP	8 pin DIP	8 pin DIP	16 pin Flat Pack	20 Pad LCCC
Through Hole	Through Hole	Through Hole	Unformed Leads	Surface Mount
4 Channels	1 Channel	2 Channels	4 Channels	2 Channels
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 6 \\ 7 \\ 8 \\ 9 \\ \end{array} $	1 V _{CC} 8 2 7 3 V _{OUT} 6 4 GND 5	$1 \qquad V_{CC} \qquad B$ $2 \qquad V_{O1} \qquad 7$ $3 \qquad V_{O2} \qquad 6$ $4 \qquad GND \qquad 5$	$ \begin{array}{c} 1 \\ 2 \\ 2 \\ V_{CC} \\ 15 \\ 3 \\ V_{O1} \\ 14 \\ 4 \\ V_{O2} \\ 13 \\ 5 \\ V_{O2} \\ 13 \\ 5 \\ V_{O3} \\ 12 \\ 6 \\ V_{O4} \\ 11 \\ 7 \\ GND \\ 10 \\ 8 \\ 9 \\ \end{array} $	$ \begin{array}{c} 15 \\ V_{CC2} \\ 19 \\ 20 \\ 20 \\ 3 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12$

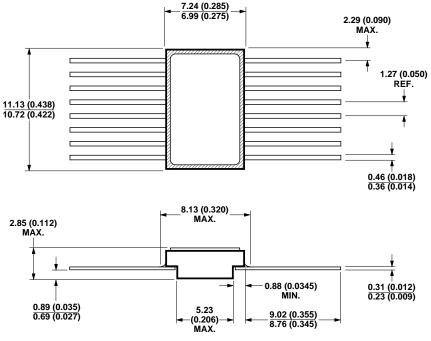
Note: All DIP and flat pack devices have common V_{CC} and ground. LCCC (leadless ceramic chip carrier) package has isolated channels with separate V_{CC} and ground connections.


Outline Drawings

16 Pin DIP Through Hole, 4 Channels

NOTE: DIMENSIONS IN MILLIMETERS (INCHES).

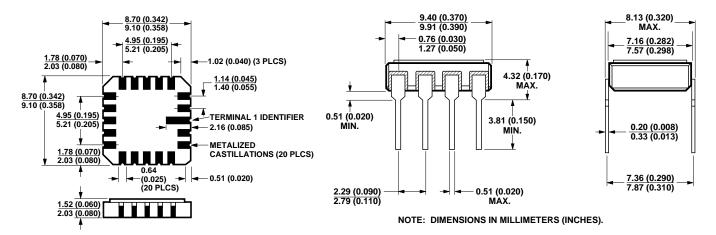
Leaded Device Marking


Leadless Device Marking

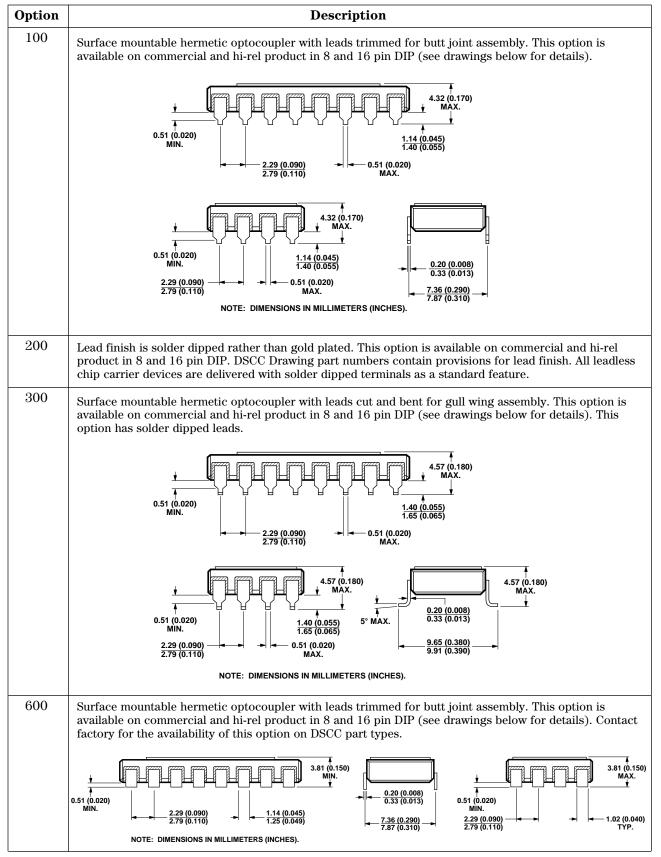
ESD IDENT XXXXXX - DSCC SMD* COUNTRY OF MFR XXX 50434 - Agilent CAGE CODE*		XXXXXX • XXXX XXXXXX	
---	--	----------------------------	--

***QUALIFIED PARTS ONLY**

Outline Drawings (continued)

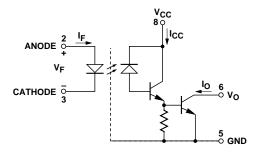

16 Pin Flat Pack, 4 Channels

NOTE: DIMENSIONS IN MILLIMETERS (INCHES).


20 Terminal LCCC Surface Mount, 2 Channels

8 Pin DIP Through Hole, 1 and 2 Channel

NOTE: DIMENSIONS IN MILLIMETERS (INCHES). SOLDER THICKNESS 0.127 (0.005) MAX.


Hermetic Optocoupler Options

Absolute Maximum Ratings

Storage Temperature Range, T _S	-65°C to +150°C
Operating Temperature, T _A	-55°C to +125°C
Case Temperature, T _C	+170°C
Junction Temperature, T _J	+175°C
Lead Solder Temperature	260°C for 10s
Output Current, I _O (Each Channel)	40 mA
Output Voltage, Vo (Each Channel)	0.5 to 20 V ^[1]
Supply Voltage, V _{CC}	-0.5 to 20 V ^[1]
Output Power Dissipation (Each Channel)	50 mW ^[2]
Peak Input Current (Each Channel, <1 ms Duration)	20 mA
Average Input Current, I _F (Each Channel)	10 mA ^[3]
Reverse Input Voltage, V _R (Each Channel)	5V
Package Power Dissipation, P _D (each channel)	

8 Pin Ceramic DIP Single Channel Schematic

ESD Classification

 $\begin{array}{l} \mbox{(MIL-STD-883, Method 3015)} \\ \mbox{HCPL-5700/01/0K and 6730/31/3K}(\Delta \Delta), \mbox{Class 2} \\ \mbox{6N140A, 6N140A/883B, HCPL-177K,} \\ \mbox{HCPL-6750/51/5K and HCPL-5730/31/3K}(Dot), \mbox{Class 3} \end{array}$

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Input Voltage, Low Level (Each Channel)	V _{F(OFF)}		0.8	V
Input Current, High Level (Each Channel)	I _{F(ON)}	0.5	5	mA
Supply Voltage	V _{CC}	2.0	18	V
Output Voltage	Vo	2.0	18	V

		Sym-		Group A ^[13]		Limits				
Pa	rameter	bol	Test Conditions	Sub- Group	Min.	Тур.**	Max.	Units	Fig.	Note
Current I Ratio		CTR*	$\begin{split} I_F = 0.5 \text{mA}, V_O = 0.4 \text{V}, \\ V_{CC} = 4.5 \text{V} \end{split}$	1,2,3	300	1500		%	3	4,5
			$\begin{split} I_F = 1.6 \text{mA}, V_O = 0.4 \text{V}, \\ V_{CC} = 4.5 \text{V} \end{split}$		300	1000				
			$\begin{split} I_{\mathrm{F}} &= 5\mathrm{mA}, V_{\mathrm{O}} = 0.4\mathrm{V}, \\ V_{\mathrm{CC}} &= 4.5\mathrm{V} \end{split} \label{eq:V_CC}$		200	500				
Logic Lov Voltage	w Output	V _{OL}	$\begin{split} I_{\mathrm{F}} &= 0.5\text{mA}, I_{\mathrm{OL}} = 1.5\text{mA}, \\ V_{\mathrm{CC}} &= 4.5\text{V} \end{split}$	1,2,3		0.11	0.4	V	2	4
			$I_{\rm F} = 1.6\text{mA}, I_{\rm OL} = 4.8\text{mA}, \\ V_{\rm CC} = 4.5\text{V}$			0.13	0.4			4,16
			$I_{\rm F} = 5 \text{ mA}, I_{\rm OL} = 10 \text{ mA},$ $V_{\rm CC} = 4.5 \text{ V}$			0.16	0.4			4
	gh Output	I_{OH}^{*}	$I_{\rm F} = 2 \mu A, V_{\rm O} = 18 \rm V,$	1, 2, 3		0.001	250	μΑ		4
Current		I _{OHX}	$V_{CC} = 18 \text{ V}$				250	μA		4,6
Logic Low	Single Channel and LCCC	$I_{\rm CCL}*$	$I_{\rm F} = 1.6 \text{mA}, V_{\rm CC} = 18 \text{V}$	1,2,3		1.0	2	mA		15
Supply Current	Dual Channel		$\begin{split} I_{F1} &= I_{F2} = 1.6 \text{mA}, \\ V_{CC} &= 18 \text{V} \end{split}$			1.0	4		4	
	Quad Channel		$\begin{array}{l} I_{F1} = I_{F2} = I_{F3} = I_{F4} = 1.6 \text{mA} \\ V_{CC} = 18 \text{V} \end{array}$			1.7	4			
Logic High	Single Channel and LCCC	$I_{\rm CCH}^{*}$	$I_{\rm F}=0~\text{mA}, V_{\rm CC}=18\text{V}$	1,2,3		0.001	20	μA		15
Supply Current	Dual Channel		$\begin{split} I_{F1} &= I_{F2} = 0 \text{mA}, \\ V_{CC} &= 18 \text{V} \end{split}$				40			
	Quad Channel		$ I_{F1} = I_{F2} = I_{F3} = I_{F4} = 0 \text{mA} \\ V_{CC} = 18 \text{V} $				40			
Input	Singleand	$V_{\rm F}^*$	$I_F = 1.6 \mathrm{mA}$	1	1.0	1.4	1.7	V	1	4
Forward	Dual Channel			2			1.7			
Voltage				3			1.8			
	LCCC			1, 2, 3	1.0	1.4	1.8			
	Quad Channel			1,2		1.4	1.7			
				3			1.8			
Input Rev Breakdov	verse wn Voltage	BV_R^*	$I_R = 10 \mu A$	1,2,3	5			V		4
Input-Ou Insulation Leakage	n	I _{I-O} *	$\begin{array}{l} 45\% \ Relative Humidity \\ T_A = 25^\circ\!C, t = 5s, \\ V_{I\text{-}O} = 1500\text{VDC} \end{array}$	1			1.0	μA		7,12
0	nce Between	C _{I-O}	$f = 1 MHz, T_A = 25^{\circ}C$	4			4	pF		4,8 14,17

Electrical Characteristics, $T_A = -55^{\circ}C$ to $+125^{\circ}C$, unless otherwise specified

*For JEDEC registered parts. **All typical values are at V_{CC} = 5 V, T_{A} = 25°C.

	Sym-		Group A ^[13] Sub-		Limits				
Parameter	bol	Test Conditions	Group	Min.	Typ.**	Max.	Units	Fig.	Note
Propagation Delay Time to Logic Low	$t_{PHL}*$	$\begin{split} I_{\mathrm{F}} &= 0.5\text{mA}, R_{\mathrm{L}} = 4.7\text{k}\Omega, \\ V_{\mathrm{CC}} &= 5\text{V} \end{split}$	9,10,11		30	100	μs	5, 6, 7, 8	4
at Output	t_{PHL}	$\begin{split} I_{\rm F} &= 1.6\text{mA}, R_{\rm L} = 1.5\text{k}\Omega, \\ V_{\rm CC} &= 5\text{V} \end{split}$	9,10,11		5	30			4,16
	$t_{\rm PHL}^{*}$	$I_F = 5 \text{ mA}, R_L = 680 \Omega,$	9		2	5			4,17
		$V_{CC} = 5V$	10,11]	10			
			9,10,11			10			4,16
Propagation Delay Time to Logic High	t_{PLH}^*	$\begin{split} I_{\mathrm{F}} &= 0.5\text{mA}, R_{\mathrm{L}} = 4.7\text{k}\Omega, \\ V_{\mathrm{CC}} &= 5\text{V} \end{split}$	9,10,11		17	60	μs	5, 6, 7, 8	4
at Output	t_{PLH}	$\begin{split} I_{\mathrm{F}} &= 1.6\text{mA}, \mathrm{R_{L}} = 1.5\mathrm{k}\Omega, \\ V_{\mathrm{CC}} &= 5\mathrm{V} \end{split}$	9,10,11		14	50			4,16
	t_{PLH}^{*}	$I_F = 5 \text{ mA}, R_L = 680 \Omega,$	9		8	20			4,17
		$V_{CC} = 5V$	10,11			30			
			9,10,11			30			4,16
Common Mode	$ \mathrm{CM}_{\mathrm{L}} $		9,10,11	500	1000		V/µs	9	
Transient Immunity at Low Output Level		$ I_{\rm F} = 1.6 \text{mA} \\ R_{\rm L} = 1.5 \text{k} \Omega $ $ V_{\rm CM} = 50 V_{\rm P-P}^{[16]} $							$ \begin{array}{c} 4,10 \\ 11,14 \end{array} $
Common Mode	$ \mathrm{CM}_{\mathrm{H}} $	$V_{\rm CC} = 5 V$, $ V_{\rm CM} = 25 V_{\rm P-P}^{[17]}$	9,10,11	500	1000		V/µs	9	
Transient Immunity at High Output Level		$ I_F = 0 \text{mA} \\ R_L = 1.5 \text{ k} \Omega $							$4,10 \\ 11,14$

Electrical Characteristics (cont) $T_A = -55$ °C to +125 °C, unless otherwise specified

*For JEDEC registered parts. **All typical values are at V_{CC} = 5 V, T_{\!A} = 25^\circ\!C.

Typical Characteristics, $T_A = 25^{\circ}C$, $V_{CC} = 5V$

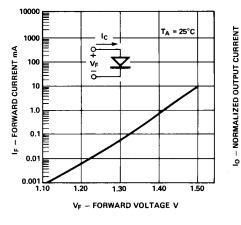
Parameter	Sym.	Typ.	Units	Test Conditions	Note
Input Capacitance	C _{IN}	60	pF	$V_F = 0V, f = 1 MHz$	4
Input Diode Temperature Coefficient	$\Delta V_F / \Delta T_A$	-1.8	mV/°C	$I_F = 1.6 \text{ mA}$	4
Resistance (Input-Output)	R _{I-O}	1012	Ω	$V_{I-O} = 500 V$	4, 8
Capacitance (Input-Output)	C _{I-O}	2.0	pF	f = 1 MHz	4, 8

Dual and Quad Channel Product Only

Input-Input Leakage Current	I _{I-I}	0.5	nA	$\begin{array}{l} \mbox{Relative Humidity} = 45\%, \\ \mbox{V}_{\text{I-I}} = 500 \mbox{ V}, t = 5 \mbox{ s} \end{array}$	9
Resistance (Input-Input)	R _{I-I}	1012	Ω	$V_{I-I} = 500 V$	9
Capacitance (Input-Input)	C _{I-I}	1.0	\mathbf{pF}	f = 1 MHz	9

Notes:

- 1. GND Pin should be the most negative voltage at the detector side. Keeping V_{CC} as low as possible, but greater than 2.0 V, will provide lowest total I_{OH} over temperature.
- 2. Output power is collector output power plus total supply power for the single channel device. For the dual channel device, output power is collector output power plus one half the total supply power. For the quad channel device, output power is collector output power plus one fourth of total supply power. Derate at 1.66 mW/°C above 110°C.
- 3. Derate I_F at 0.33 mA/°C above 110°C.
- 4. Each channel.
- 5. CURRENT TRANSFER RATIO is defined as the ratio of output collector current, I_0 , to the forward LED input current, I_F , times 100%.
- 6. I_{OHX} is the leakage current resulting from channel to channel optical crosstalk. $I_F = 2 \ \mu A$ for channel under test. For all other channels, $I_F = 10 \ mA$.
- 7. All devices are considered twoterminal devices; measured between all input leads or terminals shorted together and all output leads or terminals shorted together.


- 8. Measured between each input pair shorted together and all output connections for that channel shorted together.
- 9. Measured between adjacent input pairs shorted together for each multichannel device.
- 10. $\rm CM_L$ is the maximum rate of rise of the common mode voltage that can be sustained with the output voltage in the logic low state (V₀ < 0.8 V). $\rm CM_H$ is the maximum rate of fall of the common mode voltage that can be sustained with the output voltage in the logic high state (V₀ > 2.0 V).
- 11. In applications where dV/dt may exceed 50,000 V/ μs (such as a static discharge) a series resistor, $R_{CC},$ should be included to protect the detector ICs from destructively high surge currents. The recommended value is:


 $R_{CC} = \frac{1 \text{ (V)}}{0.15 \text{ I}_{F} \text{ (mA)}} \text{ k}\Omega$ for single channel;

$$\begin{split} R_{CC} = \frac{1 ~(V)}{0.3 ~I_{F} ~(mA)} ~k\Omega \\ \text{for dual channel;} \end{split}$$

$$R_{CC} = \frac{1 \text{ (V)}}{0.6 \text{ I}_{\text{F}} \text{ (mA)}} \text{ k}\Omega$$

for quad channel.

- 12. This is a momentary withstand test, not an operating condition.
- 13. Standard parts receive 100% testing at 25°C (Subgroups 1 and 9). SMD and 883B parts receive 100% testing at 25,125, and -55°C (Subgroups 1 and 9, 2 and 10, 3 and 11, respectively).
- Parameters tested as part of device initial characterization and after design and process changes.
 Parameters guaranteed to limits specified for all lots not specifically tested.
- 15. The HCPL-6730, HCPL-6731, and HCPL-673K dual channel parts function as two independent single channel units. Use the single channel parameter limits.
- Not required for 6N140A, 6N140A/ 883B, HCPL-177K, HCPL-6750/51/ 5K, 8302401, and 5962-9800201 types.
- 17. Required for 6N140A, 6N140A/883B, HCPL-177K, HCPL-6750/51/5K, 8302401, and 5962-9800201 types.

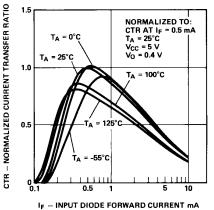


Figure 1. Input Diode Forward Current vs. Forward Voltage.

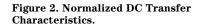
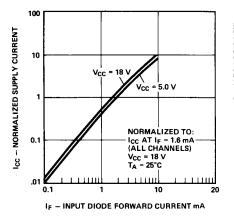



Figure 3. Normalized Current Transfer Ratio vs. Input Diode Forward Current.

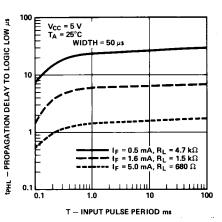


Figure 4. Normalized Supply Current vs. Input Diode Forward Current.

Figure 5. Propagation Delay to Logic Low vs. Input Pulse Period.

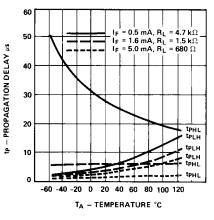


Figure 6. Propagation Delay vs. Temperature.

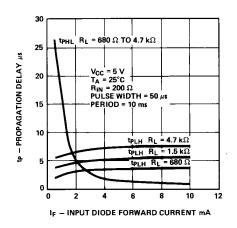
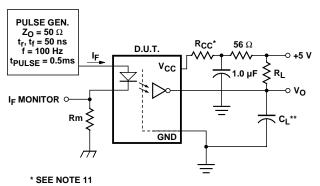



Figure 7. Propagation Delay vs. Input Diode Forward Current.

11

** CLINCLUDES PROBE AND STRAY WIRING CAPACITANCE.

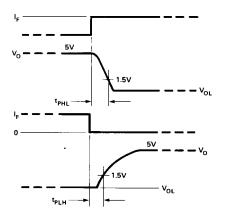
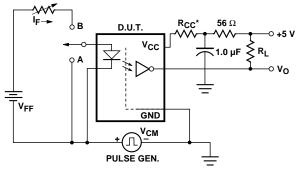



Figure 8. Switching Test Circuit (f, t_P not JEDEC registered).

* SEE NOTE 11

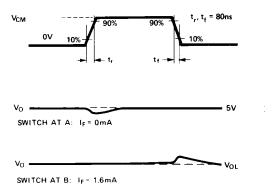
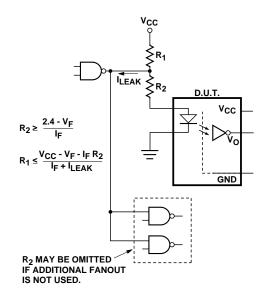
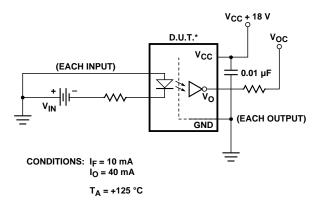


Figure 9. Test Circuit for Transient Immunity and Typical Waveforms.




Figure 10. Recommended Drive Circuitry Using TTL Open-Collector Logic.

MIL-PRF-38534 Class H, Class K, and DSCC SMD Test Program

Agilent's Hi-Rel Optocouplers are in compliance with MIL-PRF-38534 Class H and K. Class H and Class K devices are also in compliance with DSCC drawings 83024, 5962-89785, 5962-89810, and 5962-98002.

Testing consists of 100% screening and quality conformance inspection to MIL-PRF-38534.

* ALL CHANNELS TESTED SIMULTANEOUSLY.

Figure 11. Operating Circuit for Burn-In and Steady State Life Tests.

www.semiconductor.agilent.com Data subject to change. Copyright © 1999 Agilent Technologies Obsoletes 5968-0554E 5968-9400E (10/00)