
Regarding the change of names mentioned in the document, such as Hitachi
Electric and Hitachi XX, to Renesas Technology Corp.

The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas

Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog

and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)

Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand

names are mentioned in the document, these names have in fact all been changed to Renesas

Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and

corporate statement, no changes whatsoever have been made to the contents of the document, and

these changes do not constitute any alteration to the contents of the document itself.

Renesas Technology Home Page: http://www.renesas.com

Renesas Technology Corp.

Customer Support Dept.

April 1, 2003

To all our customers

Cautions

Keep safety first in your circuit designs!

1. Renesas Technology Corporation puts the maximum effort into making semiconductor products better
and more reliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or a third party.

2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements or
other reasons. It is therefore recommended that customers contact Renesas Technology Corporation
or an authorized Renesas Technology Corporation product distributor for the latest product information
before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data, diagrams,
charts, programs, and algorithms, please be sure to evaluate all information as a total system before
making a final decision on the applicability of the information and products. Renesas Technology
Corporation assumes no responsibility for any damage, liability or other loss resulting from the
information contained herein.

5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device
or system that is used under circumstances in which human life is potentially at stake. Please contact
Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor
when considering the use of a product contained herein for any specific purposes, such as apparatus or
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in
whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must be
exported under a license from the Japanese government and cannot be imported into a country other
than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corporation for further details on these materials or the products
contained therein.

Hitachi SuperH™ RISC Engine

SH-1/SH-2/SH-DSP

Programming Manual

ADE-602-063C
Rev. 4.0
3/6/03
Hitachi ,Ltd

Cautions

1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s
patent, copyright, trademark, or other intellectual property rights for information contained in
this document. Hitachi bears no responsibility for problems that may arise with third party’s
rights, including intellectual property rights, in connection with use of the information
contained in this document.

2. Products and product specifications may be subject to change without notice. Confirm that you
have received the latest product standards or specifications before final design, purchase or
use.

3. Hitachi makes every attempt to ensure that its products are of high quality and reliability.
However, contact Hitachi’s sales office before using the product in an application that
demands especially high quality and reliability or where its failure or malfunction may directly
threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear
power, combustion control, transportation, traffic, safety equipment or medical equipment for
life support.

4. Design your application so that the product is used within the ranges guaranteed by Hitachi
particularly for maximum rating, operating supply voltage range, heat radiation characteristics,
installation conditions and other characteristics. Hitachi bears no responsibility for failure or
damage when used beyond the guaranteed ranges. Even within the guaranteed ranges,
consider normally foreseeable failure rates or failure modes in semiconductor devices and
employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi
product does not cause bodily injury, fire or other consequential damage due to operation of
the Hitachi product.

5. This product is not designed to be radiation resistant.

6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document
without written approval from Hitachi.

7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi
semiconductor products.

Introduction

The SH-1 and SH-2 incorporates a RISC (Reduced Instruction Set Computer) type CPU. A basic
instruction can be executed in one clock cycle, realizing high performance operation. A built-in
multiplier can execute multiplication and addition as quickly as DSP.

The SH-DSP is a 32 bit microcontroller based on Hitachi’s SuperTM RISC engine that realizes the
same signal processing capability as a general usage DSP (Digital Signal Processor). The SH-DSP
offers an improvement on the DSP functions of multiplication and multiply and accumulate in
SuperH microprocessors by using a DSP style data path function. It maintains upward
compatibility at the object code level with the SH-1 and SH-2 microprocessors and has the many
functions, low power usage, and low price of other SuperH microprocessors.

The SH-DSP achieves high performance in processing operations by using a RISC CPU core and
a DSP unit with DSP functions. This new type of single chip RISC-DSP simultaneously integrates
the peripheral functions needed to build systems into the SH-DSP and provides the lower-power
consumption vital to microprocessor applications.

This Programming Manual describes in detail the basic architecture and instructions for the SH-1,
SH2, and SH-DSP and is intended as a reference on instruction operation and architecture. It also
covers the operation of pipelines, which are a feature of the SuperH microprocessor.

For software development environment system, contact your Hitachi sales office.

Note: SuperHTM is a trademark of Hitachi, Ltd.

i

Contents

Section 1 Features.. 1
1.1 SH-1 and SH-2 Features.. 1
1.2 SH-DSP Features ... 2

Section 2 Register Configuration.. 5
2.1 General Registers... 5
2.2 Control Registers ... 8
2.3 System Registers.. 11
2.4 DSP Registers.. 12
2.5 Precautions for Handling of Guard Bit and Overflow... 14
2.6 Initial Values of Registers ...14

Section 3 Data Formats.. 15
3.1 Data Format in Registers ... 15
3.2 Data Format in Memory .. 15
3.3 Immediate Data Format ... 16
3.4 DSP Type Data Formats.. 16
3.5 DSP Instructions and Data Formats .. 18

3.5.1 DSP Data Processing.. 18
3.5.2 X and Y Data Transfers.. 18
3.5.3 Single Data Transfers ... 18

Section 4 Instruction Features.. 23
4.1 RISC-Type Instruction Set .. 23
4.2 Addressing Modes ... 26
4.3 Instruction Format ... 29
4.4 DSP.. 32
4.5 DSP Data Addressing .. 33

4.5.1 X and Y Data Addressing... 33
4.5.2 Single Data Addressing.. 35
4.5.3 Modulo Addressing .. 36
4.5.4 DSP Addressing Operation .. 37

4.6 Instruction Formats for DSP Instructions.. 39
4.6.1 Double and Single Data Transfer Instructions ... 39
4.6.2 Parallel Processing Instructions.. 42

4.7 ALU Fixed Decimal Point Operations .. 46
4.7.1 Function.. 46
4.7.2 Instructions and Operands.. 47
4.7.3 DC Bit .. 48

ii

4.7.4 Condition Bits .. 51
4.7.5 Overflow Prevention Function (Saturation Operation) .. 51

4.8 ALU Integer Operations .. 51
4.9 ALU Logical Operations ... 53

4.9.1 Function.. 53
4.9.2 Instructions and Operands.. 54
4.9.3 DC Bit .. 55
4.9.4 Condition Bits .. 55

4.10 Fixed Decimal Point Multiplication .. 55
4.11 Shift Operations ... 57

4.11.1 Arithmetic Shift Operations ... 58
4.11.2 Logical Shift Operations .. 59

4.12 The MSB Detection Instruction... 61
4.12.1 Function.. 61
4.12.2 Instructions and Operands.. 65
4.12.3 DC Bit .. 65
4.12.4 Condition Bits .. 66

4.13 Rounding.. 66
4.13.1 Operation Function... 66
4.13.2 Instructions and Operands.. 68
4.13.3 DC Bit .. 68
4.13.4 Condition Bits .. 69
4.13.5 Overflow Prevention Function (Saturation Operation) .. 69

4.14 Condition Select Bits (CS) and the DSP Condition Bit (DC) ... 69
4.15 Overflow Prevention Function (Saturation Operation) ... 71
4.16 Data Transfers.. 72

4.16.1 X and Y Memory Data Transfer... 72
4.16.2 Single Data Transfers ... 73

4.17 Operand Contention... 76
4.18 DSP Repeat (Loop) Control .. 78

4.18.1 Actual programming .. 81
4.19 Conditional Instructions and Data Transfers ... 85

Section 5 Instruction Set.. 87
5.1 Instruction Set for CPU Instructions.. 87

5.1.1 Data Transfer Instructions.. 91
5.1.2 Arithmetic Instructions... 93
5.1.3 Logic Operation Instructions.. 95
5.1.4 Shift Instructions .. 96
5.1.5 Branch Instructions .. 97
5.1.6 System Control Instructions ... 98
5.1.7 CPU Instructions That Support DSP Functions ... 100

5.2 DSP Data Transfer Instruction Set .. 102

iii

5.2.1 Double Data Transfer Instructions (X Memory Data) ... 103
5.2.2 Double Data Transfer Instructions (Y Memory Data) ... 103
5.2.3 Single Data Transfer Instructions... 104

5.3 DSP Operation Instruction Set .. 105
5.3.1 ALU Arithmetic Operation Instructions .. 109
5.3.2 ALU Logical Operation Instructions.. 113
5.3.3 Fixed Decimal Point Multiplication Instructions ... 113
5.3.4 Shift Operation Instructions ... 114
5.3.5 System Control Instructions ... 116
5.3.6 NOPX and NOPY Instruction Code... 116

Section 6 Instruction Descriptions.. 119
6.1 Instruction Descriptions... 119

6.1.1 Sample Description (Name): Classification ... 119
6.1.2 ADD (ADD Binary): Arithmetic Instruction ... 123
6.1.3 ADDC (ADD with Carry): Arithmetic Instruction .. 124
6.1.4 ADDV (ADD with V Flag Overflow Check): Arithmetic Instruction................. 125
6.1.5 AND (AND Logical): Logic Operation Instruction ... 126
6.1.6 BF (Branch if False): Branch Instruction ... 128
6.1.7 BF/S (Branch if False with Delay Slot): Branch Instruction................................ 129
6.1.8 BRA (Branch): Branch Instruction .. 131
6.1.9 BRAF (Branch Far): Branch Instruction.. 133
6.1.10 BSR (Branch to Subroutine): Branch Instruction .. 135
6.1.11 BSRF (Branch to Subroutine Far): Branch Instruction.. 137
6.1.12 BT (Branch if True): Branch Instruction.. 139
6.1.13 BT/S (Branch if True with Delay Slot): Branch Instruction 140
6.1.14 CLRMAC (Clear MAC Register): System Control Instruction 142
6.1.15 CLRT (Clear T Bit): System Control Instruction... 143
6.1.16 CMP/cond (Compare Conditionally): Arithmetic Instruction.............................. 144
6.1.17 DIV0S (Divide Step 0 as Signed): Arithmetic Instruction................................... 148
6.1.18 DIV0U (Divide Step 0 as Unsigned): Arithmetic Instruction.............................. 149
6.1.19 DIV1 (Divide 1 Step): Arithmetic Instruction.. 150
6.1.20 DMULS.L (Double-Length Multiply as Signed): Arithmetic Instruction 155
6.1.21 DMULU.L (Double-Length Multiply as Unsigned): Arithmetic Instruction 157
6.1.22 DT (Decrement and Test): Arithmetic Instruction ... 159
6.1.23 EXTS (Extend as Signed): Arithmetic Instruction... 160
6.1.24 EXTU (Extend as Unsigned): Arithmetic Instruction.. 161
6.1.25 JMP (Jump): Branch Instruction .. 162
6.1.26 JSR (Jump to Subroutine): Branch Instruction

(Class: Delayed Branch Instruction) .. 163
6.1.27 LDC (Load to Control Register): System Control Instruction

(Class: Interrupt Disabled Instruction) ... 165
6.1.28 LDRE (Load Effective Address to RE Register): System Control Instruction.... 168

iv

6.1.29 LDRS (Load Effective Address to RS Register): System Control Instruction 170
6.1.30 LDS (Load to System Register): System Control Instruction.............................. 172
6.1.31 MAC.L (Multiply and Accumulate Calculation Long):

Arithmetic Instruction .. 177
6.1.32 MAC.W (Multiply and Accumulate Calculation Word):

Arithmetic Instruction .. 180
6.1.33 MOV (Move Data): Data Transfer Instruction .. 183
6.1.34 MOV (Move Immediate Data): Data Transfer Instruction 189
6.1.35 MOV (Move Peripheral Data): Data Transfer Instruction 191
6.1.36 MOV (Move Structure Data): Data Transfer Instruction 194
6.1.37 MOVA (Move Effective Address): Data Transfer Instruction 197
6.1.38 MOVT (Move T Bit): Data Transfer Instruction ... 198
6.1.39 MUL.L (Multiply Long): Arithmetic Instruction... 199
6.1.40 MULS.W (Multiply as Signed Word): Arithmetic Instruction 200
6.1.41 MULU.W (Multiply as Unsigned Word): Arithmetic Instruction 201
6.1.42 NEG (Negate): Arithmetic Instruction ... 202
6.1.43 NEGC (Negate with Carry): Arithmetic Instruction .. 203
6.1.44 NOP (No Operation): System Control Instruction ... 204
6.1.45 NOT (NOT-Logical Complement): Logic Operation Instruction........................ 205
6.1.46 OR (OR Logical) Logic Operation Instruction .. 206
6.1.47 ROTCL (Rotate with Carry Left): Shift Instruction... 208
6.1.48 ROTCR (Rotate with Carry Right): Shift Instruction .. 209
6.1.49 ROTL (Rotate Left): Shift Instruction.. 210
6.1.50 ROTR (Rotate Right): Shift Instruction ... 211
6.1.51 RTE (Return from Exception): System Control Instruction 212
6.1.52 RTS (Return from Subroutine): Branch Instruction

(Class: Delayed Branch Instruction) .. 214
6.1.53 SETRC (Set Repeat Count to RC): System Control Instruction.......................... 216
6.1.54 SETT (Set T Bit): System Control Instruction ... 218
6.1.55 SHAL (Shift Arithmetic Left): Shift Instruction.. 219
6.1.56 SHAR (Shift Arithmetic Right): Shift Instruction.. 220
6.1.57 SHLL (Shift Logical Left): Shift Instruction.. 221
6.1.58 SHLLn (Shift Logical Left n Bits): Shift Instruction ... 222
6.1.59 SHLR (Shift Logical Right): Shift Instruction ... 224
6.1.60 SHLRn (Shift Logical Right n Bits): Shift Instruction .. 225
6.1.61 SLEEP (Sleep): System Control Instruction .. 227
6.1.62 STC (Store Control Register): System Control Instruction

(Interrupt Disabled Instruction).. 228
6.1.63 STS (Store System Register): System Control Instruction

(Interrupt Disabled Instruction).. 231
6.1.64 SUB (Subtract Binary): Arithmetic Instruction.. 236
6.1.65 SUBC (Subtract with Carry): Arithmetic Instruction .. 237
6.1.66 SUBV (Subtract with V Flag Underflow Check): Arithmetic Instruction 238

v

6.1.67 SWAP (Swap Register Halves): Data Transfer Instruction 239
6.1.68 TAS (Test and Set): Logic Operation Instruction .. 241
6.1.69 TRAPA (Trap Always): System Control Instruction ... 242
6.1.70 TST (Test Logical): Logic Operation Instruction .. 243
6.1.71 XOR (Exclusive OR Logical): Logic Operation Instruction................................ 245
6.1.72 XTRCT (Extract): Data Transfer Instruction ... 247

6.2 DSP Data Transfer Instructions ... 248
6.2.1 X and Y Data Transfers (MOVX.W and MOVY.W) .. 249
6.2.2 Single Data Transfers (MOVS.W and MOVS.L) .. 251
6.2.3 Sample Description (Name): Classification ... 252
6.2.4 MOVS (Move Single Data between Memory and DSP Register):

DSP Data Transfer Instruction ... 255
6.2.5 MOVX (Move between X Memory and DSP Register):

DSP Data Transfer Instruction ... 257
6.2.6 MOVY (Move between Y Memory and DSP Register):

DSP Data Transfer Instruction ... 258
6.2.7 NOPX (No Access Operation for X Memory): DSP Data Transfer Instruction.. 260

6.3 DSP Operation Instructions ... 261
6.3.1 PABS (Absolute): DSP Arithmetic Operation Instruction................................... 278
6.3.2 [if cc]PADD (Addition with Condition): DSP Arithmetic

Operation Instruction.. 282
6.3.3 PADD PMULS (Addition & Multiply Signed by Signed):

DSP Arithmetic Operation Instruction ... 286
6.3.4 PADDC (Addition with Carry): DSP Arithmetic Operation Instruction 291
6.3.5 [if cc] PAND (Logical AND): DSP Logical Operation Instruction 294
6.3.6 [if cc] PCLR (Clear): DSP Arithmetic Operation Instruction.............................. 298
6.3.7 PCMP (Compare Two Data): DSP Arithmetic Operation Instruction 301
6.3.8 [if cc] PCOPY (Copy with Condition): DSP Arithmetic Operation Instruction.. 303
6.3.9 [if cc] PDEC (Decrement by 1): DSP Arithmetic Operation Instruction............. 307
6.3.10 [if cc] PDMSB (Detect MSB with Condition): DSP Arithmetic

Operation Instruction.. 312
6.3.11 [if cc] PINC (Increment by 1 with Condition): DSP Arithmetic

Operation Instruction.. 317
6.3.12 [if cc] PLDS (Load System Register): DSP System Control Instruction............. 322
6.3.13 PMULS (Multiply Signed by Signed): DSP Arithmetic Operation Instruction... 326
6.3.14 [if cc] PNEG (Negate): DSP Arithmetic Operation Instruction........................... 329
6.3.15 [if cc] POR (Logical OR): DSP Logical Operation Instruction 334
6.3.16 PRND (Rounding): DSP Arithmetic Operation Instruction................................. 338
6.3.17 [if cc] PSHA (Shift Arithmetically with Condition): DSP Arithmetic

Shift Instruction.. 342
6.3.18 [if cc] PSHL (Shift Logically with Condition): DSP Logical Shift Instruction ... 350
6.3.19 [if cc] PSTS (Store System Register): DSP System Control Instruction 357
6.3.20 [if cc]PSUB (Subtract with Condition): DSP Arithmetic Operation Instruction. 362

vi

6.3.21 PSUB PMULS (Subtraction & Multiply Signed by Signed):
DSP Arithmetic Operation Instruction ... 367

6.3.22 PSUBC (Subtraction with Carry): DSP Arithmetic Operation Instruction.......... 372
6.3.23 [if cc] PXOR (Logical Exclusive OR): DSP Logical Operation Instruction........ 375

Section 7 Pipeline Operation.. 381
7.1 Basic Configuration of Pipelines ... 381

7.1.1 The Five-Stage Pipeline ... 381
7.1.2 Slot and Pipeline Flow.. 382
7.1.3 Slot Length ... 383
7.1.4 Number of Instruction Execution Cycles ... 384

7.2 Contention.. 385
7.2.1 Contention between Instruction Fetch (IF) and Memory Access (MA) 385
7.2.2 Contention when the Previous Instruction's Destination Register Is Used 389
7.2.3 Multiplier Access Contention... 392
7.2.4 Contention between Memory Stores and DSP Operations 393

7.3 Programming Guide .. 393
7.3.1 Types of Contention and Affected Instructions.. 393
7.3.2 Increasing Instruction Execution Speed ... 395
7.3.3 Cycles ... 396

7.4 Operation of Instruction Pipelines ... 396
7.4.1 Data Transfer Instructions.. 407
7.4.2 Arithmetic Instructions... 410
7.4.3 Logic Operation Instructions.. 456
7.4.4 Shift Instructions .. 459
7.4.5 Branch Instructions .. 460
7.4.6 System Control Instructions ... 463
7.4.7 Exception Processing.. 473

Appendix A CPU Instructions.. 475
A.1 CPU Instructions.. 475

1

Section 1 Features

1.1 SH-1 and SH-2 Features

The SH-1 and SH-2 CPU have RISC-type instruction sets. Basic instructions are executed in one
clock cycle, which dramatically improves instruction execution speed. The CPU also has an
internal 32-bit architecture for enhanced data processing ability. Table 1.1 lists the SH-1 and SH-2
CPU features.

Table 1.1 SH-1 and SH-2 CPU Features

Item Feature

Architecture • Original Hitachi architecture

• 32-bit internal data bus

General-register machine • Sixteen 32-bit general registers

• Three 32-bit control registers

• Four 32-bit system registers

Instruction set • Instruction length: 16-bit fixed length for improved code efficiency

• Load-store architecture (basic arithmetic and logic operations are
executed between registers)

• Delayed branch system used for reduced pipeline disruption

• Instruction set optimized for C language

Instruction execution time • One instruction/cycle for basic instructions

Address space • Architecture makes 4 Gbytes available

On-chip multiplier
(SH-1 CPU)

• Multiplication operations (16 bits × 16 bits → 32 bits) executed in 1
to 3 cycles, and multiplication/accumulation operations (16 bits × 16
bits + 42 bits → 42 bits) executed in 3/(2)* cycles

On-chip multiplier
(SH-2 CPU)

• Multiplication operations executed in 1 to 2 cycles (16 bits × 16 bits
→ 32 bits) or 2 to 4 cycles (32 bits × 32 bits → 64 bits), and
multiplication/accumulation operations executed in 3/(2)*cycles (16
bits × 16 bits + 64 bits → 64 bits) or 3/(2 to 4)* cycles (32 bits × 32
bits + 64 bits → 64 bits)

Pipeline • Five-stage pipeline

Processing states • Reset state

• Exception processing state

• Program execution state

• Power-down state

• Bus release state

Power-down states • Sleep mode

• Standby mode

Note: The normal minimum number of execution cycles (The number in parentheses in the
mumber in contention with preceding/following instructions).

2

1.2 SH-DSP Features

The SH-DSP is a 32-bit microcontroller based on the Hitachi SuperH RISC engine (abbreviated
below as “SuperH”) and incorporating the signal processing performance of a general-use digital
signal processor (DSP). The SuperH already supported some DSP type instructions, such as
multiply and accumulate. In the SH-DSP, the DSP functions have been enhanced, and full DSP
data bus have been implemented. The SH-DSP is backward compatible at the object code level
with the SH-1 and SH-2 CPUs.

The SuperH only has 16-bit instructions. The SH-DSP basically has the same 16-bit instructions,
but it also has additional 32-bit DSP instructions that it uses for parallel processing of DSP type
instructions. The SuperH uses a standard Neumann architecture, but the SH-DSP has the DSP data
bus of the expanded Harvard architecture.

Table 1-2 lists the added features of the SH-DSP.

3

Table 1.2 Features of SH-DSP Series Microprocessor CPUs

Feature Description

DSP unit • 1 cycle multiplier

• 16 bits × 16 bits → 32 bits (fixed decimal point)

• Arithmetic logic unit (ALU)

• Barrel shifter

• DSP registers

• MSB detection

DSP registers • Two 40-bit data registers

• Six 32-bit data registers

• DSP status register (DSR)

• Modulo register (MOD, 32 bits) added to control registers

• Repeat counter (RC) added to status registers (SR)

• Repeat start register (RS) and repeat end register (RE) added to
control registers

DSP data bus • Expanded Harvard architecture

• Simultaneous access of two data bus and one instruction bus

Parallel processing • Maximum of four parallel processes (ALU operation, multiplication,
and two loads or stores)

Address operator • Two address operators

• Address operations for accessing two memories

DSP data addressing
modes

• Increment, decrement and index

• Increment, decrement and index can have modulo addressing or
not

Repeat control • Zero-overhead repeat control (loop)

Instruction set • 16 or 32 bits

 16 bits (for load or store only)

 32 bits (including for ALU operations and multiplication)

• SuperH microprocessor instructions added for accessing DSP
registers.

Pipeline • Five-stage pipeline

• Fifth stage is both the WB stage and the DSP stage.

4

5

Section 2 Register Configuration

The register set of the SH-1 and SH-2 consists of sixteen 32-bit general registers, three 32-bit
control registers and four 32-bit system registers.

The SH-DSP maintains upward compatibility with the SH-1 and SH-2 microprocessors on the
object code level. To this end, it has the same registers as the SuperH microprocessors, with the
addition of several other registers. Three control registers have been added: the repeat start register
(RS), the repeat end register (RE), and the modulo register (MOD). Six other registers have also
been added: the DSP status register (DSR), which is a system register, and eight DSP data
registers (A0, A1, X0, X1, Y0, Y1, M0, and M1).

The general registers are used the same as in the SH-1 and SH-2 when SuperH type instructions
are involved. With DSP type instructions, however, they are used as address registers and index
registers for accessing memory.

2.1 General Registers

There are 16 general registers (Rn) numbered R0–R15, which are 32 bits in length (figure 2.1).
General registers are used for data processing and address calculation. R0 is also used as an index
register. Several instructions use R0 as a fixed source or destination register. R15 is used as the
hardware stack pointer (SP). Saving and recovering the status register (SR) and program counter
(PC) in exception processing is accomplished by referencing the stack using R15.

6

R0

R1

R2

R3

R4

R5
R6

R7
R8

R9

R10

R11

R12

R13

R14
R15, SP

31 0
R0 functions as an index register in the
indirect indexed register addressing
mode and indirect indexed GBR
addressing mode. In some instructions,
R0 functions as a fixed source register
or destination register.

R15 functions as a hardware stack
pointer (SP) during exception
processing.

1.*1

(hardware stack pointer) 2.*2

Figure 2.1 General Registers (SH-1 and SH-2)

With DSP type instructions, eight of the 16 general registers are used in addressing the X and Y
data memory and the data memory that uses the I bus (single data).

To access X memory, R4 and R5 are used as the X address register [Ax] and R8 is used as the X
index register [Ix]. To access the Y memory, R6 and R7 are used as the Y address register [Ay]
and R9 is used as the Y index register [Iy]. To access single data using the I bus, R2, R3, R4, and
R5 are used as the single data address register and R8 as the single data index register [Is].

DSP type instructions can simultaneously access X and Y memory. There are two groups of
address pointers for specifying the X and Y data memory addresses.

Figure 2.2 shows the general registers.

7

R0*1

R1

R2, [As]*2

R3, [As]*2

R4, [As, Ax]*2

R5, [As, Ax]*2

R6, [Ay]*2

R7, [Ay]*2

R8, [Ix, Is]*2

R9, [Iy]*2

R10

R11

R12

R13

R14
R15, SP *3

031

R0 functions as an index register in the indirect indexed register addressing
mode and indirect indexed GBR addressing mode. In some instructions, R0
functions as a source register or destination register.
Used as memory address register and memory index register with DSP
instructions.
R15 functions as a hardware stack pointer (SP) during exception processing.

Notes: 1.

2.

3.

Figure 2.2 Organization of General Registers (SH-DSP)

The symbols R2–R9 are used by the assembler. To change a name to something that indicates the
role of the register for DSP instructions, use an alias. The assembler writes as follows:

Ix: .REG (R8)

The name Ix becomes the alias R8. Aliases are also assigned as follows:

Ax0: .REG (R4)
Ax1: .REG (R5)
Ix: .REG (R8)
Ay0: .REG (R6)
Ay1: .REG (R7)
Iy: .REG (R9)
As0: .REG (R4); defined when an alias is needed for a single data transfer.
As1: .REG (R5); defined when an alias is needed for a single data transfer.
As2: .REG (R2); defined when an alias is needed for a single data transfer.

8

As3: .REG (R3); defined when an alias is needed for a single data transfer.
Is: .REG (R8); defined when an alias is needed for a single data transfer.

2.2 Control Registers

The 32-bit control registers consist of the 32-bit status register (SR), global base register (GBR),
and vector base register (VBR) (figure 2.3). The status register indicates processing states. The
global base register functions as a base address for the indirect GBR addressing mode to transfer
data to the registers of on-chip peripheral modules. The vector base register functions as the base
address of the exception processing vector area (including interrupts).

9 8 7 6 5 4 3 2 1 0

M Q I3 I2 I1 I0 S T

0

031

31

GBR

VBR

SR

31

S bit: Used by the multiply/accumulate
 instruction.

Reserved bits: Always reads as 0, and should
always be written with 0.
Bits I3–I0: Interrupt mask bits.

M and Q bits: Used by the DIV0U/S and
DIV1 instructions.

Global base register (GBR):
Indicates the base address of the indirect
GBR addressing mode. The indirect GBR
addressing mode is used in data transfer
for on-chip peripheral module register
areas and in logic operations.

Vector base register (VBR):
Indicates the base address of the exception
processing vector area.

SR: Status register

T bit: The MOVT, CMP/cond, TAS, TST,
BT (BT/S), BF (BF/S), SETT, and CLRT
instructions use the T bit to indicate
true (1) or false (0). The ADDV/C,
SUBV/C, DIV0U/S, DIV1, NEGC,
SHAR/L, SHLR/L, ROTR/L, and
ROTCR/L instructions also use bit T
to indicate carry/borrow or overflow/
underflow

Figure 2.3 Control Registers (SH-1 and SH-2)

The SH-SDP additionally has a repeat start (RS) register, a repeat end (RE) register, and a modulo
(MOD) register.

9

The RS and RE registers are used to control program repetition (loops). The number of iterations
is specified in the SR register’s repeat counter (RC), the repeat start address is specified in the RS
register, and the repeat end address is specified in the RE register. The address values stored in the
RS and RE registers are not always the same as the physical starting address and ending address of
the repeat.

The MOD register uses modulo addressing to buffer the repeat data. Modulo addressing is
specified by DMX or DMY, the modulo end address (ME) is specified in the top 16 bits of the
MOD register, and the modulo start address (MS) is specified in the bottom 16 bits. The DMX and
DMY bits cannot simultaneously specify modulo addressing. Modulo addressing can be used for
X and Y data transfers (MOVX and MOVY). It cannot be used in single data transfers (MOVS).

Figure 2.4 shows the control registers. Table 2.1 shows the bits of the SR register.

S TI3 I2 I1 I0QMDMXDMY······· ·······RC RF1 RF0
31 28 27 16 15 12 11 10 9 8 7 4 3 2 1 0

Status register (SR)

Repeat start register (RS)

Repeat end register (RE)

Modulo register (MOD)

ME: Modulo end address
MS: Modulo start address

31

31

31

0

0

016 15

RS

RE

ME MS

Figure 2.4 Organization of the Control Registers (SH-DSP)

10

Table 2.1 SR Register Bits

Bits Name Function

27–16 Repeat counter (RC) Specifies the number of iterations for repeat (loop) control (2
to 4095)

11 Specification of modulo
addressing for Y pointer
(DMY)

1: Modulo addressing mode becomes valid for the Y memory
address register Ay (R6, R7)

10 Specification of modulo
addressing for X pointer
(DMX)

1: Modulo addressing mode becomes valid for the X memory
address register Ax (R4, R5)

9 Bit M Used by the DIV0S/U and DIV1 instructions

8 Bit Q

7–4 Interrupt request mask
(IMASK)

Indicate the level of interrupt request accepted (0-15)

3–2 Repeat flag (RF1, RF0) Used to control zero-overhead repeating (loop)
00: 1 step repeat
01: 2 step repeat
11: 3 step repeat
10: Repeat of 4 or more steps

1 Saturation operation bit
(S)

Used by MAC and DSP instructions
1: Specifies saturation operation (prevents overflows)

0 Bit T For MOVT, CMP/cond, TAS, TST, BT, BF, SETT, CLRT, and
DT instructions:
0: FALSE
1: TRUE

For ADDV/C, SUBV/C, DIV0U/S, DIV1, NEGC, SHAR/L,
SHLR/L, ROTR/L and ROTCR/L instructions:
1: Indicates a carry, borrow, overflow or underflow

31–28,
15–12

Reserved 0: Always reads 0; Always write 0.

Dedicated load and store instructions are used to access the RS, RE, and MOD registers. For
example, to access the RS register, do the following:

LDC Rm, RS; Rm → RS

LDC.L @Rm+, RS; (Rm) → RS, Rm+4 → Rm

STC RS, Rn; RS → Rn

STC.L RS, @-Rn; Rn-4 → Rn, RS → (Rn)

11

The following instructions set addresses in the RS, RE registers for zero overhead repeat control:

LDRS @(disp, PC); disp × 2 + PC → RS

LDRE @(disp, PC); disp × 2 + PC → RE

The GBR and VBR registers are the same as the previous SuperH registers. Four control bits
(DMX, DMY, RF1, and RF0 bits) and an RC counter have been added to the SR register. The RS,
RE, and MOD registers are new registers.

2.3 System Registers

System registers consist of four 32-bit registers: high and low multiply and accumulate registers
(MACH and MACL), the procedure register (PR), and the program counter (PC). The multiply
and accumulate registers store the results of multiply and multiply and accumulate operations. The
procedure register stores the return address from the subroutine procedure. The program counter
indicates the address of the program executing and controls the flow of the processing. The PC
counter points to four bytes ahead of the instruction currently executing. These registers are the
same as the SuperH microprocessor registers.

MACL

PR

PC

MACH

31 09

0

0

31

31

Multiply and accumulate register high
(MACH) Multiply and accumulate
register low (MACL)
These are the registers for storing the
results of multiply and accumulate
operations. On the SH-2 CPU, MACH
has 32 valid bits. On the SH-1 CPU, only
the lower 10 bits of MACH are valid, and
data is sign extended to 32 bits when read.

Procedure register (PR)
This register is used to store the return
destination addresses for subroutine
procedures.

Program counter (PC)
The PC indicates the next four bytes
(two instructions) following the instruction
currently being executed.

Note: These are used only when executing an instruction that was supported
 by SH-1 and SH-2. They are not used for multiplication instructions newly
 added for the SH-DSP (PMULS).

Figure 2.5 Organization of the System Registers

12

In addition, the SH-DSP also uses as its system registers the DSP status register (DSR) and five of
the eight data registers (A0, X0, X1, Y0, Y1), which are all registers of the DSP unit and will be
described later (DSP registers). The A0 register is a 40-bit register, but the guard bit section (A0G)
is ignored in data read from A0. When data is input to the A0 register, the MSB of the data is
copied to the guard bit section (A0G).

2.4 DSP Registers

The DSP unit has nine DSP registers, divided into eight data registers and one control register.

The DSP data registers include two 40-bit registers (A0 and A1) and six 32-bit registers (M0, M1,
X0, X1, Y0, and Y1). The A1 and A0 registers each has eight guard bits, A0G and A1G.

The DSP data registers are used in transferring and processing DSP data as the operand for the
DSP instruction. There are three types of instructions that access the DSP data registers: DSP data
processing, X data processing, and Y data processing.

The 32-bit DSP status register (DSR) is the control register, which indicates the results of
operations. The DSR register has bits to display the results of the operation, which include a
signed greater than bit (GT), a zero value bit (Z), a negative value bit (N), an overflow bit (V), a
DSP condition bit (DC), and condition select bits, which control the DC bit settings (CS).

The DC bit is one of the status flags; it is very similar to the SuperH CPU core’s T bit. In the case
of conditional DSP type instructions, the execution of DSP data processing is controlled in
accordance with the DC bit. This control is related to DSP unit execution only, and only the DSP
registers are updated. It is not related to the execution instructions of the SuperH microprocessor’s
CPU core, such as address calculation and load/store instructions. The control bits CS (bits 0 to 2)
specify the condition that the DC bits set.

DSP instructions include both unconditional DSP instructions and conditioned DSP instructions.
Data processing of unconditional DSP instructions updates the condition bits and DC bits, except
for the PMULS, PWAD, PWSB, MOVX, MOVY, and MOVS instructions. Conditional DSP type
instructions are executed in accordance with the status of the DC bit. DSR registers are not
updated, regardless of whether these instructions are executed or not.

Note that five registers, A0, X0, X1, Y0, and Y1, can also be used as system registers.

Figure 2.6 shows the DSP registers. Table 2.2 lists the DSR register bit functions.

13

39 32 31 0

A0G

A1G

A0

A1

M0

M1

X0

X1

Y0

Y1

DSP data registers

DSP status register (DSR)GT Z N V CS[2:0] DC

8 7 6 5 4 3 2 1 031

Figure 2.6 Organization of the DSP Registers

Table 2.2 DSR Register Bits

Bits Name Function

31–8 Reserved 0: Always reads 0. Always write 0.

7 Signed greater than bit
(GT)

Indicates whether the operation result is positive (and
nonzero) or whether operand 1 is larger than operand 2.
1: Operation result is positive or operand 1 is larger.

6 Zero value bit (Z) Indicates whether the operation result is zero or whether of
operands 1 and 2 are the same.
1: Operation result is zero or operands 1 and 2 are the same.

5 Negative value bit (N) Indicates whether the operation result is negative or whether
operand 1 is smaller than operand 2.
1: Operation result is negative or operand 1 is smaller.

4 Overflow bit (V) Indicates that the operation result overflowed.
1: Operation result overflowed.

3–1 Condition select bits
(CS)

Specifies the mode for selecting the status of the operation
result set in the DC bit. Do not specify 110 or 111.
000: Carry/borrow mode
001: Negative value mode
010: Zero value mode
011: Overflow mode
100: Signed greater than mode
101: Signed equal or greater than mode

0 DSP condition bit (DC) Sets the operation result status in the mode specified by the
CS bits.
0: Specified mode status not achieved
1: Specified mode status achieved.

14

CPU core instructions use the A0, X0, X1, Y0, Y1, and DSR registers as a system registers.

2.5 Precautions for Handling of Guard Bit and Overflow

Data operation in the DSP unit is basically executed in 32 bits. Actual operation, however, is made
in 40-bit length including 8 guard bits. When the guard bits are inconsistent with the value of
MSB of 32 bits, the operation result is handled as overflow. In this case, the N bit indicates the
correct condition of the operation result whether overflow has occurred or not. This is also the
same when the destination operand is a register of 32 bits in length. Each status flag is updated
always assuming guard bits of 8 bits.

If line overflow occurs so that the result is not correctly indicated even though the guard bits are
used, the N flag cannot show the correct condition. Refer to section 8.1, ALU Fixed Decimal Point
Operation, DC Bit, for details.

2.6 Initial Values of Registers

Table 2.3 lists the values of the registers after reset.

Table 2.3 Initial Values of Registers

Classification Register Initial Value

General registers R0–R14 Undefined

R15 (SP) Value of the stack pointer in the vector
address table

Control registers SR • Bits I3 to I0 are 1111(H'F), reserved
bits are 0, and other bits are undefined

RC, DMY, DMX, RF1, and RF0 are 0
(additional bits on SH-DSP)

RS Undefined

RE

GBR Undefined

VBR H'00000000

MOD Undefined

System registers MACH, MACL, PR Undefined

PC Value of the program counter in the vector
address table

DSP registers A0, A0G, A1, A1G, M0,
M1, X0, X1, Y0, Y1

Undefined

DSR H'00000000

15

Section 3 Data Formats

3.1 Data Format in Registers

Register operands are always longwords (32 bits). When data in memory is loaded to a register
and the memory operand is only a byte (8 bits) or a word (16 bits), it is sign-extended into a
longword when stored into a register.

31 0
Longword

Figure 3.1 Data Format in Registers

3.2 Data Format in Memory

Memory data formats are classified into bytes, words, and longwords. Byte data can be accessed
from any address, but an address error will occur if you try to access word data starting from an
address other than 2n or longword data starting from an address other than 4n. In such cases, the
data accessed cannot be guaranteed. The hardware stack area, which is referred to by the hardware
stack pointer (SP, R15), uses only longword data starting from address 4n because this area stores
the program counter (PC) and status register (SR). See the hardware manual for more information
on address errors.

31 01523 7

Byte Byte Byte Byte

WordWordAddress 2n

Address 4n Longword

Address m Address m + 2

Address m + 1 Address m + 3

Figure 3.2 Data Format in Memory (Big Endian)

Byte data is arranged as shown below for products with a built-in little endian function. To
determine whether a specific product supports little endian operation, refer to the corresponding
hardware manual.

16

31 01523 7

Byte Byte Byte Byte

WordWordAddress 2n

Address 4n Longword

Address m + 3 Address m + 1

Address m + 2 Address m

Figure 3.3 Data Format in Memory (Little Endian)

3.3 Immediate Data Format

Byte immediate data is located in an instruction code. Immediate data accessed by the MOV,
ADD, and CMP/EQ instructions is sign-extended and is handled in registers as longword data.
Immediate data accessed by the TST, AND, OR, and XOR instructions is zero-extended and is
handled as longword data. Consequently, AND instructions with immediate data always clear the
upper 24 bits of the destination register.

Word or longword immediate data is not located in the instruction code but rather is stored in a
memory table. The memory table is accessed by a immediate data transfer instruction (MOV)
using the PC relative addressing mode with displacement. Specific examples are given in Section
7, CPU Core Instruction Features, instruction 8, and table 7.4.

3.4 DSP Type Data Formats

The SH-DSP uses three different data formats for instructions: the fixed decimal point data format,
the integer data format, and the logical data format.

The DSP type of fixed decimal point data format places a binary decimal point between bits 31
and 30. This data format can have guard bits, no guard bits, or be multiplication input. The valid
bit lengths and values displayed vary for each.

DSP type integer data formats place a binary decimal point between bits 16 and 15. This data
format can have guard bits, no guard bits, or be a shift amount. The valid bit lengths and values
displayed vary for each.

The shift amount for arithmetic shift (PSHA) is a seven-bit area between –64 and +63, although
only values between –32 and +32 are valid. The shift amount for logical shifts is a six bit area,
although, in the same fashion, only values between –16 and +16 are valid.

The DSP type logical data format has no decimal point. The data format and valid data length vary
with the instruction and DSP register.

17

Figure 3.4 shows the three DSP data formats and the position of the two binary decimal points, as
well as the SuperH data format (as reference).

S

S

S

S

S

S

S

S

(16 bits)DSP logical data

SuperH integer (word)

(reference)

DSP integer data

DSP fixed decimal
point data

With guard bits

No guard bits

Multiplication input

With guard bits

No guard bits

Arithmetic shift (PSHA)

Logical shift (PSHL)

39

39

39

39

32

32

31

31

31

31

31

31

31

31

31

22

21

0

0

0

0

0

0

0

0

0

–28 to +28 – 2–31

–1 to +1 – 2–31

–1 to +1 – 2–15

–223 to +223 –1

–215 to +215 –1

–32 to +32

–16 to +16

–231 to +231 –1

16 15

16

16

16

16

16

15

15

15

15

15

S: Sign bit
: Binary decimal point
: Unrelated to processing (ignored)

30

30

30

Figure 3.4 DSP Data Formats

18

3.5 DSP Instructions and Data Formats

The data format and valid data length varies with the instruction and DSP register. Instructions
that access the DSP data register fall into three categories: DSP data processing, X and Y data
transfer processing, and single data transfer processing.

3.5.1 DSP Data Processing

When the A0 or A1 register is used as the source register in DSP fixed decimal point data
processing, the guard bits (32–39) are enabled. When any other register is used as the source
register (M0, M1, X0, X1, Y0, or Y1), the register data’s sign-extended portion goes to bits 32–39.
When the A0 or A1 register is used as the destination register, the guard bits (32–39) are enabled.
When any other register is used as the destination register, the resulting data’s bits 32–39 are
ignored.

DSP integer data processing is the same as DSP fixed decimal point data processing. The bottom
word (the bottom 16 bits, or bits 0–15) of the source register, however, is ignored. The bottom
word of the destination register is cleared with zeroes.

The top word (top 16 bits, or bits 16–31) of the source register for DSP logical data processing is
enabled. The bottom word and the guard bits of registers A0 and A1 are ignored. The top word of
the destination register is enabled. The bottom word and the guard bits of registers A0 and A1 are
cleared with zeroes.

3.5.2 X and Y Data Transfers

The MOVX.W and MOVY.W instructions access the X and Y memory through the 16-bit X and
Y data buses. The part of data loaded to a register or stored from a register is the top word (bits
16–31). The bottom word is cleared with zeroes.

3.5.3 Single Data Transfers

The MOVS.W and MOVS.L instructions can access any memory through the instruction data bus
(IDB). All DSP registers are connected to the IDB bus, which can serve as either the source and
destination register during a data transfer. There are two data transfer modes: word and longword.
In word mode, data is loaded to the top word of the DSP register or stored from the top word,
except for the A0G and A1G registers. In longword mode, data is loaded to the 32 bits of the DSP
register or stored from the 32 bits, except for the A0G and A1G registers.

In single data transfers, the A0G and A1G registers can be handled as independent registers. Eight
bits of data can be loaded to or stored from the A0G and A1G registers.

19

When the A0G or A1G register is the source register, only eight bits are stored from the register.
The top bits are sign extended.

When the A0G or A1G register is the destination register, the bottom eight bits are loaded to the
register. The A0 and A1 registers are not cleared with zeros, so the values are preserved.

Tables 3.1 and 3.2 list the data formats on the register with the DSP instructions. With some
instructions, not all registers can be accessed. For example, the PMULS instruction can specified
the A1 register as the source register, but not the A0 register. For more information, see the
description of the instruction.

Figure 3.5 shows the relationship between the DSP registers and buses during data transfers.

Table 3.1 Data Format of DSP Instruction Source Register

Guard Bits Register Bits

Register Instruction 39–32 31–16 15–0

A0, A1 DSP
operation

Fixed decimal,
PDMSB,
PSHA

40 bit data

Integer 24 bit data —

Logic, PSHL,
PMULS

— 16 bit data

Data
transfer

MOVX.W,
MOVY.W,
MOVS.W

16 bit data

MOVS.L 32 bit data

A0G, A1G Data MOVS.W Data — —
transfer MOVS.L Data

X0, X1, Y0,
Y1, M0, M1

DSP
operation

Fixed decimal,
PDMSB,
PSHA

Sign* 32 bit data

Integer 16 bit data —

Logic, PSHL,
PMULS

— 16 bit data —

Data MOVS.W 16 bit data
transfer MOVS.L 32 bit data

Note: The sign is extended and stored in the ALU’s guard bits.

20

Table 3.2 Data Format of DSP Instruction Destination Register

Guard Bits Register Bits

Register Instruction 39–32 31–16 15–0

A0, A1 DSP
operation

Fixed
decimal,
PSHA,
PMULS

(Sign extend) 40 bit result

Integer,
PDMSB

(Sign extend) 24 bit result Clear to 0

Logic, PSHL Clear to 0 16 bit result Clear to 0

Data transfer MOVS.W Sign extend 16 bit data Clear to 0

MOVS.L Sign extend 32 bit data

A0G, A1G Data transfer MOVS.W Data Not updated

MOVS.L Data Not updated

X0, X1, Y0,
Y1, M0, M1

DSP
operation

Fixed
decimal,
PSHA,
PMULS

— 32 bit result

Integer, logic,
PDMSB,
PSHL

16 bit result Clear to 0

Data transfer MOVX.W,
MOVY.W,
MOVS.W

16 bit data Clear to 0

MOVS.L 32 bit data

21

39 32

31

0

A0G

A1G

A0

A1

M0

M1

X0

X1

Y0

Y1

DSR

Main bus

XDB

YDB

MOVS.W,
MOVS.L

32 bits16 bits

16 bits

16 bits

32 bits

MOVX.W,
MOVY.WMOVS.W,

MOVS.L

16

8 bits [7:0]

7 0

Figure 3.5 Relationship between DSP Registers and Buses during Data Transfer

22

23

Section 4 Instruction Features

4.1 RISC-Type Instruction Set

All instructions are RISC type. Their features are detailed in this section.

16-Bit Fixed Length: All instructions are 16 bits long, increasing program coding efficiency.

One Instruction/Cycle: Basic instructions can be executed in one cycle using the pipeline system.
Instructions are executed in 50 ns at 20 MHz, in 35 ns at 28.7MHz.

Data Length: Longword is the standard data length for all operations. Memory can be accessed in
bytes, words, or longwords. Byte or word data accessed from memory is sign-extended and
calculated with longword data (table 4.1). Immediate data is sign-extended for arithmetic
operations or zero-extended for logic operations. It also is calculated with longword data.

Table 4.1 Sign Extension of Word Data

SH-1/SH-2/SH-DSP CPU Description Example for Other CPU

MOV.W @(disp,PC),R1

ADD R1,R0

.DATA.W H'1234

Data is sign-extended to 32
bits, and R1 becomes
H'00001234. It is next
operated upon by an ADD
instruction.

ADD.W #H'1234,R0

Note: The address of the immediate data is accessed by @(disp, PC).

Load-Store Architecture: Basic operations are executed between registers. For operations that
involve memory access, data is loaded to the registers and executed (load-store architecture).
Instructions such as AND that manipulate bits, however, are executed directly in memory.

Delayed Branch Instructions: Unconditional branch instructions are delayed. Pipeline disruption
during branching is reduced by first executing the instruction that follows the branch instruction,
and then branching (table 4.2). With delayed branching, branching occurs after execution of the
slot instruction. However, instructions such as register changes etc. are executed in the order of
delayed branch instruction, then delay slot instruction. For example, even if the register in which
the branch destination address has been loaded is changed by the delay slot instruction, the branch
will still be made using the value of the register prior to the change as the branch destination
address.

24

Table 4.2 Delayed Branch Instructions

SH-1/SH-2/SH-DSP CPU Description Example for Other CPU

BRA TRGET

ADD R1,R0

Executes an ADD before
branching to TRGET.

ADD.W R1,R0

BRA TRGET

Multiplication/Accumulation Operation:

SH-1 CPU: 16bit × 16bit → 32-bit multiplication operations are executed in one to three cycles.
16bit × 16bit + 42bit → 42-bit multiplication/accumulation operations are executed in two to three
cycles.

SH-2/SH-DSP CPU: 16bit × 16bit → 32-bit multiplication operations are executed in one to two
cycles. 16bit × 16bit + 64bit → 64-bit multiplication/accumulation operations are executed in two
to three cycles. 32bit × 32bit → 64-bit multiplication and 32bit × 32bit + 64bit → 64-bit
multiplication/accumulation operations are executed in two to four cycles.

T Bit: The T bit in the status register changes according to the result of the comparison, and in
turn is the condition (true/false) that determines if the program will branch (table 4.3). The number
of instructions after T bit in the status register is kept to a minimum to improve the processing
speed.

Table 4.3 T Bit

SH-1/SH-2/SH-DSP CPU Description Example for Other CPU

CMP/GE R1,R0

BT TRGET0

BF TRGET1

T bit is set when R0 ≥ R1. The
program branches to TRGET0.

When R0 ≥ R1 and to TRGET1.

When R0 < R1.

CMP.W R1,R0

BGE TRGET0

BLT TRGET1

ADD #–1,R0

CMP/EQ #0,R0

BT TRGET

T bit is not changed by ADD.

T bit is set when R0 = 0.

The program branches if R0 = 0.

SUB.W #1,R0

BEQ TRGET

Immediate Data: Byte immediate data is located in instruction code. Word or longword
immediate data is not input via instruction codes but is stored in a memory table. The memory
table is accessed by an immediate data transfer instruction (MOV) using the PC relative
addressing mode with displacement (table 4.4).

25

Table 4.4 Immediate Data Accessing

Classification SH-1/SH-2/SH-DSP CPU Example for Other CPU

8-bit immediate MOV #H'12,R0 MOV.B #H'12,R0

16-bit immediate MOV.W @(disp,PC),R0

.DATA.W H'1234

MOV.W #H'1234,R0

32-bit immediate MOV.L @(disp,PC),R0

.DATA.L H'12345678

MOV.L #H'12345678,R0

Note: The address of the immediate data is accessed by @(disp, PC).

Absolute Address: When data is accessed by absolute address, the value already in the absolute
address is placed in the memory table. Loading the immediate data when the instruction is
executed transfers that value to the register and the data is accessed in the indirect register
addressing mode.

Table 4.5 Absolute Address

Classification SH-1/SH-2/SH-DSP CPU Example for Other CPU

Absolute address MOV.L @(disp,PC),R1

MOV.B @R1,R0

.DATA.L H'12345678

MOV.B @H'12345678,R0

16-Bit/32-Bit Displacement: When data is accessed by 16-bit or 32-bit displacement, the pre-
existing displacement value is placed in the memory table. Loading the immediate data when the
instruction is executed transfers that value to the register and the data is accessed in the indirect
indexed register addressing mode.

Table 4.6 Displacement Accessing

Classification SH-1/SH-2/SH-DSP CPU Example for Other CPU

16-bit displacement MOV.W @(disp,PC),R0

MOV.W @(R0,R1),R2

.DATA.W H'1234

MOV.W @(H'1234,R1),R2

26

4.2 Addressing Modes

Addressing modes effective address calculation by the CPU core are described below.

Table 4.7 Addressing Modes and Effective Addresses

Addressing
Mode

Instruction
Format Effective Addresses Calculation Formula

Direct
register
addressing

Rn The effective address is register Rn. (The operand is
the contents of register Rn.)

—

Indirect
register
addressing

@Rn The effective address is the content of register Rn.

Rn Rn

Rn

Post-
increment
indirect
register
addressing

@Rn + The effective address is the content of register Rn. A
constant is added to the content of Rn after the
instruction is executed. 1 is added for a byte
operation, 2 for a word operation, or 4 for a longword
operation.

Rn Rn

1/2/4

+Rn + 1/2/4

Rn

(After the
instruction is
executed)

Byte: Rn + 1
→ Rn

Word: Rn + 2
→ Rn

Longword:
Rn + 4 → Rn

Pre-
decrement
indirect
register
addressing

@–Rn The effective address is the value obtained by
subtracting a constant from Rn. 1 is subtracted for a
byte operation, 2 for a word operation, or 4 for a
longword operation.

Rn

1/2/4

Rn – 1/2/4–Rn – 1/2/4

Byte: Rn – 1
→ Rn

Word: Rn – 2
→ Rn

Longword:
Rn – 4 → Rn
(Instruction
executed
with Rn after
calculation)

27

Table 4.7 Addressing Modes and Effective Addresses (cont)

Addressing
Mode

Instruction
Format Effective Addresses Calculation Formula

Indirect
register
addressing
with
displace-
ment

@(disp:4,
Rn)

The effective address is Rn plus a 4-bit displacement
(disp). The value of disp is zero-extended, and
remains the same for a byte operation, is doubled for
a word operation, or is quadrupled for a longword
operation.

Rn

1/2/4

Rn
+ disp × 1/2/4

+

×

disp
(zero-extended)

Byte: Rn +
disp

Word: Rn +
disp × 2

Longword:
Rn + disp × 4

Indirect
indexed
register
addressing

@(R0, Rn) The effective address is the Rn value plus R0.

Rn

R0

Rn + R0+

Rn + R0

Indirect
GBR
addressing
with
displace-
ment

@(disp:8,
GBR)

The effective address is the GBR value plus an 8-bit
displacement (disp). The value of disp is zero-
extended, and remains the same for a byte
operation, is doubled for a word operation, or is
quadrupled for a longword operation.

GBR

1/2/4

GBR
+ disp × 1/2/4

+

×

disp
(zero-extended)

Byte: GBR +
disp

Word: GBR +
disp × 2

Longword:
GBR + disp ×
4

Indirect
indexed
GBR
addressing

@(R0,
GBR)

The effective address is the GBR value plus R0.

GBR

R0

GBR + R0+

GBR + R0

28

Table 4.7 Addressing Modes and Effective Addresses (cont)

Addressing
Mode

Instruction
Format Effective Addresses Calculation Formula

PC relative
addressing
with
displace-
ment

@(disp:8,
PC)

The effective address is the PC value plus an 8-bit
displacement (disp). The value of disp is zero-
extended, and disp is doubled for a word operation,
or is quadrupled for a longword operation. For a
longword operation, the lowest two bits of the PC are
masked.

PC

H'FFFFFFFC
PC + disp × 2

or
PC&H'FFFFFFFC

+ disp × 4

+

2/4

x

&
(for longword)

disp
(zero-extended)

Word: PC +
disp × 2

Longword:
PC &
H'FFFFFFFC
+ disp × 4

PC relative
addressing

disp:8 The effective address is the PC value sign-extended
with an 8-bit displacement (disp), doubled, and
added to the PC.

PC

2

+

×

disp
(sign-extended)

PC + disp × 2

PC + disp × 2

disp:12 The effective address is the PC value sign-extended
with a 12-bit displacement (disp), doubled, and
added to the PC.

PC

2

+

×

disp
(sign-extended)

PC + disp × 2

PC + disp × 2

29

Table 4.7 Addressing Modes and Effective Addresses (cont)

Addressing
Mode

Instruction
Format Effective Addresses Calculation Formula

PC relative
addressing
(cont)

Rn* The effective address is the register PC plus Rn.

PC

R0

PC + R0+

PC + Rn

Immediate
addressing

#imm:8 The 8-bit immediate data (imm) for the TST, AND,
OR, and XOR instructions are zero-extended.

—

#imm:8 The 8-bit immediate data (imm) for the MOV, ADD,
and CMP/EQ instructions are sign-extended.

—

#imm:8 Immediate data (imm) for the TRAPA instruction is
zero-extended and is quadrupled.

—

Note: Applies to the SH-2 and SH-DSP. This addressing mode is not supported by the SH-1.

4.3 Instruction Format

The instruction format table, table 4.8, refers to the source operand and the destination operand.
The meaning of the operand depends on the instruction code. The symbols are used as follows:

• xxxx: Instruction code

• mmmm: Source register

• nnnn: Destination register

• iiii: Immediate data

• dddd: Displacement

Table 4.8 Instruction Formats

Instruction Formats
Source
Operand

Destination
Operand Example

0 format

xxxx xxxx xxxxxxxx
15 0

— — NOP

n format — nnnn: Direct
register

MOVT Rn

xxxx xxxx xxxxnnnn
15 0 Control register

or system
register

nnnn: Direct
register

STS MACH,Rn

30

Table 4.8 Instruction Formats (cont)

Instruction Formats
Source Operand Destination

Operand Example

n format (cont) Control register or
system register

nnnn: Indirect
pre-decrement
register

STC.L SR,@-Rn

m format mmmm: Direct
register

Control register or
system register

LDC Rm,SR

xxxxmmmmxxxx xxxx
15 0 mmmm: Indirect

post-increment
register

Control register or
system register

LDC.L @Rm+,SR

mmmm: Direct
register

— JMP @Rm

mmmm: PC
relative using Rm*

— BRAF Rm

nm format mmmm: Direct
register

nnnn: Direct
register

ADD Rm,Rn

nnnnxxxx xxxx
15 0

mmmm
mmmm: Direct
register

nnnn: Indirect
register

MOV.L Rm,@Rn

mmmm: Indirect
post-increment
register (multiply/
accumulate)

nnnn*: Indirect
post-increment
register (multiply/
accumulate)

MACH, MACL MAC.W
@Rm+,@Rn+

mmmm: Indirect
post-increment
register

nnnn: Direct
register

MOV.L @Rm+,Rn

mmmm: Direct
register

nnnn: Indirect
pre-decrement
register

MOV.L Rm,@-Rn

mmmm: Direct
register

nnnn: Indirect
indexed register

MOV.L
Rm,@(R0,Rn)

md format

xxxx dddd
15 0

mmmmxxxx

mmmmdddd:
indirect register
with displacement

R0 (Direct
register)

MOV.B
@(disp,Rm),R0

nd4 format

ddddnnnnxxxx
15 0

xxxx

R0 (Direct
register)

nnnndddd:
Indirect register
with displacement

MOV.B
R0,@(disp,Rn)

Note: In multiply/accumulate instructions, nnnn is the source register.

31

Table 4.8 Instruction Formats (cont)

Instruction Formats
Source
Operand

Destination
Operand Example

nmd format

nnnnxxxx dddd
15 0

mmmm

mmmm: Direct
register

nnnndddd: Indirect
register with
displacement

MOV.L
Rm,@(disp,Rn)

mmmmdddd:
Indirect register
with
displacement

nnnn: Direct
register

MOV.L
@(disp,Rm),Rn

d format

ddddxxxx
15 0

xxxx dddd

dddddddd:
Indirect GBR
with
displacement

R0 (Direct register) MOV.L
@(disp,GBR),R0

R0(Direct
register)

dddddddd: Indirect
GBR with
displacement

MOV.L
R0,@(disp,GBR)

dddddddd: PC
relative with
displacement

R0 (Direct register) MOVA
@(disp,PC),R0

dddddddd: PC
relative

— BF label

d12 format

ddddxxxx
15 0

dddd dddd

dddddddddddd:
PC relative

— BRA label

(label = disp +
PC)

nd8 format

ddddnnnnxxxx
15 0

dddd

dddddddd: PC
relative with
displacement

nnnn: Direct
register

MOV.L
@(disp,PC),Rn

i format iiiiiiii: Immediate Indirect indexed
GBR

AND.B
#imm,@(R0,GBR)

i i i ixxxx
15 0

xxxx i i i i
iiiiiiii: Immediate R0 (Direct register) AND #imm,R0

iiiiiiii: Immediate — TRAPA #imm

ni format

nnnn i i i ixxxx
15 0

i i i i

iiiiiiii: Immediate nnnn: Direct
register

ADD #imm,Rn

Note: Applies to the SH-2 and SH-DSP. The BRAF instruction is not supported by the SH-1.

32

4.4 DSP

DSP operations and data transfers are listed below:

ALU Fixed Decimal Point Operations: These are fixed decimal point operations with either 40-
bit (with guard bits) or 32-bit (with no guard bits) fixed decimal point data. These include
addition, subtraction, and comparison instructions.

ALU Integer Operations: These are integer arithmetic operations with either 24-bit (with guard
bits) or 16-bit (with no guard bits) integer data. They include increment and decrement
instructions.

ALU Logical Operations: These are logical operations with 16-bit logical data. They include
AND, OR, and exclusive OR.

Fixed Decimal Point Multiplication: This is fixed decimal point multiplication (arithmetic
operation) of the top 16 bits of fixed decimal point data. Condition bits such as the DC bit are not
updated.

Shift Operations: These are arithmetic and logical shift operations. Arithmetic shift operations
are arithmetic shifts of 40 bits (with guard bits) or 32 bits (with no guard bits) of fixed decimal
point data. Logical shift operations are logical operations on 16 bits of logical data. The amount of
the arithmetic shift operation is –32 to +32 (negative for right shifts, positive for left shifts); for
logical shifts, the amount is –16 to +16.

MSB Detection Instruction: This operation finds the amount of the shift to normalize the data. It
finds the position of the MSB bit in either 40-bit (with guard bits) or 32-bit (with no guard bits)
fixed decimal point data as either 24 bits (with guard bits) or 16 bits (with no guard bits) integer
data.

Rounding Operation: Rounds 40-bit fixed decimal point data (with guard bits) to 24 bits or 32-
bit (with no guard bits) fixed decimal point data to 16 bits.

Data Transfers: Data transfers consist of X and Y data transfers, which load or store 16-bit data
to and from X and Y memory, and single data transfers, which load and store 16- or 32-bit data
from all memories. Two X and Y data transfers can be processed in parallel. Condition bits such
as the DC bit are not updated.

The operation instructions include both conditional operation instructions and instructions that are
conditionally executed depending on the DC bit. Condition bits such as the DC bit are not updated
by conditional instructions. Their settings vary for arithmetic operations, logical operations,
arithmetic shifts, and logical shifts. or MSB detection instructions and rounding instructions, set
the condition bits like for arithmetic operations.

33

Arithmetic operations include overflow preventing instructions (saturation operations). When
saturation operation is specified with the S bit in the SR register, the maximum (positive) or
minimum (negative) value is stored when the result of operation overflows.

4.5 DSP Data Addressing

The DSP command performs two different types of memory accesses. One uses the X and Y data
transfer instructions (MOVX.W and MOVY.W) while the other uses the single data transfer
instructions (MOVS.W and MOVS.L). Data addressing for these two types of instructions also
differs. Table 4.10 summarizes the data transfer instructions.

Table 4.10 Summary of Data Transfer Instructions

Item

X and Y Data Transfer
Processing (MOVX.W and
MOVY.W)

Single Data Transfer
Processing (MOVS.W and
MOVS.L)

Address registers Ax: R4, R5; Ay: R6, R7 As: R2, R3, R4, R5

Index registers Ix: R8; Iy: R9 Is: R8

Addressing Nop/Inc(+2)/Index addition:
Post-increment

Nop/Inc(+2, +4)/Index addition:
Post-increment

— Dec(–2, –4): Pre-decrement

Modulo addressing Available Not available

Data buses XDB, YDB IDB

Data length 16 bits (word) 16 or 32 bits (word or
longword)

Bus contention None Occurs

Memory X and Y data memories All memory spaces

Source registers Da: A0, A1 Ds: A0/A1, M0/M1, X0/X1,
Y0/Y1, A0G, A1G

Destination registers Dx: X0/X1; Dy: Y0/Y1 Ds: A0/A1, M0/M1, X0/X1,
Y0/Y1, A0G, A1G

4.5.1 X and Y Data Addressing

The DSP command allows X and Y data memories to be accessed simultaneously using the
MOVX.W and MOVY.W instructions. DSP instructions have two pointers so they can access the
X and Y data memories simultaneously. DSP instructions have only pointer addressing; immediate
addressing is not available. Address registers are divided in two. The R4 and R5 registers become
the X memory address register (Ax) while the R6 and R7 registers become the Y memory address
register (Ay). The following three types of addressing may be used with X and Y data transfer
instructions.

34

• Address registers with no update: The Ax and Ay registers are address pointers. They are not
updated.

• Addition index register addressing: The Ax and Ay registers are address pointers. The values
of the Ix and Iy registers are added to the Ax and Ay registers respectively after data transfer
(post-increment).

• Increment address register addressing: The Ax and Ay registers are address pointers. +2 is
added to them after data transfer (post-increment).

Each of the address pointers has an index register. Register R8 becomes the index register (Ix) for
the X memory address register (Ax); register R9 becomes the index register (Iy) for the Y memory
address register (Ay).

X and Y data transfer instructions are processed in words. X and Y data memory is accessed in 16
bit units. Increment processing for that purpose adds two to the address register. To decrement
them, set -2 in the index register and specify addition index register addressing. For X and Y data
addressing, only bits 1 to 15 of the address pointer are valid. When performing X and Y data
addressing, make sure to write 0 to bit 0 of the address pointer and index register.

Figure 4.1 shows the X and Y data transfer addressing. With using the X or Y bus to access X
memory or Y memory, Ax (R4 or R5) and Ay (R6 or R7) upper reads [?? words] are ignored.
Also, the results of XX AY+, XX Ay + Iv are stored in the lower word of Ay, and the previous
value of the upper word is retained.

ALU AU*1

R8[Ix] R4[Ax]

R5[Ax]

R9[Iy] R6[Ay]

R7[Ay]
+2 (INC) +2 (INC)
+0 (No update) +0 (No update)

Notes: 1.
2.

Adder added for DSP processing
All three addressing methods (increment, index register addition (Ix, Iy), and
no update) are post-increment methods. To decrement the address pointer, set
the index register to –2 or –4.

Figure 4.1 X and Y Data Transfer Addressing

35

4.5.2 Single Data Addressing

The DSP command has single data transfer instructions (MOVS.W and MOVS.L) that load data
to DSP registers and store data from DSP registers. With these instructions, the R2–R5 registers
are used as address registers (As) for single data transfers.

There are four types of data addressing for single data transfer instructions.

• Address registers with no update: The As register is the address pointer. It is not updated.

• Addition index register addressing: The As register is the address pointer. The value of the Is
register is added to the As register after data transfer (post-increment).

• Increment address register addressing: The As register is the address pointer. +2 or +4 is added
to it after data transfer (post-increment).

• Decrement address register addressing: The As register is the address pointer. –2 or –4 (or +2
or +4) is added to it before data transfer (pre-decrement).

The address pointer uses the R8 register as its index register (Is). Figure 4.2 shows the single data
transfer addressing.

ALU

R8[Is] R4[As]

R5[As]

+2/+4 (INC)
+0 (No update)

Note: There are four addressing methods (no update, index register addition (Is),
 increment, and decrement). Index register addition and increment are
 post-increment methods. Decrement is a pre-decrement method.

R3[As]

R2[As]

–2/–4 (DEC)

Figure 4.2 Single Data Transfer Addressing

36

4.5.3 Modulo Addressing

Like other DSPs, the SH-DSP has a modulo addressing mode. Address registers are updated in the
same way in this mode. When a modulo end address in which the address pointer value is already
set is reached, the address pointer becomes the modulo start address.

Modulo addressing is only effective for X and Y data transfer instructions (MOVX.W and
MOVY.W). When the DMX bit of the SR register is set, the X address register enters modulo
addressing mode; when the DMY bit is set, the Y address register enters modulo addressing mode.
Modulo addressing cannot be used on both X and Y address registers at once. Accordingly, do not
set DMX and DMY at the same time. Should they both be set at once, only DMY will be valid.

The MOD register is provided for specifying the start and end addresses for the modulo address
area. The MOD register stores the MS (modulo start) and ME (modulo end). The following shows
how to use the modulo register (MS and ME).

MOV.L ModAddr,Rn; Rn=ModEnd, ModStart

LDC Rn,MOD; ME=ModEnd, MS=ModStart

ModAddr: .DATA.WmEnd; Lower 16bit of ModEnd

.DATA.W mStart; Lower 16bit of ModStart

ModStart: .DATA

 :

ModEnd: .DATA

Set the start and end addresses in MS and ME and then set the DMX or DMY bit to 1. The address
register contents are compared to ME. If they match ME, the start address MS is stored in the
address register. The bottom 16 bits of the address register are compared to ME. The maximum
modulo size is 64 kbytes. This is ample for accessing the X and Y data memory. Figure 4.3 shows
a block diagram of modulo addressing.

37

Instruction (MOVX/MOVY)

DMX

CONT

MS

CMP

ME

ALU AU

ABx ABy

R4[Ax] R6[Ay]

R5[Ax] R7[Ay]R8[Ix] R9[Iy]

DMY

31 0

0 0

0

0

0

16 16

15 15 15

31 31

31

+2
+0

+2
+0

15 15

1 1

XAB YAB

15

Figure 4.3 Modulo Addressing

The following is an example of modulo addressing.

MS=H'C008; ME=H'C00C; R4=H'C008;

DMX=1; DMY=0; (Sets modulo addressing for address register Ax (R4, R5))

The above setting changes the R4 register as shown below.

R4: H'C008

Inc. R4: H'C00A

Inc. R4: H'C00C

Inc. R4: H'C008 (Becomes the modulo start address when the modulo end address is
reached)

Place data so the top 16 bits of the modulo start and end address are the same, since the modulo
start address only swaps the bottom 16 bits of the address register.

Note: When using addition index as the DSP data addressing, the address pointer may exceed
this value without matching ME. Should this occur, the address pointer will not return to
the modulo start address.

4.5.4 DSP Addressing Operation

The following shows how DSP addressing works in the execution stage (EX) of a pipeline
(including modulo addressing).

38

if (Operation is MOVX.W MOVY.W) {

ABx=Ax; ABy=Ay’

/* memory access cycle uses Abx and Aby. The addresses to be used have
not been updated */

/* Ax is one of R4,5 */

if (DMX==0 || DMX==1 @@ DMY==1)} Ax=Ax+(+2 or R8[Ix} or +0);

/* Inc,Index,Not-Update */

else if (!not-update) Ax=modulo(Ax, (+2 or R8[Ix]));

/* Ay is one of R6,7 */

if (DMY==0) Ay=Ay+(+2 or R9[Iy] or +0; /* Inc,Index,Not-Update */

else if (! not-update) Ay=modulo(Ay, (+2 or R9[Iy]));

}

else if (Operation is MOVS.W or MOVS.L) {

if (Addressing is Nop, Inc, Add-index-reg) {

MAB=As;

/* memory access cycle uses MAB. The address to be used has not been
updated */

/* As is one of R2–5 */

As=As+(+2 or +4 or R8[Is] or +0); /* Inc.Index,Not-Update */

else { /* Decrement, Pre-update */

/* As is one of R2–5 */

As=As+(–2 or –4);

MAB=As

/* memory access cycle uses MAB. The address to be used has been updated
*/

}

/* The value to be added to the address register depends on addressing
operations.

For example, (+2 or R8[Ix] or +0) means that

+2: if operation is increment

R8[Ix}: if operation is add-index-reg

+0: if operation is not-update

/*

function modulo (AddrReg, Index) {

39

if (AdrReg[15:0]==ME) AdrReg[15:0]==MS;

else AdrReg=AdrReg+Index

return AddrReg;

}

4.6 Instruction Formats for DSP Instructions

New instructions have been added to the SH-DSP for use in digital signal processing. The new
instructions are divided into two groups.

• Double and single data transfer instructions for memory and DSP registers (16 bits)

• Parallel processing instructions processed by the DSP unit (32 bits)

Figure 4.4 shows their instruction formats.

CPU core
instructions

0 0 0 0
to

1 1 1 0

Double data
transfer instructions

Single data
transfer instructions

Parallel processing
instructions B field

A field

A field

A field

1 1 1 1 0 0

1 1 1 1 0 1

1 1 1 1 1 0

15

15

15

15

0

0

0

031

10

10

9

9

1626 25

Figure 4.4 Instruction Formats of DSP Instructions

4.6.1 Double and Single Data Transfer Instructions

Table 4.11 shows the instruction formats for double data transfer instructions. Table 4.12 shows
the instruction formats for single data transfer instructions

40

Table 4.11 Instruction Formats for Double Data Transfers

Category Mnemonic 15 14 13 12 11 10 9 8

X memory NOPX 1 1 1 1 0 0 0
data transfers MOVX.W @Ax,Dx

MOVX.W @Ax+,Dx
MOVX.W @Ax+Ix,Dx

Ax

MOVX.W Da,@Ax
MOVX.W Da,@Ax+
MOVX.W Da,@Ax+Ix

Y memory NOPY 1 1 1 1 0 0 0
data transfers MOVY.W @Ay,Dy

MOVY.W @Ay+,Dy
MOVY.W @Ay+Iy,Dy

Ay

MOVY.W Da,@Ay
MOVY.W Da,@Ay+
MOVY.W Da,@Ay+Iy

Table 4.11 Instruction Formats for Double Data Transfers (cont)

Category Mnemonic 7 6 5 4 3 2 1 0

X memory NOPX 0 0 0 0
data transfers MOVX.W @Ax,Dx

MOVX.W @Ax+,Dx
MOVX.W @Ax+Ix,Dx

Dx 0 0
1
1

1
0
1

MOVX.W Da,@Ax
MOVX.W Da,@Ax+
MOVX.W Da,@Ax+Ix

Da 1 0
1
1

1
0
1

Y memory NOPY 0 0 0 0
data transfers MOVY.W @Ay,Dy

MOVY.W @Ay+,Dy
MOVY.W @Ay+Iy,Dy

Dy 0 0
1
1

1
0
1

MOVY.W Da,@Ay
MOVY.W Da,@Ay+
MOVY.W Da,@Ay+Iy

Da 1 0
1
1

1
0
1

Ax: 0=R4, 1=R5 Ay: 0=R6, 1=R7 Dx: 0=X0, 1=X1 Dy: 0=Y0, 1=Y1 Da: 0=A0, 1=A1

41

Table 4.12 Instruction Formats for Single Data Transfers

Category Mnemonic 15 14 13 12 11 10 9 8

Single data
transfer

MOVS.W @–As,Ds
MOVS.W @As,Ds
MOVS.W @As+,Ds
MOVS.W @As+Is,Ds

1 1 1 1 0 1 As
0: R4
1: R5
2: R2

MOVS.W Ds,@A–s
MOVS.W Ds,@As
MOVS.W Ds,@As+
MOVS.W Ds,@As+Is

3: R3

MOVS.L @–As,Ds
MOVS.L @As,Ds
MOVS.L @As+,Ds
MOVS.L @As+Is,Ds

MOVS.L Ds,@A–s
MOVS.L Ds,@As
MOVS.L Ds,@As+
MOVS.L Ds,@As+Is

Table 4.12 Instruction Formats for Single Data Transfers (cont)

Category Mnemonic 7 6 5 4 3 2 1 0

Single data
transfer

MOVS.W @–As,Ds
MOVS.W @As,Ds
MOVS.W @As+,Ds
MOVS.W @As+Is,Ds

Ds 0: (*)
1: (*)
2: (*)
3: (*)

0
0
1
1

0
1
0
1

0 0

MOVS.W Ds,@A–s
MOVS.W Ds,@As
MOVS.W Ds,@As+
MOVS.W Ds,@As+Is

4: (*)
5: A1
6: (*)
7: A0

0
0
1
1

0
1
0
1

0 1

MOVS.L @–As,Ds
MOVS.L @As,Ds
MOVS.L @As+,Ds
MOVS.L @As+Is,Ds

8: X0
9: X1
A: Y0
B: Y1

0
0
1
1

0
1
0
1

1 0

MOVS.L Ds,@A–s
MOVS.L Ds,@As
MOVS.L Ds,@As+
MOVS.L Ds,@As+Is

C: M0
D: A1G
E:M1
F:A0G

0
0
1
1

0
1
0
1

1 1

Note: System reserved code

42

4.6.2 Parallel Processing Instructions

Parallel processing instructions are used by the SH-DSP to increase the execution efficiency of
digital signal processing using the DSP unit. They are 32 bits long and four can be processed in
parallel (one ALU operation, one multiplication, and two data transfers).

Parallel processing instructions are divided into two fields, A and B. The data transfer instructions
are defined in field A and the ALU operation instruction and multiplication instruction are defined
in field B. These instructions can be defined independently, processed independently, and can be
executed simultaneously in parallel. Table 4.13 lists the field A parallel data transfer instructions;
figure 4.14 shows the field B ALU operation instructions and multiplication instructions. The field
A instructions are identical to the double data transfer instructions shown in Table 4.11.

Table 4.13 Field A Parallel Data Transfer Instructions

Category Mnemonic 31 30 29 28 27 26 25 24 23

X memory NOPX 1 1 1 1 1 0 0 0
data
transfers

MOVX.W @Ax,Dx
MOVX.W @Ax+,Dx
MOVX.W @Ax+Ix,Dx

Ax Dx

MOVX.W Da,@Ax
MOVX.W Da,@Ax+
MOVX.W Da,@Ax+Ix

Da

Y memory NOPY 0
data
transfers

MOVY.W @Ay,Dy
MOVY.W @Ay+,Dy
MOVY.W @Ay+Iy,Dy
MOVY.W Da,@Ay
MOVY.W Da,@Ay+
MOVY.W Da,@Ay+Iy

Ay

43

Table 4.13 Field A Parallel Data Transfer Instructions (cont)

Category Mnemonic 22 21 20 19 18 17 16 15–0

X memory NOPX 0 0 0 Field B
data
transfers

MOVX.W @Ax,Dx
MOVX.W @Ax+,Dx
MOVX.W @Ax+Ix,Dx

0 0
1
1

1
0
1

MOVX.W Da,@Ax
MOVX.W Da,@Ax+
MOVX.W Da,@Ax+Ix

1 0
1
1

1
0
1

Y memory NOPY 0 0 0 0
data
transfers

MOVY.W @Ay,Dy
MOVY.W @Ay+,Dy
MOVY.W @Ay+Iy,Dy

Dy 0 0
1
1

1
0
1

MOVY.W Da,@Ay
MOVY.W Da,@Ay+
MOVY.W Da,@Ay+Iy

Da 1 0
1
1

1
0
1

Ax: 0=R4, 1=R5 Ay: 0=R6, 1=R7 Dx: 0=X0, 1=X1 Dy: 0=Y0, 1=Y1 Da: 0=A0, 1=A1

44

Category Mnemonic 14 13 12 10 9 8 7 6 5 4 3 2 1 015
Dz0 0 0

0 0 0

–16 ≤ imm ≤ +16

– 32 ≤ imm ≤ +32

0

1

0 Se Sf Sx Sy Dg Du

0 0 0

0 0 1

0 1 0

00 1 1

10 1 1

01 0 0 00 0 Dz

0: (*1)

1: (*1)
2: (*1)

3: (*1)
4: (*1)
5: A1
6: (*1)
7: A0
8: X0
9: X1
A: Y0
B: Y1
C: M0
D: (*1)
E: M1
F: (*1)

0

00 10

00 01

10

10

10

01

01

01

11

11

11

00 11
10
01
11

1 0:X0
1:X1
2:Y0
3:A1

0:X0
1:X1
2:A0
3:A1

0:X00:Y0
1:Y1
2:X0
3:A1

0:Y0 0:M0
1:Y01:Y1 1:M1
2:A02:M0 2:A0
3:A13:M1 3:A1

0 1 0

PSHL #imm, Dz
PSHA #imm, Dz

PMULS Se, Sf, Dg

Reserved

Reserved

Reserved

Reserved

PWSB Sx, Sy, Dz
PWAD Sx, Sy, Dz

PABS Sx, Dz
PRND Sx, Dz

PRND Sy, Dz
PABS Sy, Dz

Reserved

PSUBC Sx, Sy, Dz
PADDC Sx, Sy, Dz

PCMP Sx, Sy

PSUB Sx, Sy, Du
PMULS Se, Sf, Dg

PADD Sx, Sy, Du
PMULS Se, Sf, Dg

imm. shift

Six
operand
parallel

instruction

Three
operand

instructions

31–27 25–1626
1 0 Field A

11
0

0
1

A B C D E

Figure 4.5 Field B ALU Operation Instructions and Multiplication Instructions

45

Category

A

Mnemonic 14 13 12 10 9 8 7 6 5 4 3 2 1 015

1 1

0001 00
10
01
11

00 10
10
01
11
00 01

10
01
11

00 11
10
01

11
00 01
10
01
11

00 1 if cc1

0*3
0 0

10

01
11

Reserved

Reserved

Reserved

Reserved

Reserved

(if cc)*1 PSHL Sx, Sy, Dz
(if cc) PSHA Sx, Sy, Dz
(if cc) PSUB Sx, Sy, Dz
(if cc) PADD Sx, Sy, Dz

(if cc) PAND Sx, Sy, Dz
(if cc) PXOR Sx, Sy, Dz
(if cc) POR Sx, Sy, Dz
(if cc) PDEC Sx, Dz

(if cc) PDEC Sy, Dz
(if cc) PINC Sx, Dz

(if cc) PINC Sy, Dz

(if cc) PCLR Dz
(if cc) PDMSB Sx, Dz

(if cc) PDMSB Sy, Dz
(if cc) PNEG Sx, Dz

(if cc) PNEG Sy, Dz
(if cc) PCOPY Sx, Dz

(if cc) PCOPY Sy, Dz

(if cc) PSTS MACH, Dz
(if cc) PSTS MACL, Dz

(if cc) PLDS Dz, MACL
(if cc) PLDS Dz, MACH

Conditional
three

operand
instructions

0 0

if cc1 0 Field A Sx
0:X0
1:X1
2:Y0
3:Y1

Sy
0:Y0
1:Y1
2:M0
3:M1

Dz
0:(*1)
1:(*1)
2:(*1)
3:(*1)
4:(*1)
5:A1
6:(*1)
7:A0
8:X0
9:X1
A:Y0
B:Y1
C:M0
D:(*1)
E:M1
F:(*1)

10:DCT

11:DCF

01*2

31–27 25–1626

1 1

11

Notes: 1.

2.
3.

[if cc]: DCT (DC bit true), DCF (DC bit false), or none (unconditional
instruction)
Unconditional
System reserved code

B C D E

Figure 4.5 Field B ALU Operation Instructions and Multiplication Instructions (cont)

46

4.7 ALU Fixed Decimal Point Operations

4.7.1 Function

ALU fixed decimal point operations basically work with a 32-bit unit to which 8 guard bits are
added for a total of 40 bits. When the source operand is a register without guard bits, the register’s
sign bit is extended and copied to the guard bits. When the destination operand is a register
without guard bits, the lower 32 bits of the operation result are stored in the destination register.

ALU fixed decimal point operations are performed between registers. The source and destination
operands are selected independently from the DSP register. When there are guard bits in the
selected register, the operation is also executed on the guard bits. These operations are executed in
the DSP stage (the last stage) of the pipeline.

Whenever an ALU arithmetic operation is executed, the DSR register’s DC, N, Z, V, and GT bits
are updated by the operation result. For conditional instructions, however, condition bits are not
updated even when the specified condition is achieved. For unconditional instructions, the bits are
updated according to the operation result.

The condition reflected in the DC bit is selected with the CS[2:0] bits. The DC bits of the PADDC
and PSUB instructions, however, are updated regardless of the CS bit settings. In the PADDC
instruction, it is updated as a carry flag; in the PSUB instruction, it is updated as a borrow flag.

Figure 4.6 shows the ALU fixed decimal point operation flowchart.

31 0

31

31

0

0

ALU GT VNZ DC

DSR

Source 1 Source 2

Destination

Guard bitsGuard bits

Guard bits

Figure 4.6 ALU Fixed Decimal Point Operation Flowchart

47

When the memory read destination operand is the same as the ALU operation source operand and
the data transfer instruction program is written on the same line as the ALU operation, data loaded
from memory in the memory access stage (MA) cannot be used as the source operand of the ALU
operation instruction. When this occurs, the result of the instruction executed first is used as the
source operand of the ALU operation and is updated as the destination operand of the data load
instruction thereafter. Figure 4.7 is a flowchart of the operation.

1 2 3 4 5 6

MOVX

MOVX,
ADD

IF ID

IF ID

EX (ad-
dressing)

EX (ad-
dressing)

MA
(MOVX)

MA
(MOVX)

DSP
(nop)

DSP
(ADD)

MOVX.W @ R4+R8, X0
MOVX.W @ R4+, X0PADD X0, Y0, A0

Slot

The result of the previous step is used.

Figure 4.7 Sample Processing Flowchart

4.7.2 Instructions and Operands

Table 4.14 shows the types of ALU fixed decimal point arithmetic operations. Table 4.15 shows
the correspondence between the operands and registers.

48

Table 4.14 Types of ALU Fixed Decimal Point Arithmetic Operations

Mnemonic Function Source 1 Source 2 Destination

PADD Addition Sx Sy Dz (Du)

PSUB Subtraction Sx Sy Dz (Du)

PADDC Addition with carry Sx Sy Dz

PSUBC Subtraction with borrow Sx Sy Dz

PCMP Compare Sx Sy —

PCOPY Copy data Sx — Dz

— Sy Dz

PABS Absolute value Sx — Dz

— Sy Dz

PNEG Invert sign Sx — Dz

— Sy Dz

PCLR Zero clear — — Dz

Table 4.15 Correspondence between Operands and Registers for ALU Fixed Decimal Point
Arithmetic Operations

Operand X0 X1 Y0 Y1 M0 M1 A0 A1

Sx Yes*1 Yes Yes Yes

Sy Yes Yes Yes Yes

Dz Yes Yes Yes Yes Yes Yes Yes Yes

Du*2 Yes Yes Yes Yes

Notes: 1. Yes: Register can be used with operand.
2. Du: Operand when used in combination with multiplication.

4.7.3 DC Bit

The DC bit is set as follows depending on the specification of the CS0-CS2 bits (condition select
bits) of the DSR register.

49

Carry/Borrow Mode: CS2–CS0 = 000: The DC bit indicates whether a carry or borrow has
occurred from the MSB of the operation result. The guard bits have no affect on this. This mode is
the default. Figure 4.8 shows examples when carries and borrows occur.

0000 0000 1111 1111 1111 1111
0000 0000 0000 0000 0000 0001
0000 0001 0000 0000 0000 0000

+)
1111 1111 0111 0000 0000 0000
0011 1111 0001 0000 0000 0000
0011 1110 1000 0000 0000 0000

+)
(1)

0000 0000 0000 0000 0000 0001
0000 0000 0000 0000 0000 0001
0000 0000 0000 0000 0000 0000

–)
0000 0000 0001 0000 0000 0001
0000 0000 0001 0000 0000 0010
1111 1111 1111 1111 1111 1111

–)

Guard bits

Guard bits Guard bits

Guard bits

Example 1: Carry Example 2: Carry

Example 3: Borrow Example 4: Borrow

Position where
carry is detected

Position where
carry is detected

Position where
borrow is detected

Position where
borrow is detected

Figure 4.8 Examples of Carries and Borrows

Negative Mode: CS2–CS0 = 001: In this mode, the DC bit is the same as the MSB of the
operation result. When a result is negative, the DC bit is 1. When the result is positive, the DC bit
is 0. ALU arithmetic operations are always done in 40 bits. The sign bit indicating positive or
negative is thus the MSB included in the guard bits of the operation result rather than the MSB of
the destination operand. Figure 4.9 shows an example of distinguishing negative from positive. In
this mode, the DC bit has the same value as the condition bit N.

1100 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0001
1100 0000 0000 0000 0000 0001

+)
0011 0000 0000 0000 0000 0000
0000 0000 1000 0000 0000 0001
0011 0000 1000 0000 0000 0001

+)

Guard bits Guard bits

Example 1: Negative Example 2: Positive

Sign bit Sign bit

Figure 4.9 Distinguishing Negative and Positive

50

Zero Mode: CS2–CS0 = 010: The DC bit indicates whether the operation result is zero. When it
is, the DC bit is 1. When the operation result is nonzero, the DC bit is 0. In this mode, the DC bit
has the same value as the condition bit Z.

Overflow Mode: CS2–CS0 = 011: The DC bit indicates whether the operation result has caused
an overflow. When the operation result without the guard bits has exceeded the bounds of the
destination register, the DC bit is set to 1. The DC bit considers there to be no guard bits, which
makes it an overflow even when there are guard bits. This means that the DC bit is always set to 1
when large numbers use guard bits. In this mode, the DC bit has the same value as the condition
bit V. Figure 4.10 shows an example of distinguishing overflows.

1111 1111 1111 1111 1111 1111
1111 1111 1000 0000 0000 0000
1111 1111 0111 1111 1111 1111

+)
1111 1111 1111 1111 1111 1111
1111 1111 1000 0000 0000 0001
1111 1111 1000 0000 0000 0000

+)

Guard bits Guard bits

Example 1: Overflow Example 2: No overflow

Overflow detection range Overflow detection range

Figure 4.10 Distinguishing Overflows

Signed Greater Than Mode: CS2–CS0 = 100: The DC bit indicates whether the source 1 data
(signed) is greater than the source 2 data (signed) in the result of a comparison instruction PCMP.
For that reason, the PCMP instruction is executed before checking the DC bit in this mode. When
the source 1 data is larger than the source 2 data, the result of the comparison is positive, so this
mode becomes similar to the negative mode. When the source 1 data is larger than the source 2
data and the bounds of the destination operand are exceeded, however, the sign of the result of the
comparison becomes negative. The DC bit is updated. In this mode, the DC bit has the same value
as the condition bit GT. The equation shown below defines the DC bit in this mode. However, VR
becomes a positive value when the result including the guard bit area exceeds the display range of
the destination operand.

DC bit = ~ {(N bit ^ VR)|Z bit}

When the PCMP instruction is executed in this mode, the DC bit becomes the same value as the T
bit that indicates the result of the SH core’s CMP/GT instruction. In this mode, the DC bit is
updated according to the above definition for instructions other than the PCMP instruction as well.

Signed Greater Than or Equal to Mode: CS2–CS0 = 101: The DC bit indicates whether or not
the source 1 data (signed) is greater than or equal to the source 2 data (signed) in the result of the
execution of a comparison instruction PCMP. For that reason, the PCMP instruction is executed
before checking the DC bit in this mode. This mode is similar to the Signed Greater Than mode
except for checking if the operands are the same. The equation shown below defines the DC bit in

51

this mode. However, VR becomes a positive value when the result, including the guard bit area,
exceeds the display range of the destination operand.

DC bit = ~ (N bit ^ VR)

When the PCMP instruction is executed in this mode, the DC bit becomes the same value as the T
bit that indicates the result of the SuperH core’s CMP/GE instruction. In this mode, the DC bit is
updated according to the above definition for instructions other than the PCMP instruction as well.

4.7.4 Condition Bits

The condition bits are set as follows:

• The N (negative) bit has the same value as the DC bit when the CS bits specify negative mode.
When the operation result is negative, the N bit is 1. When the operation result is positive, the
N bit is 0.

• The Z (zero) bit has the same value as the DC bit when the CS bits specify zero mode. When
the operation result is zero, the Z bit is 1. When the operation result is nonzero, the Z bit is 0.

• The V (overflow) bit has the same value as the DC bit when the CS bits specify overflow
mode. When the operation result exceeds the bounds of the destination register without the
guard bits, the V bit is 1. Otherwise, the V bit is 0.

• The GT (greater than) bit has the same value as the DC bit when the CS bits specify Signed
Greater Than mode. When the comparison result indicates the source 1 data is greater than the
source 2 data, the GT bit is 1. Otherwise, the GT bit is 0.

4.7.5 Overflow Prevention Function (Saturation Operation)

When the S bit of the SR register is set to 1, the overflow prevention function is engaged for the
ALU fixed decimal point arithmetic operation executed by the DSP unit. When the operation
result overflows, the maximum (positive) or minimum (negative) value is stored.

4.8 ALU Integer Operations

ALU integer operations are basically 24-bit operations on the top word (the top 16 bits, or bits 16
through 31) and 8 guard bits. In ALU integer operations, the bottom word of the source operand
(the bottom 16 bits, or bits 0–15) is ignored and the bottom word of the destination operand is
cleared with zeros. When the source operand has no guard bits, the sign bit is extended to fill the
guard bits. When the destination operand has no guard bits, the top word of the operation result
(not including the guard bits) are stored in the top word of the destination register.

Integer operations are basically the same as ALU fixed decimal point arithmetic operations. There
are only two types of integer operation instructions, increment and decrement, which change the
second operand by +1 or –1. 16 bits of integer data (word data) is loaded to the DSP register and

52

stored in the top word. The operation is performed using the top word in the DSP register. When
there are guard bits, they are valid as well. These operations are executed in the DSP stage (the last
stage) of the pipeline.

Whenever an ALU integer arithmetic operation is executed, the DSR register’s DC, N, Z, V, and
GT bits are basically updated by the operation result. This is the same as for ALU fixed decimal
point operations.

For conditional instructions, condition bits and flags are not updated even when the specified
condition is achieved and the instruction executed. For unconditional instructions, the bits are
always updated according to the operation result. Figure 4.11 shows the ALU integer operation
flowchart.

31 0

31

31

0

0

ALU GT VNZ DC

DSR

: Cleared to 0

Guard bits Guard bits

Guard bits : Ignored

Destination

Source 1 Source 2

Figure 4.11 ALU Integer Operation Flowchart

53

Table 4.16 lists the types of ALU integer operations. Table 4.17 shows the correspondence
between the operands and registers.

Table 4.16 Types of ALU Integer Operations

Mnemonic Function Source 1 Source 2 Destination

PINC Increment by 1 Sx (+1) Dz

(+1) Sy Dz

PDEC Decrement by 1 Sx (–1) Dz

(–1) Sy Dz

Table 4.17 Correspondence between Operands and Registers for ALU Integer Operations

Operand X0 X1 Y0 Y1 M0 M1 A0 A1

Sx Yes Yes Yes Yes

Sy Yes Yes Yes Yes

Dz Yes Yes Yes Yes Yes Yes Yes Yes

Note: Yes: Register can be used with operand.

When the S bit of the SR register is set to 1, the overflow prevention function (saturation
operation) is engaged. The overflow prevention function can be specified for ALU integer
arithmetic operations executed by the DSP unit. When the operation result overflows, the
maximum (positive) or minimum (negative) value is stored.

4.9 ALU Logical Operations

4.9.1 Function

ALU logical operations are performed between registers. The source and destination operands are
selected independently from the DSP register. These operations use only the top word of the
respective operands. The bottom word of the source operand and the guard bits are ignored and the
bottom word of the destination operand and guard bits are cleared with zeros. These operations are
executed in the DSP stage (the last stage) of the pipeline.

Whenever an ALU arithmetic operation is executed, the DSR register’s DC, N, Z, V, and GT bits
are basically updated by the operation result. For conditional instructions, condition bits and flags
are not updated even when the specified condition is achieved and the instruction executed. For
unconditional instructions, the bits are always updated according to the operation result. The DC
bit is updated as specified in the CS bits. Figure 4.12 shows the ALU logical operation flowchart.

54

31 0

31

31

0

0

ALU GT VNZ DC

DSR

: Cleared to 0

: Ignored

Source 1 Source 2

Guard bits

Guard bits

Guard bits

Destination

Figure 4.12 ALU Logical Operation Flowchart

4.9.2 Instructions and Operands

Table 4.18 lists the types of ALU logical arithmetic operations. Table 4.19 shows the
correspondence between the operands and registers, which is the same as for ALU fixed decimal
point operations.

Table 4.18 Types of ALU Logical Arithmetic Operations

Mnemonic Function Source 1 Source 2 Destination

PAND AND Sx Sy Dz

POR OR Sx Sy Dz

PXOR Exclusive OR Sx Sy Dz

Table 4.19 Correspondence between Operands and Registers for ALU Logical Arithmetic
Operations

Operand X0 X1 Y0 Y1 M0 M1 A0 A1

Sx Yes Yes Yes Yes

Sy Yes Yes Yes Yes

Dz Yes Yes Yes Yes Yes Yes Yes Yes

Note: Yes: Register can be used with operand.

55

4.9.3 DC Bit

The DC bit is set in logical operations as follows:

Carry/Borrow Mode: CS2–CS0 = 000: The DC bit is always 0.

Negative Mode: CS2–CS0 = 001: In this mode, the DC bit is the same as the bit 31 of the
operation result. In this mode, the DC bit has the same value as bit N.

Zero Mode: CS2–CS0 = 010: The DC bit is 1 when the operation result is zero; otherwise, the
DC bit is 0. In this mode, the DC bit has the same value as bit Z.

Overflow Mode: CS2–CS0 = 011: The DC bit is always 0. In this mode, the DC bit has the same
value as bit V.

Signed Greater Than Mode: CS2–CS0 = 100: The DC bit is always 0. In this mode, the DC bit
has the same value as bit GT.

Signed Greater Than or Equal to Mode: CS2–CS0 = 101: The DC bit is always 0.

4.9.4 Condition Bits

The condition bits are set as follows.

• The N bit is the value of bit 31 of the operation result.

• The Z bit is 1 when the operation result is zero; otherwise, the Z bit is 0.

• The V bit is always 0.

• The GT bit is always 0.

4.10 Fixed Decimal Point Multiplication

Multiplication in the DSP unit is between signed single-length operands. It is processed in one
cycle. When double-length multiplication is needed, use the SuperH RISC engine’s double-length
multiplication.

Basically, the operation result for multiplication is 32 bits. When a register that has guard bits is
specified as the destination operand, it is sign-extended.

In the DSP unit, multiplication is a fixed decimal point arithmetic operation, not an integer
operation. This means the top words of the constant and multiplicand are entered into the MAC
operator. In SuperH RISC engine multiplication, the bottom words of the two operands are entered
into the MAC operator. The operation result thus is different from the SuperH RISC engine. The
SuperH RISC engine operation result is matched to the LSB of the destination, while the fixed

56

decimal point multiplication operation result is matched to the MSB. The LSB of the operation
result in fixed decimal point multiplication is thus always 0.

Figure 4.13 shows a flowchart of fixed decimal point multiplication.

31 0

31

31

0

0

0S

0

MAC

Guard bits

Guard bits Guard bits

: Ignored

Destination

Figure 4.13 Fixed Decimal Point Multiplication Flowchart

Table 4.20 shows the fixed decimal point multiplication instruction. Table 4.21 shows the
correspondence between the operands and registers.

Table 4.20 Fixed Decimal Point Multiplication

Mnemonic Function Source 1 Source 2 Destination

PMULS Signed multiplication Se Sf Dg

Table 4.21 Correspondence between Operands and Registers for Fixed Decimal Point
Multiplication

Operand X0 X1 Y0 Y1 M0 M1 A0 A1

Se Yes Yes Yes Yes

Sf Yes Yes Yes Yes

Dg Yes Yes Yes Yes

Note: Yes: Register can be used with operand.

DSP unit fixed decimal point multiplication completes a single-length 16 bit × 16 bit operation in
one cycle. Other multiplication is the same as in the SuperH RISC engines.

57

Multiplication instructions do not update the DC, N, Z, V, GT, or any condition bit of the DSR
register.

The overflow prevention function is valid for DSP unit multiplication. Specify it by setting the S
bit of the SR register is set to 1. When an overflow or underflow occurs, the operation result value
is the maximum or minimum value respectively. In DSP unit fixed decimal point multiplication,
overflows only occur for H'8000 × H'8000 ((–1.0) × (–1.0)). When the S bit is 0, the operation
result is H'80000000, which means –1.0 rather than the correct answer of +1.0. When the S bit is
1, the overflow prevention function is engaged and the result is H'007FFFFFFF.

4.11 Shift Operations

The amount of shift in shift operations is specified either through a register or using a direct
immediate value. Other source operands and destination operands are registers. There are two
types of shift operations: arithmetic and logical. Table 4.22 shows the operation types. The
correspondence between operands and registers is the same as for ALU fixed decimal point
operations, except for immediate operands. The correspondence is shown in table 4.23.

Table 4.22 Types of Shift Operations

Mnemonic Function Source 1 Source 2 Destination

PSHA Sx, Sy, Dz Arithmetic shift Sx Sy Dz

PSHL Sx, Sy, Dz Logical shift Sx Sy Dz

PSHA #imm, Dz Arithmetic shift with
immediate data

Dz imm1 Dz

PSHL #imm, Dz Logical shift with immediate
data

Dz imm1 Dz

–32 ≤ imm1 ≤ +32, –16 ≤ imm2 ≤ +16

Table 4.23 Correspondence between Operands and Registers for Shift Operations

Operand X0 X1 Y0 Y1 M0 M1 A0 A1

Sx Yes Yes Yes Yes

Sy Yes Yes Yes Yes

Dz Yes Yes Yes Yes Yes Yes Yes Yes

Note: Yes: Register can be used with operand.

58

4.11.1 Arithmetic Shift Operations

Function: ALU arithmetic shift operations basically work with a 32-bit unit to which 8 guard bits
are added for a total of 40 bits. ALU fixed decimal point operations are basically performed
between registers. When the source operand has no guard bits, the register’s sign bit is copied to
the guard bits. When the destination operand has no guard bits, the lower 32 bits of the operation
result are stored in the destination register.

In arithmetic shifts, all bits of the source 1 operand and destination operand are valid. The source 2
operand, which specifies the shift amount, is integer data. The source 2 operand is specified as a
register or immediate operand. The valid amount of shift is –32 to +32. Negative values are shifts
to the right; positive values are shifts to the left. Between –64 and +63 can be specified for the
source 2 operand, but only –32 to +32 is valid. When an invalid number is specified, the results
cannot be guaranteed. When an immediate value is specified for the shift amount, the source 1
operand must be the same as the destination operand. The action of the operation is the same as for
fixed decimal point operations and is executed in the DSP stage (the last stage) of the pipeline.

Whenever an arithmetic shift operation is executed, the DSR register’s DC, N, Z, V, and GT bits
are basically updated by the operation result. This is the same as for ALU fixed decimal point
operations. For conditional instructions, condition bits are not updated even when the specified
condition is achieved and the instruction executed. For unconditional instructions, the bits are
always updated according to the operation result.

Figure 4.14 shows the arithmetic shift operation flowchart.

7g 0g 31 16 15 0
0

≥ 0 < 0

+32 to –32

7g 0g 31 23 22 1615 0

6 0
imm1

7g 0g 31 16 15 0

Dz GT DCZ N V

DSR

Left shift Right shift

Shift outShift out
(Copy MSB)

Shift amount data
(source 2)

Update

: Ignored

Figure 4.14 Arithmetic Shift Operation Flowchart

59

DC Bit: The DC bit is set as follows depending on the mode specified by the CS bits:

• Carry/Borrow Mode: CS2–CS0 = 000: The DC bit is the operation result, the value of the bit
pushed out by the last shift.

• Negative Mode: CS2–CS0 = 001: Set to 1 for a negative operation result and 0 for a positive
operation result. In this mode, the DC bit has the same value as bit N.

• Zero Mode: CS2–CS0 = 010: The DC bit is 1 when the operation result is zero; otherwise, the
DC bit is 0. In this mode, the DC bit has the same value as bit Z.

• Overflow Mode: CS2–CS0 = 011: The DC bit is set to 1 by an overflow. In this mode, the DC
bit has the same value as bit V.

• Signed Greater Than Mode: CS2–CS0 = 100: The DC bit is always 0. In this mode, the DC bit
has the same value as bit GT.

• Signed Greater Than or Equal To Mode: CS2–CS0 = 101: The DC bit is always 0.

Condition Bits: The condition bits are set as follows:

• The N bit is the same as the result of the ALU fixed decimal point arithmetic operation. It is set
to 1 for a negative operation result and 0 for a positive operation result.

• The Z bit is the same as the result of the ALU fixed decimal point arithmetic operation. It is set
to 1 when the operation result is zero; otherwise, the Z bit is 0.

• The V bit is the same as the result of the ALU fixed decimal point arithmetic operation. It is set
to 1 for an overflow.

• The GT bit is always 0.

Overflow Prevention Function (Saturation Operation): When the S bit of the SR register is set
to 1, the overflow prevention function is engaged for the ALU fixed decimal point arithmetic
operation executed by the DSP unit. When the operation result overflows, the maximum (positive)
or minimum (negative) value is stored.

4.11.2 Logical Shift Operations

Function: Logical shift operations use the top words of the source 1 operand and the destination
operand. As in ALU logical operations, the guard bits and bottom word of the operands are
ignored. The source 2 operand, which specifies the shift amount, is integer data. The source 2
operand is specified as a register or immediate operand. The valid amount of shift is –16 to +16.
Negative values are shifts to the right; positive values are shifts to the left. Between –32 and +31
can be specified for the source 2 operand, but only –16 to +16 is valid. When an invalid number is
specified, the results cannot be guaranteed. When an immediate value is specified for the shift
amount, the source 1 operand must be the same as the destination operand. The action of the
operation is the same as for fixed decimal point operations and is executed in the DSP stage (the
last stage) of the pipeline.

60

Whenever a logical shift operation is executed, the DSR register’s DC, N, Z, V, and GT bits are
basically updated by the operation result. This is the same as for ALU logical operations. For
conditional instructions, condition bits are not updated even when the specified condition is
achieved and the instruction executed. For unconditional instructions, the bits are always updated
according to the operation result.

Figure 4.15 shows the logical shift operation flowchart.

7g 0g 31 16 15 0

0

≥ 0 < 0

+16 to –16

7g 0g 31 23 22 1615 0

5

0

imm2

7g 0g 31 16 15 0

Dz GT DCZ N V

DSR0

Shift out Shift out

Update

: Ignored

: Cleared to 0

Shift amount data
(source 2)

Left shift Right shift

Figure 4.15 Logical Shift Operation Flowchart

DC Bit: The DC bit is set as follows depending on the mode specified by the CS bits.

• Carry/borrow mode: CS2–CS0 = 000: The DC bit is the operation result, the value of the bit
pushed out by the last shift.

• Negative Mode: CS2–CS0 = 001: In this mode, the DC bit is the same as the bit 31 of the
operation result. In this mode, the DC bit has the same value as bit N.

• Zero Mode: CS2–CS0 = 010: The DC bit is 1 when the operation result is all zeros; otherwise,
the DC bit is 0. In this mode, the DC bit has the same value as bit Z.

• Overflow Mode: CS2–CS0 = 011: The DC bit is always 0. In this mode, the DC bit has the
same value as bit V.

• Signed Greater Than Mode: CS2–CS0 = 100: The DC bit is always 0. In this mode, the DC bit
has the same value as bit GT.

• Signed Greater Than Or Equal To Mode: CS2–CS0 = 101: The DC bit is always 0.

Condition Bits: The condition bits are set as follows.

61

• The N bit is the same as the result of the ALU logical operation. It is set to the value of bit 31
of the operation result.

• The Z bit is the same as the result of the ALU logical operation. It is set to 1 when the
operation result is all zeros; otherwise, the Z bit is 0.

• The V bit is always 0.

• The GT bit is always 0.

4.12 The MSB Detection Instruction

4.12.1 Function

The MSB detection instruction (PDMSB: most significant bit detection) finds the amount of shift
for normalizing the data.

The operation result is the same as for ALU integer operations. Basically, the top 16 bits and 8
guard bits are valid for a total 24 bits. When the destination operand is a register that has no guard
bits, it is stored in the top 16 bits of the destination register.

The MSB detection instruction works on all bits of the source operand, but gets its operation result
in integer data. This is because the shift amount for normalization must be integer data for the
arithmetic shift operation. The action of the operation is the same as for fixed decimal point
operations and is executed in the DSP stage (the last stage) of the pipeline.

Whenever a PDMSB instruction is executed, the DSR register’s DC, N, Z, V, and GT bits are
basically updated by the operation result. For conditional instructions, condition bits are not
updated even when the specified condition is achieved and the instruction executed. For
unconditional instructions, the bits are always updated according to the operation result.

Figure 4.16 shows the MSB detection instruction flowchart. Table 4.24 shows the relationship
between source data and destination data.

62

31 0

31 0

GT VNZ DC

DSR

Priority encoder

: Cleared to 0

Guard bits

Guard bits

Source 1 or 2

Destination

Figure 4.16 MSB Detection Flowchart

63

Table 4.24 Relationship between Source Data and Destination Data

Source Data

Guard Bits Top Word Bottom Word

7g 6g 5g–2g 1g 0g 31 30 29 28 27–4 27–4 3 2 1 0

0 0 — 0 0 0 0 0 0 — — 0 0 0 0

0 0 — 0 0 0 0 0 0 — — 0 0 0 1

0 0 — 0 0 0 0 0 0 — — 0 0 1 *

0 0 — 0 0 0 0 0 0 — — 0 1 * *

↓ ↓ ↓

0 0 — 0 0 0 0 0 1 — — * * * *

0 0 — 0 0 0 0 1 * — — * * * *

0 0 — 0 0 0 1 * * — — * * * *

0 0 — 0 0 1 * * * — — * * * *

0 0 — 0 1 * * * * — — * * * *

↓ ↓ ↓

0 1 — * * * * * * — — * * * *

1 0 — * * * * * * — — * * * *

↓ ↓ ↓

1 1 — 1 0 * * * * — — * * * *

1 1 — 1 1 0 * * * — — * * * *

1 1 — 1 1 1 0 * * — — * * * *

1 1 — 1 1 1 1 0 * — — * * * *

1 1 — 1 1 1 1 1 0 — — * * * *

↓ ↓ ↓

1 1 — 1 1 1 1 1 1 — — 1 0 * *

1 1 — 1 1 1 1 1 1 — — 1 1 0 *

1 1 — 1 1 1 1 1 1 — — 1 1 1 0

1 1 — 1 1 1 1 1 1 — — 1 1 1 1

64

Table 4.24 Relationship between Source Data and Destination Data (cont)

Destination Result

Guard Bits Top word

7g–0g 31–22 21 20 19 18 17 16
10
Hexadecimal

all 0 all 0 0 1 1 1 1 1 +31

0 1 1 1 1 0 +30

0 1 1 1 0 1 +29

0 1 1 1 0 0 +28

↓ ↓ ↓ ↓

all 0 all 0 0 0 0 0 1 0 +2

0 0 0 0 0 1 +1

0 0 0 0 0 0 0

all 1 all 1 1 1 1 1 1 1 –1

1 1 1 1 1 0 –2

↓ ↓ ↓ ↓

all 1 all 1 1 1 1 0 0 0 –8

1 1 1 0 0 0 –8

↓ ↓ ↓ ↓

all 1 all 1 1 1 1 1 1 0 –2

1 1 1 1 1 1 –1

all 0 all 0 0 0 0 0 0 0 0

0 0 0 0 0 1 +1

0 0 0 0 1 0 +2

↓ ↓ ↓ ↓

all 0 all 0 0 1 1 1 0 0 +28

0 1 1 1 0 1 +29

0 1 1 1 1 0 +30

0 1 1 1 1 1 +31

Note: Don’t care bits have no effect.

65

4.12.2 Instructions and Operands

Table 4.25 shows the MSB detection instruction. The correspondence between the operands and
registers is the same as for ALU fixed decimal point operations. It is shown in table 4.26.

Table 4.25 MSB Detection Instruction

Mnemonic Function Source 1 Source 2 Destination

PDMSB MSB detection Sx — Dz

— Sy Dz

Table 4.26 Correspondence between Operands and Registers for MSB Detection
Instructions

Operand X0 X1 Y0 Y1 M0 M1 A0 A1

Sx Yes Yes Yes Yes

Sy Yes Yes Yes Yes

Dz Yes Yes Yes Yes Yes Yes Yes Yes

Note: Yes: Register can be used with operand.

4.12.3 DC Bit

The DC bit is set as follows depending on the mode specified by the CS bits:

Carry/Borrow Mode: CS2–CS0 = 000: The DC bit is always 0.

Mode: CS2–CS0 = 001: Set to 1 for a negative operation result and 0 for a positive operation
result. In this mode, the DC bit has the same value as bit N.

Zero Mode: CS2–CS0 = 010: The DC bit is 1 when the operation result is zero; otherwise, the
DC bit is 0. In this mode, the DC bit has the same value as bit Z.

Overflow Mode: CS2–CS0 = 011: The DC bit is always 0. In this mode, the DC bit has the same
value as bit V.

Signed Greater Than Mode: CS2–CS0 = 100: Set to 1 for a positive operation result and 0 for a
negative operation result. In this mode, the DC bit has the same value as bit GT.

Signed Greater Than or Equal To Mode: CS2–CS0 = 101: Set to 1 for a positive or zero
operation result and 0 for a negative operation result.

66

4.12.4 Condition Bits

The condition bits are set as follows.

• The N bit is the same as the result of the ALU integer operation. It is set to 1 for a negative
operation result and 0 for a positive operation result.

• The Z bit is the same as the result of the ALU integer operation. It is set to 1 when the
operation result is zero; otherwise, the Z bit is 0.

• The V bit is always 0.

• The GT bit is the same as the result of the ALU integer operation. It is set 1 for a positive
operation result and otherwise to 0.

4.13 Rounding

4.13.1 Operation Function

The DSP unit has a function for rounding 32-bit values to 16-bit values. When the value has guard
bits, 40 bits are rounded to 24 bits. When the rounding instruction is executed, H'0000 8000 is
added to the source operand and the bottom word is then cleared to zeros.

Rounding uses all bits of the source and destination operands. The action of the operation is the
same as for fixed decimal point operations and is executed in the DSP stage (the last stage) of the
pipeline.

The rounding instruction is unconditional. The DSR register’s DC, N, Z, V, and GT bits are thus
always updated according to the operation result.

Figure 4.17 shows the rounding flowchart. Figure 4.18 shows the rounding process definitions.

67

31 0

31 0

ALU GT VNZ DC

DSR

: Cleared to 0

H'00008000

Addition

Destination

Source 1 or 2

Guard bits

Guard bits

Figure 4.17 Rounding Flowchart

H'000002

H'000001

0

H
'0

00
00

18
00

0

H
'0

00
00

20
00

0

H
'0

00
00

28
00

0

Rounding result

Analog values

Actual value

Figure 4.18 Rounding Process Definitions

68

4.13.2 Instructions and Operands

Table 4.27 shows the instruction. The correspondence between the operands and registers is the
same as for ALU fixed decimal point operations. It is shown in table 4.28.

Table 4.27 Rounding Instruction

Mnemonic Function Source 1 Source 2 Destination

PRND Rounding Sx — Dz

— Sy Dz

Table 4.28 Correspondence between Operands and Registers for Rounding Instruction

Operand X0 X1 Y0 Y1 M0 M1 A0 A1

Sx Yes Yes Yes Yes

Sy Yes Yes Yes Yes

Dz Yes Yes Yes Yes Yes Yes Yes Yes

Note: Yes: Register can be used with operand.

4.13.3 DC Bit

The DC bit is updated as follows depending on the mode specified by the CS bits. Condition bits
are updated as for ALU fixed decimal point arithmetic operations.

Carry/Borrow Mode: CS2–CS0 = 000: The DC bit is set to 1 when a carry or borrow from the
MSB of the operation result occurs; otherwise, it is set to 0.

Negative Mode: CS2–CS0 = 001: Set to 1 for a negative operation result and 0 for a positive
operation result. In this mode, the DC bit has the same value as bit N.

Zero Mode: CS2–CS0 = 010: The DC bit is 1 when the operation result is zero; otherwise, the
DC bit is 0. In this mode, the DC bit has the same value as bit Z.

Overflow Mode: CS2–CS0 = 011: The DC bit is set to 1 by an overflow; otherwise, it is set to 0.
In this mode, the DC bit has the same value as bit V.

Signed Greater Than Mode: CS2–CS0 = 100: Set to 1 for a positive operation result; otherwise,
it is set to 0. In this mode, the DC bit has the same value as bit GT.

Signed Greater Than or Equal To Mode: CS2–CS0 = 101: Set to 1 for a positive or zero
operation result; otherwise, it is set to 0..

69

4.13.4 Condition Bits

The condition bits are set as follows. They are updated as for ALU fixed decimal point arithmetic
operations.

• The N bit is the same as the result of the ALU fixed decimal point arithmetic operation. It is set
to 1 for a negative operation result and 0 for a positive operation result.

• The Z bit is the same as the result of the ALU fixed decimal point arithmetic operation. It is set
to 1 when the operation result is zero; otherwise, the Z bit is 0.

• The V bit is the same as the result of the ALU fixed decimal point arithmetic operation. It is set
to 1 for an overflow; otherwise, the V bit is 0.

• The GT bit is the same as the result of the ALU fixed decimal point arithmetic operation and
the ALU integer operation. It is set 1 for a positive operation result; otherwise, the GT bit is 0.

4.13.5 Overflow Prevention Function (Saturation Operation)

When the S bit of the SR register is set to 1, the overflow prevention function can be specified for
all rounding processing executed by the DSP unit. When the operation result overflows, the
maximum (positive) or minimum (negative) value is stored.

4.14 Condition Select Bits (CS) and the DSP Condition Bit (DC)

DSP instructions may be either conditional or unconditional. Unconditional instructions are
executed without regard to the DSP condition bit (DC bit), but conditional instructions may
reference the DC bit before they are executed. With unconditional instructions, the DSR register’s
DC bit and condition bits (N, Z, V, and GT) are updated according to the results of the ALU
operation or shift operation. The DC bit and condition bits (N, Z, V, and GT) are not updated
regardless of whether the conditional instruction is executed. The DC bit is updated according to
the specifications of the condition select (CS) bits. Updates differ for arithmetic operations, logical
operations, arithmetic shifts and logical shifts. Table 4.29 shows the relationship between the CS
bits and the DC bit.

70

Table 4.29 Condition Select Bits (CS) and DSP Condition Bit (DC)

CS Bits

2 1 0 Condition Mode Description

0 0 0 Carry/borrow The DC bit is set to 1 when a carry or borrow occurs in the
result of an ALU arithmetic operation. Otherwise, it is cleared to
0.
In logical operations, the DC bit is always cleared to 0.
For shift operations (the PSHA and PSHL instructions), the bit
shifted out last is copied to the DC bit.

0 0 1 Negative In ALU arithmetic operations or arithmetic shifts (PSHA), the
MSB of the result (including the guard bits) is copied to the DC
bit.
In ALU logical operations and logical shifts (PSHL), the MSB of
the result (not including the guard bits) is copied to the DC bit.

0 1 0 Zero When the result of an ALU or shift operation is all zeros (0), the
DC bit is set to 1. Otherwise, it is cleared to 0.

0 1 1 Overflow In ALU arithmetic operations or arithmetic shifts (PSHA), when
the operation result (not including the guard bits) exceeds the
destination register’s value range, the DC bit is set to 1.
Otherwise, it is cleared to 0.
In ALU logical operations and logical shifts (PSHL), the DC bit
is always cleared to 0.

1 0 0 Signed greater
than

This mode is like the Greater Than Or Equal To mode, but the
DC bit is cleared to 0 when the operation result is zero (0).
When the operation result (including the guard bits) exceeds
the expressible limits, the TRUE condition is VR.

DC bit = ~{(N bit ^ VR)|Z bit)}; for arithmetic operations

DC bit = 0; for logical operations

1 0 1 Greater than or
equal to

In ALU arithmetic operations or arithmetic shifts (PSHA), when
the result does not overflow, the value is the inversion of the
negative mode’s DC bit. When the operation result (including
the guard bits) exceeds the expressible limits, the value is the
same as the negative mode’s DC bit.
In ALU logical operations and logical shifts (PSHL), the DC bit
is always cleared to 0.

DC bit = ~(N bit ^ VR)); for arithmetic operations

DC bit = 0; for logical operations

1 1 0 Reserved

1 1 1

71

4.15 Overflow Prevention Function (Saturation Operation)

The overflow prevention function (saturation operation) is specified by the S bit of the SR register.
This function is valid for arithmetic operations executed by the DSP unit and multiply and
accumulate operations executed by the existing SH-1 and SH-2. An overflow occurs when the
operation result exceeds the bounds that can be expressed as a two’s complement (not including
the guard bits).

Table 4.30 shows the overflow definitions for fixed decimal point arithmetic operations. Table
4.31 shows the overflow definitions for integer arithmetic operations. Multiply/Accumulate
calculation instructions (MAC) supported by previous SuperH RISC engines are performed on 64-
bit registers (MACH and MACL), so the overflow value differs from the maximum and minimum
values. They are defined exactly the same as before.

Table 4.30 Overflow Definitions for Fixed Decimal Point Arithmetic Operations

Sign Overflow Condition
Maximum/
Minimum Hexadecimal Display

Positive Result > 1–2–31 1–2–31 007FFFFFFF

Negative Result < –1 –1 FF80000000

Table 4.31 Overflow Definitions for Integer Arithmetic Operations

Sign Overflow Condition
Maximum/
Minimum Hexadecimal Display

Positive Result > 2–15 – 1 2–15 – 1 007FFF****

Negative Result < –2–15 –2–15 FF8000****

Note: Don’t care bits have no effect.

When the overflow prevention function is specified, overflows do not occur. Naturally, the
overflow bit (V bit) is not set. When the CS bits specify overflow mode, the DC bit is not set
either.

72

4.16 Data Transfers

The SH-DSP can perform up to two data transfers in parallel between the DSP register and on-
chip memory with the DSP unit. The SH-DSP has the following types of data transfers:

1. X and Y memory data transfers: Data transfer to X and Y memory using the XDB and YDB
buses

• Double data transfer: Data transfer only, where transfer in one direction only is permitted

• Parallel data transfers: Data transfer that proceeds in parallel to ALU operation processing

2. Single data transfers: Data transfer to on-chip memory using the IDB bus

Note: Data transfer instructions do not update the DSR register’s condition bits.

Table 4.32 shows the various functions.

Table 4.32 Data Transfer Functions

Category Bus Length

Parallel
Processing
with ALU
Operation

Parallel
Processing with
Data Transfer

Instruction
Length

X and Y memory
data transfer

X bus
Y bus

16 bits None (double) None (X or Y bus) 16 bits

Available (X and Y
bus)

16 bits

Available
(parallel)

None (X or Y bus) 32 bits

Available (X and Y
bus)

32 bits

Single data
transfer

IDB bus 32 bits
16 bits

None None 16 bits

4.16.1 X and Y Memory Data Transfer

X and Y memory data transfers allow two data transfers to be executed in parallel and allow data
transfers to be executed in parallel with DSP data operations. 32-bit instruction code is required
for executing DSP data operations and transfers in parallel. This is called a parallel data transfer.
When executing an X and Y memory data transfer by itself, 16-bit instruction code is used. This is
called a double data transfer.

Data transfers consist of X memory data transfers and Y memory data transfers. X memory data is
loaded to either the X0 or X1 register; Y memory data is loaded to the Y0 or Y1 register. The X0,
X1, Y0, and Y1 registers become the destination registers. Data can be stored in the X and Y

73

memory if the A0 or A1 register is the source register. All these data transfers involve word data
(16 bits). Data is transferred from the top word of the source register. Data is transferred to the top
word of the destination register and the bottom word is automatically cleared with zeros.

Specifying a conditional instruction as the operation instruction executed in parallel has no effect
on the data transfer instructions.

X and Y memory data transfers access only the X and Y memory; they cannot access other
memory areas.

X pointer (R4, R5) Y pointer (R6, R7)

XAB[15:1] YAB[15:1]
0, +2, +R8 0, +2, +R9

XDB[15:0] YDB[15:0]

X0
X1
A0
A1

Y0
Y1

X memory
(RAM, ROM)

Y memory
(RAM, ROM)

: Cannot be set

: Not affected for storing; cleared for loading

M0
M1

A1G DSRA0G

Figure 4.19 Flowchart of X and Y Memory Data Transfers

4.16.2 Single Data Transfers

Single data transfers execute only one data transfer. They use 16-bit instruction code. Single data
transfers cannot be processed in parallel with ALU operations. The X pointer, which accesses X
memory, and two added pointers are valid; the Y pointer is not valid. As with the SuperH RISC
engine, single data transfers can access all memory areas, including external memory. Except for
the DSR register, the DSP registers can be specified as source and destination operands. (The DSR
register is defined as the system register, so it can transfer data with LDS and STS instructions.)
The guard bit registers A0G and A1G can be specified for operands as independent registers.

74

Single data transfers use the IAB and IDB buses in place of the X bus and Y bus, so contention
occurs on the IDB bus between data transfers and instruction fetches.

Single data transfers handle word and longword data. Word data transfers involve only the top
word of the register. When data is loaded to a register, it goes to the top word and the bottom word
is automatically filled with zeros. If there are guard bits, the sign bit is extended to fill them. When
storing from a register, the top word is stored.

When a longword is transferred, 32 bits are valid. When loading a register that has guard bits, the
sign bit is extended to fill the guard bits.

When a guard bit register is stored, the top 24 bits become undefined, and the read out is to the
IDB bus. When the guard bit registers A0G and A1G load word data as the destination registers of
the MOVS.W instruction, the bottom byte is written to the register.

Pointer (R2, R3, R4, R5)

IAB[31:0]
–2, 0, +2, +R8

IDB[15:0]

X0
X1
A0
A1

Y0
Y1

Cannot be set

Not affected for storing; cleared for loading. See
the text for information about A0G and A1G.

M0
M1

A1G DSRA0G

All memory areas

:

:

Figure 4.20 Single Data Transfer Flowchart (Word)

75

Pointer (R2, R3, R4, R5)

IAB[31:0]
–4, 0, +4, +R8

IDB[31:0]

X0
X1
A0
A1

Y0
Y1

: Cannot be set

M0
M1

A1G DSRA0G

All memory areas

Figure 4.21 Single Data Transfer Flowchart (Longword)

76

Data transfers are executed in the MA stage of the pipeline while DSP operations are executed in
the DSP stage. Since the next data store instruction starts before the data operation instruction has
finished, a stall cycle is inserted when the store instruction comes on the instruction line after the
data operation instruction. This overhead cycle can be avoided by adding one instruction between
the data operation instruction and the data transfer instruction. Figure 4.22 shows an example.

1 2 3 4 5 6

MOVX

MOVX,
ADD

IF ID

IF ID

EX (ad-
dressing)

DSP

MOVX.W A0, @R4+
MOVX.W @R5, X1
MOVX.W A0, @R4+

PADD X0, Y0, A0

Slot

IF ID

MOVX

MOVX

MOVX DSP (nop)

7

ADD

MOVX

Insert an unrelated step
between data operation
instruction and store instruction.

EX (ad-
dressing)

EX (ad-
dressing)

Figure 4.22 Example of the Execution of Operation and Data Store Instructions

4.17 Operand Contention

Data contention occurs when the same register is specified as the destination operand for two or
more parallel processing instructions. It occurs in three cases.

1. When the same destination operand is specified for an ALU operation and multiplication (Du,
Dg)

2. When the same destination operand is specified for an X memory load and an ALU operation
(Dx, Du, Dz)

3. When the same destination operand is specified for a Y memory load and an ALU operation
(Dx, Du, Dz)

Results cannot be guaranteed when contention occurs. Table 4.33 shows the operand and register
combinations that cause contention.

Some assemblers can detect these types of contention, so pay attention to assembler functions
when selecting one.

77

Table 4.33 Operand and Register Combinations That Create Contention

DSP Register

Operation Operand X0 X1 Y0 Y1 M0 M1 A0 A1

X memory Ax
load IX

Dx *2 *2

Y memory Ay
load Iy

Dy *3 *3

6-operand ALU Sx *1 *1 *1 *1

operation Sy *1 *1 *1 *1

Du *2 *3 *4 *4

3-operand Se *1 *1 *1 *1

multiplication Sf *1 *1 *1 *1

Dg *1 *1 *4 *4

3-operand ALU Sx *1 *1 *1 *1

operation Sy *1 *1 *1 *1

Dz *2 *2 *3 *3 *1 *1 *1 *1

Notes: 1. Register is settable for the operand
2. Dx, Du, and Dz contend
3. Dy, Du, and Dz contend
4. Du and Dg contend

78

4.18 DSP Repeat (Loop) Control

The SH-DSP repeat (loop) control function is a special utility for controlling repetition efficiently.
The SETRC instruction is executed to hold a repeat count in the repeat counter (RC, 12 bits) and
set an execution mode in which the repeat (loop) program is repeated until the RC is 1. Upon
completion of the repeat operation, the content of the RC becomes 0.

The repeat start register (RS) holds the start address of the repeated section. The repeat end
register (RE) holds the ending address of the repeated section. (There are some exceptions. See
4.19.1 Notes.) The repeat counter (RC) holds the repeat count. The procedure for executing repeat
control is shown below:

1. Set the repeat start address in the RS register.

2. Set the repeat end address in the RE register.

3. Set the repeat count in the RC counter.

4. Execute the repeated program (loop).

The following instructions are used for executing 1 and 2:

LDRS @(disp,PC);

LDRE @(disp,PC);

The SETRC instruction is used to execute 3 and 4. Immediate data or a general register may be
used to specify the repeat count as the operand of the SETRC instruction:

SETRC #imm; #imm → Rc, enable repeat control

SETRC Rm; Rm → Rc, enable repeat control

#imm is 8 bits and the RC counter is 12 bits, so to set the RC counter to a value of 256 or greater,
use the Rm register. A sample program is shown below.

LDRS RptStart;

LDRE RptEnd;

SETRC #imm; RC=#imm

instr0;

; instr1~5 executes repeatedly

RptStart: instrl;

instr2;

instr3;

instr4;

RptEnd: instr5;

instr6;

79

There are several restrictions on repeat control:

1. At least one instruction must come between the SETRC instruction and the first instruction of
the repeat program (loop).

2. Execute the SETRC instruction after executing the LDRS and LDRE instructions.

3. When there are more than four instructions for the repeat program (loop) and there is no repeat
start address (in the above example, it was address instr1) at the long word boundary, one cycle
stall (cycle awaiting execution) is required for each repeat.

4. When there are three or fewer instructions in the loop, branch instructions (BRA, BSR, BT,
BF, BT/S, BF/S, BSRF, RTS, BRAF, RTE, JSR, JMP), repeat control instructions (SETRC,
LDRS, LDRE), SR, RS, and RE load instructions, and TRAPA cannot be used. If they are
described, error exemption processing is started and the address values shown in table 4.34 are
pushed out to the stack area pointed by R15.

Table 4.34 PC Values Pushed Out (1)

Conditions Position Address Pushed Out

RC>=2 Any RptStart

RC=1 Any Program address of illegal instruction

5. If there are four or fewer instructions in the loop, branched instructions (BRA, BSR, BT, BF,
BT/S, BF/S, BSRF, RTS, BRAF, RTE, JSR, JMP), repeat control instructions (SETRC, LDRS,
LDRE), SR, RS, and RE load instructions, and TRAPA cannot be used for the last three
instructions in the repeat program (loop). If they are described, error exception processing is
started and the address values shown in table 4.35 are pushed out to the stack area pointed by
R15. In case of repeat control instruction (SETRC, LDRS, LDRE), and SR, RS, and RE load
instructions, they cannot be described in positions other than the repeat module. If described,
proper operation cannot be secured.

Table 4.35 PC Values Pushed Out (2)

Conditions Position Address Pushed Out

RC>=2 instr3 Program address of illegal instruction

instr4 RptStart-4

instr5 RptStart-2

RC=1 Any Program address of illegal instruction

6. When there are three or fewer instructions in the loop, PC relative instructions (MOVA
(disp,PC), R0, or the like) can only be used at the first instruction (instr1).

7. If there are four or more instructions in the loop, PC relative instructions (MOVA (disp,PC),
R0, or the like) cannot be used in the final two instructions.

80

8. The SH-DSP does not have a repeat valid flag; repeats become invalid when the RC counter
becomes 0. When the RC counter is not 0 and the PC counter matches the RE register contents,
repeating begins. When the RC counter is set to 0, the repeat program (loop) is invalid but the
loop is executed only once and does not return to the starting instruction of the loop as when
RC is 1. When the RC counter is set to 1, the repeat module is executed only once. Though it
does not return to the repeat program (loop) start instruction, the RC counter becomes zero
when the repeat module is executed.

9. If there are four or more instructions in the loop, the branched instructions including the
subroutine call back and return instructions cannot be used for the “inst3” through “inst5”
instructions as branch destination address. If they are executed, the repeat control does not
work correctly. If the branch destination is “RptStart” or any address ahead of it, content of RC
in the SR register is not updated.

10. While the repeat is being executed, interruption is restricted. Figure 4.23 shows the flow for
each stage of EX. The initial EX stage of interruption or the bus error exception is usually
started immediately after the EX stage of the instruction is completed (indicated by “A”).
However, in the EX stage of the next instr0, only the bus error exception can be designated by
“B” to continue. At the EX stage of instr1, neither interruption nor bus exception can be
continued by “C”. Only the EX stage of instr2 can be continued.

81

1-step repeat 2-step repeat 3-step repeat

A: All interruption and bus error exceptions are accepted.
B: Only the bus error exception is accepted.
C: No interruption and bus error exceptions are accepted.

When RC>=1

More than 4 steps repeat

Start(End):
instr0
instr1
instr2

← A
← B
← C
← A

Start:
End:

instr0
instr1
instr2
instr3

← A
← B
← C
← C
← A

Start:

End:

instr0
instr1
instr2
instr3
instr4

← A
← B
← C
← C
← C
← A

Start:

End:

instr0
instr1

instr n-3
instr n-2
instr n-1
instr n
instr n+1

← A
← A or C (when returning from instr n)
← A

← A
← B
← C
← C
← C
← A

When RC=0: All interruptions and bus errors are accepted.

:
:

:

Figure 4.23 Restriction on Acceptance of Interruption by Repeat Module

4.18.1 Actual programming

The repeat start register (RS) and repeat end register (RE) store the repeat start address and repeat
end address respectively. Addresses stored in these registers are changed depending on the number
of instructions in the repeat program (loop). This rule is shown below.

Repeat_Start: Address of repeat start instruction

Repeat_Start0: Address of instruction one higher than the repeat end instruction

Repeat_Start3: Address of instruction three higher than the repeat end instruction

82

Table 4.35 RS and RE Setup Rule

Number of Instructions in Repeat Program (Loop)

Register 1 2 3 >=4

RS Repeat_start0+8 Repeat_start0+6 Repeat_start0+4 Repeat_Start

RE Repeat_start0+4 Repeat_start0+4 Repeat_start0+4 Repeat_End3+4

An example of an actual repeat program (loop) assuming various cases based on the above table is
given below:

Case 1: One repeat instruction

LDRS RptStart0+8;(RptStart)

LDRE RptStart0+4;(RptStart)

SETRC RptCount;

RptStart0: instr0;

RtpStart: instr1;Repeat instruction

instr2;

Case 2: Two repeat instructions

LDRS RptStart0+6;(RptStart)

LDRE RptStart0+4;(RptEnd)

SETRC RptCount;

RptStart0: instr0;

RtpStart: instr1;Repeat instruction 1

RptEnd: instr2; Repeat instruction 2

instr3;

83

Case 3: Three repeat instructions

LDRS RptStart0+4;(RptStart)

LDRE RptStart0+4;(RptEnd)

SETRC RptCount;

RptStart0: instr0;

RtpStart: instr1;Repeat instruction 1

instr2;Repeat instruction 2

RptEnd: instr3;Repeat instruction 3

instr4;

Case 4: Four or more instructions

LDRS RptStart;

LDRE RptStart3+4;(RptEnd)

SETRC RptCount;

RptStart0: instr0;

RtpStart: instr1;Repeat instruction 1

instr2;Repeat instruction 2

instr3;Repeat instruction 3

RptEnd3: instrN-3; Repeat instruction N

instrN-2; Repeat instruction N-2

instrN-1; Repeat instruction N-1

RptEnd: instrN;Repeat instruction N

instrN+1;

The above example can be used as a template when programming this repeat program (loop)
sequence. Extension instruction “REPEAT” can simplify the problems of such complicated
labeling and offset. Details are described in Note 2 below.

Note 2. Extension instruction REPEAT

The extension instruction REPEAT can simplify the delicate handling of the labeling
and offset described in Table 4.35 and Note 1. Labels used are shown below.

RptStart: RptStart: Address of first instruction of repeat program (loop)

RptEnd: Address of last instruction of repeat program (loop)

PptCount: Repeat count immediate No.

Use this instruction as described below.

84

Repeat count can be designated as immediate value #imm or register indirect value Rn.

Case 1: One repeat instruction

REPEAT RptStart, RptStart, RptCount

instr0;

RptStart: instr1;Repeat instruction 1

instr2;

Case 2: Two repeat instructions

REPEAT RptStart, RptEnd, RptCount

instr0;

RptStart: instr1;Repeat instruction 1

RptEnd: instr2;Repeat instruction 2

Case 3: Three repeat instructions

REPEAT RptStart, RptEnd, RptCount

instr0;

RptStart: instr1;Repeat instruction 1

instr2;Repeat instruction 2

RptEnd: instr3;Repeat instruction 3

Case 4: Four or more instructions

REPEAT RptStart, RptStart, RptCount

instr0;

RtpStart: instr1;Repeat instruction 1

instr2;Repeat instruction 2

instr3;Repeat instruction 3

instrN-3; Repeat instruction N-3

instrN-2; Repeat instruction N-2

instrN-1; Repeat instruction N-1

RptEnd: instrN;Repeat instruction N

instrN+1;

85

Result of extension of each case corresponds to the case 1 in Note 1.

4.19 Conditional Instructions and Data Transfers

Data operation instructions include both unconditional and conditional instructions. Data transfer
instructions that execute both in parallel can be specified, but they will always execute regardless
of whether the condition is met without affecting the data transfer instruction.

The following is an example of a conditional instruction and a data transfer:

DCT PADD X0, Y0, A0 MOVX.W @R4, X0 MOVY.W A0,@R6+R9

When condition is true:

Before execution: X0= H'33333333, Y0= H'55555555, A0=H'123456789A,

R4=H'00008000, R6=H'00008233, R1=H'00000004

(R4)=H'1111, (R6)=H'2222

After execution: X0=H'11110000, Y0= H'55555555, A0=H'00888888,

R4=H'00008002, R6=H'00008237, R1=H'00000004

(R4)=H'1111, (R6)=H'1234

When condition is false:

Before execution: X0=H'33333333, Y0= H'55555555, A0=H'123456789A,

R4=H'00008000, R6=H'00008233, R1=H'00000004

(R4)=H'1111, (R6)=H'2222

After execution: X0=H'11110000, Y0= H'55555555, A0= H'123456789A,

R4=H'00008002, R6=H'00008237, R1=H'00000004

(R4)=H'1111, (R6)=H'1234

86

87

Section 5 Instruction Set

The SH-DSP instructions are divided into three groups. CPU instructions are executed by the CPU
core, and DSP data transfer instructions and DSP operation instructions are executed by the DSP
unit. Some CPU instructions support DSP functions. The description of the instruction set is
divided into these three groups.

5.1 Instruction Set for CPU Instructions

Table 5.1 lists instructions by classification.

Table 5.1 Classification of CPU Instructions

Applicable
Instructions

Classification Types
Operation
Code Function SH-1 SH-2

SH-
DSP

No. of
Instructions

Data transfer 5 MOV Data transfer
Immediate data transfer
Peripheral module data transfer
Structure data transfer

39

MOVA Effective address transfer

MOVT T bit transfer

SWAP Swap of upper and lower bytes

XTRCT Extraction of the middle of registers
connected

Arithmetic 21 ADD Binary addition 33
operations ADDC Binary addition with carry

ADDV Binary addition with overflow check

CMP/cond Comparison

DIV1 Division

DIV0S Initialization of signed division

DIV0U Initialization of unsigned division

DMULS Signed double-length multiplication —

DMULU Unsigned double-length multiplication —

DT Decrement and test —

EXTS Sign extension

EXTU Zero extension

MAC Multiply/accumulate

Double-length multiply/accumulate
operation

—

88

Table 5.1 Classification of CPU Instructions (cont)

Applicable
Instructions

Classification Types
Operation
Code Function SH-1 SH-2

SH-
DSP

No. of
Instructions

Arithmetic
operations

MUL Double-length multiplication
(32 × 32 bits)

—

(cont) MULS Signed multiplication (16 × 16 bits)

MULU Unsigned multiplication (16 × 16 bits)

NEG Negation

NEGC Negation with borrow

SUB Binary subtraction

SUBC Binary subtraction with carry

SUBV Binary subtraction with underflow
check

Logic 6 AND Logical AND 14

operations NOT Bit inversion

OR Logical OR

TAS Memory test and bit set

TST Logical AND and T bit set

XOR Exclusive OR

Shift 10 ROTCL One-bit left rotation with T bit 14

ROTCR One-bit right rotation with T bit

ROTL One-bit left rotation

ROTR One-bit right rotation

SHAL One-bit arithmetic left shift

SHAR One-bit arithmetic right shift

SHLL One-bit logical left shift

SHLLn n-bit logical left shift

SHLR One-bit logical right shift

SHLRn n-bit logical right shift

89

Table 5.1 Classification of CPU Instructions (cont)

Applicable
Instructions

Classification Types
Operation
Code Function SH-1 SH-2

SH-
DSP

No. of
Instructions

Branch 9 BF Conditional branch (T = 0) 11

Conditional branch with delay —

BT Conditional branch (T = 1)

Conditional branch with delay —

BRA Unconditional branch

BRAF Unconditional branch —

BSR Branch to subroutine procedure

BSRF Branch to subroutine procedure —

JMP Unconditional branch

JSR Branch to subroutine procedure

RTS Return from subroutine procedure

System 14 CLRMAC MAC register clear 71

control CLRT T bit clear

LDC Load to control register

LDRE Load to repeat end register — —

LDRS Load to repeat start register — —

LDS Load to system register

NOP No operation

RTE Return from exception processing

SETRC Set number of repeats — —

SETT T bit set

SLEEP Shift into power-down state

STC Storing control register data

STS Storing system register data

TRAPA Trap exception handling

Total:65 182

Instruction codes, operation, and execution cycles are listed as shown in table 10.2 by
classification.

90

Table 5.2 Instruction Code Format

Item Format Explanation

Instruction
mnemonic

OP.Sz SRC,DEST OP: Operation code
Sz: Size
SRC: Source
DEST: Destination
Rm: Source register
Rn: Destination register
imm: Immediate data
disp: Displacement*1

Instruction
code

MSB ↔ LSB mmmm: Source register
nnnn: Destination register

0000: R0
0001: R1

1111: R15

iiii: Immediate data
dddd: Displacement

Operation
summary

→, ←
(xx)
M/Q/T
&
|
^
~
<<n, >>n

Direction of transfer
Memory operand
Flag bits in the SR
Logical AND of each bit
Logical OR of each bit
Exclusive OR of each bit
Logical NOT of each bit
n-bit shift

Execution
cycles

Value when no wait states are inserted*2

Instruction
execution
cycles

The execution cycles shown in the table are minimums.
The actual number of cycles may be increased:

1. When contention occurs between instruction fetches
and data access, or

2. When the destination register of the load instruction
(memory → register) and the register used by the next
instruction are the same.

T bit —:No change Value of T bit after instruction is executed

Notes: 1. Scaled (×1, ×2, or ×4) according to the size of the instruction’s operand. For more
information, see section 12, Instruction Descriptions.

2. Instruction execution cycles: The executions cycles shown in the table are minimums.
The actual number of cycles may be increased when (1) contention occurs between
instruction fetches and data access, or (2) when the destination register of the load
instruction (memory → register) and the register used by the next instruction are the
same.

91

5.1.1 Data Transfer Instructions

Table 5.3 Data Transfer Instructions

Applicable
Instructions

Instruction Operation Cycles
T
Bit SH-1 SH-2

SH-
DSP

MOV #imm,Rn imm → Sign extension → Rn 1 —

MOV.W @(disp,PC),Rn (disp × 2 + PC) → Sign
extension → Rn

1 —

MOV.L @(disp,PC),Rn (disp × 4 + PC) → Rn 1 —

MOV Rm,Rn Rm → Rn 1 —

MOV.B Rm,@Rn Rm → (Rn) 1 —

MOV.W Rm,@Rn Rm → (Rn) 1 —

MOV.L Rm,@Rn Rm → (Rn) 1 —

MOV.B @Rm,Rn (Rm) → Sign extension → Rn 1 —

MOV.W @Rm,Rn (Rm) → Sign extension → Rn 1 —

MOV.L @Rm,Rn (Rm) → Rn 1 —

MOV.B Rm,@–Rn Rn–1 → Rn, Rm → (Rn) 1 —

MOV.W Rm,@–Rn Rn–2 → Rn, Rm → (Rn) 1 —

MOV.L Rm,@–Rn Rn–4 → Rn, Rm → (Rn) 1 —

MOV.B @Rm+,Rn (Rm) → Sign extension →
Rn, Rm + 1 → Rm

1 —

MOV.W @Rm+,Rn (Rm) → Sign extension →
Rn, Rm + 2 → Rm

1 —

MOV.L @Rm+,Rn (Rm) → Rn, Rm + 4 → Rm 1 —

MOV.B R0,@(disp,Rn) R0 → (disp + Rn) 1 —

MOV.W R0,@(disp,Rn) R0 → (disp × 2 + Rn) 1 —

MOV.L Rm,@(disp,Rn) Rm → (disp × 4 + Rn) 1 —

MOV.B @(disp,Rm),R0 (disp + Rm) → Sign
extension → R0

1 —

MOV.W @(disp,Rm),R0 (disp × 2 + Rm) → Sign
extension → R0

1 —

MOV.L @(disp,Rm),Rn (disp × 4 + Rm) → Rn 1 —

MOV.B Rm,@(R0,Rn) Rm → (R0 + Rn) 1 —

MOV.W Rm,@(R0,Rn) Rm → (R0 + Rn) 1 —

92

Table 5.3 Data Transfer Instructions (cont)

Applicable
Instructions

Instruction Operation Cycles
T
Bit SH-1 SH-2

SH-
DSP

MOV.L Rm,@(R0,Rn) Rm → (R0 + Rn) 1 —

MOV.B @(R0,Rm),Rn (R0 + Rm) → Sign extension →
Rn

1 —

MOV.W @(R0,Rm),Rn (R0 + Rm) → Sign extension →
Rn

1 —

MOV.L @(R0,Rm),Rn (R0 + Rm) → Rn 1 —

MOV.B R0,@(disp,
GBR)

R0 → (disp + GBR) 1 —

MOV.W R0,@(disp,
GBR)

R0 → (disp × 2 + GBR) 1 —

MOV.L R0,@(disp,
GBR)

R0 → (disp × 4 + GBR) 1 —

MOV.B @(disp,GBR),
R0

(disp + GBR) → Sign extension
→ R0

1 —

MOV.W @(disp,GBR),
R0

(disp × 2 + GBR) → Sign
extension → R0

1 —

MOV.L @(disp,GBR),
R0

(disp × 4 + GBR) → R0 1 —

MOVA @(disp,PC),
R0

disp × 4 + PC → R0 1 —

MOVT Rn T → Rn 1 —

SWAP.B Rm,Rn Rm → Swap the bottom two
bytes → REG

1 —

SWAP.W Rm,Rn Rm → Swap two consecutive
words → Rn

1 —

XTRCT Rm,Rn Rm: Middle 32 bits of Rn → Rn 1 —

93

5.1.2 Arithmetic Instructions

Table 5.4 Arithmetic Instructions

Applicable
Instructions

Instruction Operation Cycles T Bit SH-1 SH-2
SH-
DSP

ADD Rm,Rn Rn + Rm → Rn 1 —

ADD #imm,Rn Rn + imm → Rn 1 —

ADDC Rm,Rn Rn + Rm + T → Rn,
Carry → T

1 Carry

ADDV Rm,Rn Rn + Rm → Rn,
Overflow → T

1 Overflow

CMP/EQ #imm,R0 If R0 = imm, 1 → T,
If R0 ≠ imm, 0 → T

1 Comparison
result

CMP/EQ Rm,Rn If Rn = Rm, 1 → T,
If Rn ≠ Rm, 0 → T

1 Comparison
result

CMP/HS Rm,Rn If Rn ≥ Rm with
unsigned data, 1 → T,
If Rn < Rm, 0 → T

1 Comparison
result

CMP/GE Rm,Rn If Rn ≥ Rm with signed
data, 1 → T,
If Rn < Rm, 0 → T

1 Comparison
result

CMP/HI Rm,Rn If Rn > Rm with
unsigned data, 1 → T,
If Rn ≤ Rm, 0 → T

1 Comparison
result

CMP/GT Rm,Rn If Rn > Rm with signed
data, 1 → T,
If Rn ≤ Rm, 0 → T

1 Comparison
result

CMP/PL Rn If Rn > 0, 1 → T,
If Rn ≤ 0, 0 → T

1 Comparison
result

CMP/PZ Rn If Rn ≥ 0, 1 → T,
If Rn < 0, 0 → T

1 Comparison
result

CMP/STR Rm,Rn If Rn and Rm have an
equivalent byte, 1 → T,
If not equivalent byte,
0 → T

1 Comparison
result

DIV1 Rm,Rn Single-step division
(Rn/Rm)

1 Calculation
result

DIV0S Rm,Rn MSB of Rn → Q, MSB
of Rm → M, M ^ Q → T

1 Calculation
result

DIV0U 0 → M/Q/T 1 0

94

Table 5.4 Arithmetic Instructions (cont)

Applicable
Instructions

Instruction Operation Cycles T Bit SH-1 SH-2
SH-
DSP

DMULS.L Rm,Rn Signed operation of
Rn × Rm → MACH, MACL 32
× 32 → 64 bits

2–4* — —

DMULU.L Rm,Rn Unsigned operation of
Rn × Rm → MACH, MACL 32
× 32 → 64 bits

2–4* — —

DT Rn Rn – 1 → Rn, if Rn = 0, 1 →
T, else 0 → T

1 Comparison
result

—

EXTS.B Rm,Rn A byte in Rm is sign-extended
→ Rn

1 —

EXTS.W Rm,Rn A word in Rm is sign-
extended → Rn

1 —

EXTU.B Rm,Rn A byte in Rm is zero-extended
→ Rn

1 —

EXTU.W Rm,Rn A word in Rm is zero-
extended → Rn

1 —

MAC.L @Rm+,@Rn+ Signed operation of (Rn) ×
(Rm) + MAC → MAC

3/(2–4)* — —

MAC.W @Rm+,@Rn+Signed operation of (Rn) ×
(Rm) + MAC → MAC
(SH-2) 16 × 16 + 64 → 64 bits
(SH-1) 16 × 16 + 42 → 42 bits

3/(2)* —

MUL.L Rm,Rn Rn × Rm → MACL
32 × 32 → 32 bits

2–4* — —

MULS.W Rm,Rn Signed operation of Rn ×
Rm → MAC
16 × 16 → 32 bits

1–3* —

MULU.W Rm,Rn Unsigned operation of Rn ×
Rm → MAC
16 × 16 → 32 bits

1–3* —

95

Table 5.4 Arithmetic Instructions (cont)

Applicable
Instructions

Instruction Operation Cycles T Bit SH-1 SH-2
SH-
DSP

NEG Rm,Rn 0–Rm → Rn 1 —

NEGC Rm,Rn 0–Rm–T → Rn, Borrow → T 1 Borrow

SUB Rm,Rn Rn–Rm → Rn 1 —

SUBC Rm,Rn Rn–Rm–T → Rn, Borrow → T 1 Borrow

SUBV Rm,Rn Rn–Rm → Rn, Underflow → T 1 Underflow

Note: The normal minimum number of execution cycles. (The number in parentheses is the
number of cycles when there is contention with following instructions.)

5.1.3 Logic Operation Instructions

Table 5.5 Logic Operation Instructions

Applicable
Instructions

Instruction Operation Cycles T Bit SH-1 SH-2
SH-
DSP

AND Rm,Rn Rn & Rm → Rn 1 —

AND #imm,R0 R0 & imm → R0 1 —

AND.B #imm,@(R0,GBR) (R0 + GBR) & imm →
(R0 + GBR)

3 —

NOT Rm,Rn ~Rm → Rn 1 —

OR Rm,Rn Rn | Rm → Rn 1 —

OR #imm,R0 R0 | imm → R0 1 —

OR.B #imm,@(R0,GBR) (R0 + GBR) | imm →
(R0 + GBR)

3 —

TAS.B @Rn If (Rn) is 0, 1 → T;
if not 0, 0 → T.
Also, 1 → MSB of (Rn)
regardless of value of
(Rn)

4 Test
result

TST Rm,Rn Rn & Rm; if the result is
0, 1 → T,
If not 0, 0 → T

1 Test
result

96

Table 5.5 Logic Operation Instructions (cont)

Applicable
Instructions

Instruction Operation Cycles T Bit SH-1 SH-2
SH-
DSP

TST #imm,R0 R0 & imm; if the result
is 0, 1 → T,
If not 0, 0 → T

1 Test
result

TST.B #imm,@(R0,GBR) (R0 + GBR) & imm; if
the result is 0, 1 → T,
If not 0, 0 → T

3 Test
result

XOR Rm,Rn Rn ^ Rm → Rn 1 —

XOR #imm,R0 R0 ^ imm → R0 1 —

XOR.B #imm,@(R0,GBR) (R0 + GBR) ^ imm →
(R0 + GBR)

3 —

5.1.4 Shift Instructions

Table 5.6 Shift Instructions

Applicable
Instructions

Instruction Operation Cycles T Bit SH-1 SH-2
SH-
DSP

ROTL Rn T ← Rn ← MSB 1 MSB

ROTR Rn LSB → Rn → T 1 LSB

ROTCL Rn T ← Rn ← T 1 MSB

ROTCR Rn T → Rn → T 1 LSB

SHAL Rn T ← Rn ← 0 1 MSB

SHAR Rn MSB → Rn → T 1 LSB

SHLL Rn T ← Rn ← 0 1 MSB

SHLR Rn 0 → Rn → T 1 LSB

SHLL2 Rn Rn << 2 → Rn 1 —

SHLR2 Rn Rn >> 2 → Rn 1 —

SHLL8 Rn Rn << 8 → Rn 1 —

SHLR8 Rn Rn >> 8 → Rn 1 —

SHLL16 Rn Rn << 16 → Rn 1 —

SHLR16 Rn Rn >> 16 → Rn 1 —

97

5.1.5 Branch Instructions

Table 5.7 Branch Instructions

Applicable
Instructions

Instruction Operation Cycles T Bit SH-1 SH-2
SH-
DSP

BF label If T = 0, disp × 2 + PC → PC; if T = 1,
nop (where label is disp + PC)

3/1* —

BF/S label Delayed branch, if T = 0, disp × 2 +
PC → PC; if T = 1, nop

2/1* —

BT label Delayed branch, if T = 1, disp × 2 +
PC → PC; if T = 0, nop

3/1* —

BT/S label If T = 1, disp × 2 + PC → PC;
if T = 0, nop

2/1* — —

BRA label Delayed branch, disp × 2 + PC → PC 2 —

BRAF Rm Delayed branch, Rm + PC → PC 2 — —

BSR label Delayed branch, PC → PR,
disp × 2 + PC → PC

2 —

BSRF Rm Delayed branch, PC → PR,
Rm + PC → PC

2 — —

JMP @Rm Delayed branch, Rm → PC 2 —

JSR @Rm Delayed branch, PC → PR, Rm →
PC

2 —

RTS Delayed branch, PR → PC 2 —

Note: One state when it does not branch.

98

5.1.6 System Control Instructions

Table 5.8 System Control Instructions

Applicable
Instructions

Instruction Operation Cycles T Bit SH-1 SH-2
SH-
DSP

CLRMAC 0→MACH,MACL 1 —

CLRT 0→T 1 0

LDC Rm,SR Rm→SR 1 LSB

LDC Rm,GBR Rm→GBR 1 —

LDC Rm,VBR Rm→VBR 1 —

LDC Rm,MOD Rm→MOD 1 — — —

LDC Rm,RE Rm→RE 1 — — —

LDC Rm,RS Rm→RS 1 — — —

LDC.L @Rm+,SR (Rm)→SR,Rm+4→Rm 3 LSB

LDC.L @Rm+,GBR (Rm)→GBR,Rm+4→Rm 3 —

LDC.L @Rm+,VBR (Rm)→VBR,Rm+4→Rm 3 —

LDC.L @Rm+,MOD (Rm)→MOD,Rm+4→Rm 3 — — —

LDC.L @Rm+,RE (Rm)→RE,Rm+4→Rm 3 — — —

LDC.L @Rm+,RS (Rm)→RS,Rm+4→Rm 3 — — —

LDRE @(disp,PC) disp × 2+PC→RE 1 — — —

LDRS @(disp,PC) disp × 2+PC→RS 1 — — —

LDS Rm,MACH Rm→MACH 1 —

LDS Rm,MACL Rm→MACL 1 —

LDS Rm,PR Rm→PR 1 —

LDS Rm,DSR Rm→DSR 1 — — —

LDS Rm,A0 Rm→A0 1 — — —

LDS Rm,X0 Rm→X0 1 — — —

LDS Rm,X1 Rm→X1 1 — — —

LDS Rm,Y0 Rm→Y0 1 — — —

LDS Rm,Y1 Rm→Y1 1 — — —

LDS.L @Rm+,MACH (Rm)→MACH,Rm+4→Rm 1 —

LDS.L @Rm+,MACL (Rm)→MACL,Rm+4→Rm 1 —

LDS.L @Rm+,PR (Rm)→PR,Rm+4→Rm 1 —

LDS.L @Rm+,DSR (Rm)→DSR,Rm+4→Rm 1 — — —

99

Table 5.8 System Control Instructions (cont)

Applicable
Instructions

Instruction Operation Cycles T Bit SH-1 SH-2
SH-
DSP

LDS.L @Rm+,A0 (Rm)→A0,Rm+4→Rm 1 — — —

LDS.L @Rm+,X0 (Rm)→X0,Rm+4→Rm 1 — — —

LDS.L @Rm+,X1 (Rm)→X1,Rm+4→Rm 1 — — —

LDS.L @Rm+,Y0 (Rm)→Y0,Rm+4→Rm 1 — — —

LDS.L @Rm+,Y1 (Rm)→Y1,Rm+4→Rm 1 — — —

NOP No operation 1 —

RTE Delayed branch, stack
area,→PC/SR

4 LSB

SETRC Rn Rn[11:0]→RC (SR[27:16]) 1 — — —

SETRC #imm imm→RC(SR[23:16]),zeros
→SR[27:24]

1 — — —

SETT 1→T 1 —

SLEEP Sleep 3* —

STC SR,Rn SR→Rn 1 —

STC GBR,Rn GBR→Rn 1 —

STC VBR,Rn VBR→Rn 1 —

STC MOD,Rn MOD→Rn 1 — — —

STC RE,Rn RE→Rn 1 — — —

STC RS,Rn RS→Rn 1 — — —

STC.L SR,@-Rn Rn–4→Rn,SR→(Rn) 2 —

STC.L GBR,@-Rn Rn–4→Rn,GBR→(Rn) 2 —

STC.L VBR,@-Rn Rn–4→Rn,VBR→(Rn) 2 —

STC.L MOD,@-Rn Rn–4→Rn,MOD→(Rn) 2 — — —

STC.L RE,@-Rn Rn–4→Rn,RE→(Rn) 2 — — —

STC.L RS,@-Rn Rn–4→Rn,RS→(Rn) 2 — — —

STS MACH,Rn MACH→Rn 1 —

STS MACL,Rn MACL→Rn 1 —

STS PR,Rn PR→Rn 1 —

STS DSR,Rn DSR→Rn 1 — — —

STS A0,Rn A0→Rn 1 — — —

STS X0,Rn X0→Rn 1 — — —

100

Table 5.8 System Control Instructions (cont)

Applicable
Instructions

Instruction Operation Cycles T Bit SH-1 SH-2
SH-
DSP

STS X1,Rn X1→Rn 1 — — —

STS Y0,Rn Y0→Rn 1 — — —

STS Y1,Rn Y1→Rn 1 — — —

STS.L MACH,@-Rn Rn–4→Rn,MACH→(Rn) 1 —

STS.L MACL,@-Rn Rn–4→Rn,MACL→(Rn) 1 —

STS.L PR,@-Rn Rn–4→Rn,PR→(Rn) 1 —

STS.L DSR,@-Rn Rn–4→Rn,DSR→(Rn) 1 — — —

STS.L A0,@-Rn Rn–4→Rn,A0→(Rn) 1 — — —

STS.L X0,@-Rn Rn–4→Rn,X0→(Rn) 1 — — —

STS.L X1,@-Rn Rn–4→Rn,X1→(Rn) 1 — — —

STS.L Y0,@-Rn Rn–4→Rn,Y0→(Rn) 1 — — —

STS.L Y1,@-Rn Rn–4→Rn,Y1→(Rn) 1 — — —

TRAPA #imm PC/SR→stack area,
(imm × 4+VBR)→PC

6 —

Note: The number of execution states before the chip enters the sleep state. This table lists the
minimum execution cycles. In practice, the number of execution cycles increases when the
instruction fetch is in contention with data access or when the destination register of a load
instruction (memory → register) is the same as the register used by the next instruction, or
when the branch destination address of a branch instruction is a 4n + 2 address.

5.1.7 CPU Instructions That Support DSP Functions

Several system control instructions have been added to the CPU core instructions to support DSP
functions. The RS, RE, and MOD registers (which support modulo addressing) have been added,
and an RC counter has been added to the SR register. LDC and STC instructions have been added
to access these. LDS and STS instructions have also been added for accessing the DSP registers
DSR, A0, X0, X1, Y0, and Y1.

A SETRC instruction has been added for setting the value of the repeat counter (RC) in the SR
register (bits 16–27). When the operand of the SETRC instruction is immediate, 8 bits of
immediate data are set in bits 16–23 of the SR register and bits 24–27 are cleared. When the
operand is a register, the 12 bits 0–11 of the register are set in bits 16–27 of the SR register.

In addition to the new LDC instructions, the LDRE and LDRS instructions have been added for
setting the repeat start address and repeat end address in the RS and RE registers.

Table 5.9 shows the added instructions.

101

Table 5.9 Added CPU Instructions

Instruction Operation Code Cycles T Bit

LDC Rm,MOD Rm→MOD 0100mmmm01011110 1 —

LDC Rm,RE Rm→RE 0100mmmm01111110 1 —

LDC Rm,RS Rm→RS 0100mmmm01101110 1 —

LDC.L @Rm+,MOD (Rm)→MOD,Rm+4→Rm 0100mmmm01010111 3 —

LDC.L @Rm+,RE (Rm)→RE,Rm+4→Rm 0100mmmm01110111 3 —

LDC.L @Rm+,RS (Rm)→RS,Rm+4→Rm 0100mmmm01100111 3 —

STC MOD,Rn MOD→Rn 0000nnnn01010010 1 —

STC RE,Rn RE→Rn 0000nnnn01110010 1 —

STC RS,Rn RS→Rn 0000nnnn01100010 1 —

STC.L MOD,@-Rn Rn–4→Rn,MOD→(Rn) 0100nnnn01010011 2 —

STC.L RE,@-Rn Rn–4→Rn,RE→(Rn) 0100nnnn01110011 2 —

STC.L RS,@-Rn Rn–4→Rn,RS→(Rn) 0100nnnn01100011 2 —

LDS Rm,DSR Rm→DSR 0100mmmm01101010 1 —

LDS.L @Rm+,DSR (Rm)→DSR,Rm+4→Rm 0100mmmm01100110 1 —

LDS Rm,A0 Rm→A0 0100mmmm01110110 1 —

LDS.L @Rm+,A0 (Rm)→A0,Rm+4→Rm 0100mmmm01100110 1 —

LDS Rm,X0 Rm→X0 0100mmmm01110110 1 —

LDS.L @Rm+,X0 (Rm)→X0,Rm+4→Rm 0100mmmm01100110 1 —

LDS Rm,X1 Rm→X1 0100mmmm01110110 1 —

LDS.L @Rm+,X1 (Rm)→X1,Rm+4→Rm 0100mmmm01100110 1 —

LDS Rm,Y0 Rm→Y0 0100mmmm01110110 1 —

LDS.L @Rm+,Y0 (Rm)→Y0,Rm+4→Rm 0100mmmm01100110 1 —

LDS Rm,Y1 Rm→Y1,Rm+4→Rm 0100mmmm01110110 1 —

LDS.L @Rm,Y1 (Rm)→Y1,Rm+4→Rm 0100mmmm01100110 1 —

STS DSR,Rn DSR→Rn 0000nnnn01101010 1 —

STS.L DSR,@-Rn Rn–4→Rn,DSR→(Rn) 0100nnnn01100010 1 —

STS A0,Rn A0→Rn 0000nnnn01111010 1 —

STS.L A0,@-Rn Rn–4→Rn,A0→(Rn) 0100nnnn01110010 1 —

STS X0,Rn X0→Rn 0000nnnn01111010 1 —

STS.L X0,@-Rn Rn–4→Rn,X0→(Rn) 0100nnnn01110010 1 —

STS X1,Rn X1→Rn 0000nnnn01111010 1 —

STS.L X1,@-Rn Rn–4→Rn,X1→(Rn) 0100nnnn01110010 1 —

102

Table 5.9 Added CPU Instructions (cont)

Instruction Operation Code Cycles T Bit

STS Y0,Rn Y0→Rn 0000nnnn10101010 1 —

STS.L Y0,@-Rn Rn–4→Rn,Y0→(Rn) 0100nnnn10100010 1 —

STS Y1,Rn Y1→Rn 0000nnnn10111010 1 —

STS.L Y1,@-Rn Rn–4→Rn,Y1→(Rn) 0100nnnn10110010 1 —

SETRC Rm Rm[11:0]→RC (SR[27:16])
repeat flag → RF1, RF0

0100mmmm00010100 1 —

SETRC #imm imm→RC(SR[23:16]),
zeros→SR[27:24], repeat
flag → RF1, RF0

10000010iiiiiiii 1 —

LDRS @(disp,pc) disp × 2+PC→RS 10001100dddddddd 1 —

LDRE @(disp,pc) disp × 2+PC→RE 10001110dddddddd 1 —

5.2 DSP Data Transfer Instruction Set

Table 5.10 shows the DSP data transfer instructions by category.

Table 5.10 DSP Data Transfer Instruction Categories

Category
Instruction
Types

Operation
Code Function

No. of
Instructions

Double data transfer
instructions

4 NOPX X memory no operation 14

MOVX X memory data transfer

NOPY Y memory no operation

MOVY Y memory data transfer

Single data transfer
instructions

1 MOVS Single data transfer 16

Total 5 Total 30

The data transfer instructions are divided into two groups, double data transfers and single data
transfers. Double data transfers are combined with DSP operation instructions to create DSP
parallel processing instructions. Parallel processing instructions are 32 bits long and include a
double data transfer instruction in field A. Double data transfers that are not parallel processing
instructions and single data transfer instructions are 16 bits long.

In double data transfers, X memory and Y memory can be accessed simultaneously in parallel.
One instruction is specified each for the respective X and Y memory data accesses. The Ax
pointer is used for accessing X memory; the Ay pointer is used for accessing Y memory. Double
data transfers can only access X and Y memory.

103

Single data transfers can be accessed from any area. In single data transfers, the Ax pointer and
two other pointers are used as the As pointer.

5.2.1 Double Data Transfer Instructions (X Memory Data)

Table 5.11 Double Data Transfer Instructions (X Memory Data)

Instruction Operation Code Cycles T Bit

NOPX No Operation 1111000*0*0*00** 1 —

MOVX.W
@Ax,Dx

(Ax)→MSW of Dx,0→LSW of
Dx

111100A*D*0*01** 1 —

MOVX.W
@Ax+,Dx

(Ax)→MSW of Dx,0→LSW of
Dx,Ax+2→Ax

111100A*D*0*10** 1 —

MOVX.W
@Ax+Ix,Dx

(Ax)→MSW of Dx,0→LSW of
Dx,Ax+Ix→Ax

111100A*D*0*11** 1 —

MOVX.W
Da,@Ax

MSW of Da→(Ax) 111100A*D*1*01** 1 —

MOVX.W
Da,@Ax+

MSW of Da→(Ax),Ax+2→Ax 111100A*D*1*10** 1 —

MOVX.W
Da,@Ax+Ix

MSW of Da→(Ax),Ax+Ix→Ax 111100A*D*1*11** 1 —

5.2.2 Double Data Transfer Instructions (Y Memory Data)

Table 5.12 Double Data Transfer Instructions (Y Memory Data)

Instruction Operation Code Cycles T Bit

NOPY No Operation 111100*0*0*0**00 1 —

MOVY.W
@Ay,Dy

(Ay)→MSW of Dy,0→LSW of
Dy

111100*A*D*0**01 1 —

MOVY.W
@Ay+,Dy

(Ay)→MSW of Dy,0→LSW of
Dy, Ay+2→Ay

111100*A*D*0**10 1 —

MOVY.W
@Ay+Iy,Dy

(Ay)→MSW of Dy,0→LSW of
Dy, Ay+Iy→Ay

111100*A*D*0**11 1 —

MOVY.W
Da,@Ay

MSW of Da→(Ay) 111100*A*D*1**01 1 —

MOVY.W
Da,@Ay+

MSW of Da→(Ay),Ay+2→Ay 111100*A*D*1**10 1 —

MOVY.W
Da,@Ay+Iy

MSW of Da→(Ay),Ay+Iy→Ay 111100*A*D*1**11 1 —

104

5.2.3 Single Data Transfer Instructions

Table 5.13 Single Data Transfer Instructions

Instruction Operation Code Cycles T Bit

MOVS.W
@-As,Ds

As–2→As,(As)→MSW of
Ds,0→LSW of Ds

111101AADDDD0000 1 —

MOVS.W @As,Ds (As)→MSW of Ds,0→LSW of
Ds

111101AADDDD0100 1 —

MOVS.W @As+,Ds (As)→MSW of Ds,0→LSW of
Ds, As+2→As

111101AADDDD1000 1 —

MOVS.W
@As+Ix,Ds

(As)→MSW of Ds,0→LSW of
Ds, As+Ix→As

111101AADDDD1100 1 —

MOVS.W
Ds,@-As

As–2→As,MSW of Ds→(As)* 111101AADDDD0001 1 —

MOVS.W Ds,@As MSW of Ds→(As)* 111101AADDDD0101 1 —

MOVS.W Ds,@As+ MSW of Ds→(As),As+2→As* 111101AADDDD1001 1 —

MOVS.W
Ds,@As+Is

MSW of Ds→(As),As+Is→As* 111101AADDDD1101 1 —

MOVS.L
@-As,Ds

As–4→As,(As)→Ds 111101AADDDD0010 1 —

MOVS.L @As,Ds (As)→Ds 111101AADDDD0110 1 —

MOVS.L @As+,Ds (As)→Ds,As+4→As 111101AADDDD1010 1 —

MOVS.L
@As+Is,Ds

(As)→Ds,As+Is→As 111101AADDDD1110 1 —

MOVS.L Ds,
@-As

As–4→As,Ds→(As) 111101AADDDD0011 1 —

MOVS.L Ds,@As Ds→(As) 111101AADDDD0111 1 —

MOVS.L Ds,@As+ Ds→(As),As+4→As 111101AADDDD1011 1 —

MOVS.L
Ds,@As+Is

Ds→(As),As+Is→As 111101AADDDD1111 1 —

Note: When guard bit registers A0G and A1G (eight-bit registers) are specified as the source
operand Ds, the data is sign-extended and used.

105

Table 5.14 lists the correspondence between DSP data transfer operands and registers. CPU core
registers are used as pointer addresses to indicate memory addresses.

Table 5.14 Correspondence between DSP Data Transfer Operands and Registers

SuperH (CPU Core) Registers

Oper-
and R0 R1

R2
(As2)

R3
(As3)

R4
(Ax0)
(As0)

R5
(Ax1)
(Ax0)

R6
(Ay0)

R7
(Ay1)

R8
(Ix)

R9
(Iy)

Ax Yes Yes

Ix (Is) Yes

Dx

Ay Yes Yes

Iy Yes

Dy

Da

As Yes Yes Yes Yes

Ds

Oper- DSP Registers

and X0 X1 Y0 Y1 M0 M1 A0 A1 A0G A1G

Ax

Ix (Is)

Dx Yes Yes

Ay

Iy

Dy Yes Yes

Da Yes Yes

As

Ds Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Note: Yes indicates that the register can be set.

5.3 DSP Operation Instruction Set

DSP operation instructions are digital signal processing instructions that are processed by the DSP
unit. Their instruction code is 32 bits long. Multiple instructions can be processed in parallel. The
instruction code is divided into two fields, A and B. Field A specifies a parallel data transfer
instruction and field B specifies a single or double data operation instruction. Instructions can be

106

specified independently, and their execution is independent and in parallel. Parallel data transfer
instructions specified in field A are exactly the same as double data transfer instructions.

The data operation instructions of field B are of three types: double data operation instructions,
conditional single data operation instructions, and unconditional single data operation instructions.
Table 5.15 shows the format of DSP operation instructions. The operands are selected
independently from the DSP register. Table 5.16 shows the correspondence of DSP operation
instruction operands and registers.

Table 5.15 Instruction Formats for DSP Operation Instructions

Classification Instruction Forms Instruction

Double data operation instructions (6 operands) ALUop. Sx, Sy, Du

MLTop. Se, Sf, Dg

PADD PMULS,

PSUB PMULS

Conditional single
data operation
instructions

3 operands ALUop. Sx, Sy, Dz

DCT ALUop. Sx, Sy,
Dz

DCF ALUop. Sx, Sy,
Dz

PADD, PAND, POR,
PSHA, PSHL, PSUB,
PXOR

2 operands ALUop. Sx, Dz

DCT ALUop. Sx, Dz

DCF ALUop. Sx, Dz

ALUop. Sy, Dz

DCT ALUop. Sy, Dz

DCF ALUop. Sy, Dz

PCOPY, PDEC,
PDMSB, PINC, PLDS,
PSTS, PNEG

1 operand ALUop. Dz

DCT ALUop. Dz

DCF ALUop. Dz

PCLR, PSHA #imm,
PSHL #imm

Unconditional single
data operation
instructions

3 operands ALUop. Sx, Sy, Du

MLTop. Se, Sf, Dg

PADDC, PSUBC,
PMULS

2 operands ALUop. Sx, Dz

ALUop. Sy, Dz

PCMP, PABS, PRND

107

Table 5.16 Correspondence between DSP Operation Instruction Operands and Registers

ALU and BPU Instructions Multiplication Instructions

Register Sx Sy Dz Du Se Sf Dg

A0 Yes — Yes Yes — — Yes

A1 Yes — Yes Yes Yes Yes Yes

M0 — Yes Yes — — — Yes

M1 — Yes Yes — — — Yes

X0 Yes — Yes Yes Yes Yes —

X1 Yes — Yes — Yes — —

Y0 — Yes Yes Yes Yes Yes —

Y1 — Yes Yes — — Yes —

When writing parallel instructions, first write the field B instruction, then the field A instruction.
The following is an example of a parallel processing program.

PADD A0,M0,A0 PMULSX0,Y0,M0 MOVX.W @R4+,X0 MOVY.W @R6+,Y0[;]

DCF PINC X1,A1 MOVX.W A0,@R5+R8 MOVY.W@R7+,Y0[;]

PCMP X1,M0 MOVX.W @R4 [NOPY][;]

Text in brackets ([]) can be omitted. The no operation instructions NOPX and NOPY can be
omitted. Semicolons (;) are used to demarcate instruction lines, but can be omitted. If semicolons
are used, the space after the semicolon can be used for comments.

The individual status codes (DC, N, Z, V, GT) of the DSR register is always updated by
unconditional ALU operation instructions and shift operation instructions. Conditional instructions
do not update the status codes, even if the conditions have been met. Multiplication instructions
also do not update the status codes. DC bit definitions are determined by the specifications of the
CS bits in the DSR register.

Table 5.17 shows the DSP operation instructions by category.

108

Table 5.17 DSP Operation Instruction Categories

Classification
Instruction
Types

Operation
Code Function

No. of In-
structions

ALU
arith-

ALU fixed decimal
point operation

11 PABS Absolute value
operation

28

metic instructions PADD Addition
opera-
tion PADD

PMULS
Addition and signed
multiplicationinstruc-

PADDC Addition with carrytions

PCLR Clear

PCMP Compare

PCOPY Copy

PNEG Invert sign

PSUB Subtraction

PSUB
PMULS

Subtraction and signed
multiplication

PSUBC Subtraction with borrow

ALU integer
operation

2 PDEC Decrement 12

instructions PINC Increment

MSB detection
instruction

1 PDMSB MSB detection 6

Rounding operation
instruction

1 PRND Rounding 2

ALU logical operation 3 PAND Logical AND
instructions POR Logical OR 9

PXOR Logical exclusive OR

Fixed decimal point
multiplication instruction

1 PMULS Signed multiplication 1

Shift Arithmetic shift
operation instruction

1 PSHA Arithmetic shift 4

Logical shift
operation instruction

1 PSHL Logical shift 4

System control instructions 2 PLDS System register load 12

PSTS Store from system
register

Total 23 Total 78

109

5.3.1 ALU Arithmetic Operation Instructions

Table 5.18 ALU Fixed Decimal Point Operation Instructions

Instruction Operation Code Cycles DC Bit

PABS Sx,Dz If Sx≥0,Sx→Dz

If Sx<0,0– Sx→Dz

111110**********

10001000xx00zzzz

1 Update

PABS Sy,Dz If Sy≥0,Sy→Dz

If Sy<0,0–Sy→Dz

111110**********

1010100000yyzzzz

1 Update

PADD Sx,Sy,Dz Sx+Sy→Dz 111110**********

10110001xxyyzzzz

1 Update

DCT PADD
Sx,Sy,Dz

if DC=1,Sx+Sy→Dz if 0,nop 111110**********

10110010xxyyzzzz

1 —

DCF PADD
Sx,Sy,Dz

if DC=0,Sx+Sy→Dz if 1,nop 111110**********

10110011xxyyzzzz

1 —

PADD Sx,Sy,Du

PMULS Se,Sf,Dg

Sx+Sy→Du

MSW of Se × MSW of
Sf→Dg

111110**********

0111eeffxxyygguu

1 Update

PADDC Sx,Sy,Dz Sx+Sy+DC→Dz 111110**********

10110000xxyyzzzz

1 Update

PCLR Dz H'00000000→Dz 111110**********

100011010000zzzz

1 Update

DCT PCLR Dz if DC=1,H'00000000→Dz

if 0,nop

111110**********

100011100000zzzz

1 —

DCF PCLR Dz if DC=0,H'00000000→Dz

if 1,nop

111110**********

100011110000zzzz

1 —

PCMP Sx,Sy Sx–Sy 111110**********

10000100xxyy0000

1 Update

PCOPY Sx,Dz Sx→Dz 111110**********

11011001xx00zzzz

1 Update

PCOPY Sy,Dz Sy→Dz 111110**********

1111100100yyzzzz

1 Update

DCT PCOPY
Sx,Dz

if DC=1,Sx→Dz if 0,nop 111110**********

11011010xx00zzzz

1 —

110

Table 5.18 ALU Fixed Decimal Point Operation Instructions (cont)

Instruction Operation Code Cycles DC Bit

DCT PCOPY
Sy,Dz

if DC=1,Sy→Dz if 0,nop 111110**********

1111101000yyzzzz

1 —

DCF PCOPY
Sx,Dz

if DC=0,Sx→Dz if 1,nop 111110**********

11011011xx00zzzz

1 —

DCF PCOPY
Sy,Dz

if DC=0,Sy→Dz if 1,nop 111110**********

1111101100yyzzzz

1 —

PNEG Sx,Dz 0–Sx→Dz 111110**********

11001001xx00zzzz

1 Update

PNEG Sy,Dz 0–Sy→Dz 111110**********

1110100100yyzzzz

1 Update

DCT PNEG Sx,Dz if DC=1,0–Sx→Dz

if 0,nop

111110**********

11001010xx00zzzz

1 —

DCT PNEG Sy,Dz if DC=1,0–Sy→Dz

if 0,nop

111110**********

1110101000yyzzzz

1 —

DCF PNEG Sx,Dz if DC=0,0–Sx→Dz

if 1,nop

111110**********

11001011xx00zzzz

1 —

DCF PNEG Sy,Dz if DC=0,0–Sy→Dz

if 1,nop

111110**********

1110101100yyzzzz

1 —

PSUB Sx,Sy,Dz Sx–Sy→Dz 111110**********

10100001xxyyzzzz

1 Update

DCT PSUB
Sx,Sy,Dz

if DC=1,Sx–Sy→Dz if 0,nop 111110**********

10100010xxyyzzzz

1 —

DCF PSUB
Sx,Sy,Dz

if DC=0,Sx–Sy→Dz if 1,nop 111110**********

10100011xxyyzzzz

1 —

PSUB Sx,Sy,Du

PMULS Se,Sf,Dg

Sx–Sy→Du

MSW of Se × MSW of
Sf→Dg

111110**********

0110eeffxxyygguu

1 Update

PSUBC Sx,Sy,Dz Sx–Sy–DC→Dz 111110**********

10100000xxyyzzzz

1 Update

111

Table 5.19 ALU Integer Operation Instructions

Instruction Operation Code Cycles DC Bit

PDEC Sx,Dz MSW of Sx – 1 → MSW of
Dz, clear LSW of Dz

111110**********

10001001xx00zzzz

1 Update

PDEC Sy,Dz MSW of Sy – 1 → MSW of
Dz, clear LSW of Dz

111110**********

1010100100yyzzzz

1 Update

DCT PDEC Sx,Dz If DC=1, MSW of Sx – 1 →
MSW of Dz, clear LSW of
Dz; if 0, nop

111110**********

10001010xx00zzzz

1 —

DCT PDEC Sy,Dz If DC=1, MSW of Sy – 1 →
MSW of Dz, clear LSW of
Dz; if 0, nop

111110**********

1010101000yyzzzz

1 —

DCF PDEC Sx,Dz If DC=0, MSW of Sx – 1 →
MSW of Dz, clear LSW of
Dz; if 1, nop

111110**********

10001011xx00zzzz

1 —

DCF PDEC Sy,Dz If DC=0, MSW of Sy – 1 →
MSW of Dz, clear LSW of
Dz; if 1, nop

111110**********

1010101100yyzzzz

1 —

PINC Sx,Dz MSW of Sx + 1 → MSW of
Dz, clear LSW of Dz

111110**********

10011001xx00zzzz

1 Update

PINC Sy,Dz MSW of Sy + 1 → MSW of
Dz, clear LSW of Dz

111110**********

1011100100yyzzzz

1 Update

DCT PINC Sx,Dz If DC=1, MSW of Sx + 1 →
MSW of Dz, clear LSW of
Dz; if 0, nop

111110**********

10011010xx00zzzz

1 —

DCT PINC Sy,Dz If DC=1, MSW of Sy + 1 →
MSW of Dz, clear LSW of
Dz; if 0, nop

111110**********

1011101000yyzzzz

1 —

DCF PINC Sx,Dz If DC=0, MSW of Sx + 1 →
MSW of Dz, clear LSW of
Dz; if 1, nop

111110**********

10011011xx00zzzz

1 —

DCF PINC Sy,Dz If DC=0, MSW of Sy + 1 →
MSW of Dz, clear LSW of
Dz; if 1, nop

111110**********

1011101100yyzzzz

1 —

112

Table 5.20 MSB Detection Instructions

Instruction Operation Code Cycles DC Bit

PDMSB Sx,Dz Sx data MSB position →
MSW of Dz, clear LSW of
Dz

111110**********

10011101xx00zzzz

1 Update

PDMSB Sy,Dz Sy data MSB position →
MSW of Dz, clear LSW of
Dz

111110**********

1011110100yyzzzz

1 Update

DCT PDMSB
Sx,Dz

If DC=1, Sx data MSB
position → MSW of Dz,
clear LSW of Dz; if 0, nop

111110**********

10011110xx00zzzz

1 —

DCT PDMSB
Sy,Dz

If DC=1, Sy data MSB
position → MSW of Dz,
clear LSW of Dz; if 0, nop

111110**********

1011111000yyzzzz

1 —

DCF PDMSB
Sx,Dz

If DC=0, Sx data MSB
position → MSW of Dz,
clear LSW of Dz; if 1, nop

111110**********

10011111xx00zzzz

1 —

DCF PDMSB
Sy,Dz

If DC=0, Sy data MSB
position → MSW of Dz,
clear LSW of Dz; if 1, nop

111110**********

1011111100yyzzzz

1 —

Table 5.21 Rounding Operation Instructions

Instruction Operation Code Cycles DC Bit

PRND Sx,Dz Sx+H'00008000→Dz

clear LSW of Dz

111110**********

10011000xx00zzzz

1 Update

PRND Sy,Dz Sy+H'00008000→Dz

clear LSW of Dz

111110**********

1011100000yyzzzz

1 Update

113

5.3.2 ALU Logical Operation Instructions

Table 5.22 ALU Logical Operation Instructions

Instruction Operation Code Cycles DC Bit

PAND Sx,Sy,Dz Sx & Sy → Dz, clear LSW
of Dz

111110**********

10010101xxyyzzzz

1 Update

DCT PAND
Sx,Sy,Dz

If DC=1, Sx & Sy → Dz,
clear LSW of Dz; if 0, nop

111110**********

10010110xxyyzzzz

1 —

DCF PAND
Sx,Sy,Dz

If DC=0, Sx & Sy → Dz,
clear LSW of Dz; if 1, nop

111110**********

10010111xxyyzzzz

1 —

POR Sx,Sy,Dz Sx | Sy → Dz, clear LSW of
Dz

111110**********

10110101xxyyzzzz

1 Update

DCT POR
Sx,Sy,Dz

If DC=1, Sx | Sy → Dz,
clear LSW of Dz; if 0, nop

111110**********

10110110xxyyzzzz

1 —

DCF POR
Sx,Sy,Dz

If DC=0, Sx | Sy → Dz,
clear LSW of Dz; if 1, nop

111110**********

10110111xxyyzzzz

1 —

PXOR Sx,Sy,Dz Sx ^ Sy → Dz, clear LSW
of Dz

111110**********

10100101xxyyzzzz

1 Update

DCT PXOR
Sx,Sy,Dz

If DC=1, Sx ^ Sy → Dz,
clear LSW of Dz; if 0, nop

111110**********

10100110xxyyzzzz

1 —

DCF PXOR
Sx,Sy,Dz

If DC=0, Sx ^ Sy → Dz,
clear LSW of Dz; if 1, nop

111110**********

10100111xxyyzzzz

1 —

5.3.3 Fixed Decimal Point Multiplication Instructions

Table 5.23 Fixed Decimal Point Multiplication Instructions

Instruction Operation Code Cycles DC Bit

PMULS Se,Sf,Dg MSW of Se × MSW of
Sf→Dg

111110**********

0100eeff0000gg00

1 —

114

5.3.4 Shift Operation Instructions

Table 5.24 Arithmetic Shift Instructions

Instruction Operation Code Cycles DC Bit

PSHA Sx,Sy,Dz if Sy≥0,Sx<<Sy→Dz

if Sy<0,Sx>>Sy→Dz

111110**********

10010001xxyyzzzz

1 Update

DCT PSHA
Sx,Sy,Dz

if DC=1 &
Sy≥0,Sx<<Sy→Dz

if DC=1 &
Sy<0,Sx>>Sy→Dz

if DC=0,nop

111110**********

10010010xxyyzzzz

1 —

DCF PSHA
Sx,Sy,Dz

if DC=0 &
Sy≥0,Sx<<Sy→Dz

if DC=0 &
Sy<0,Sx>>Sy→Dz

if DC=1,nop

111110**********

10010011xxyyzzzz

1 —

PSHA #imm,Dz if imm≥0,Dz<<imm→Dz

if imm<0,Dz>>imm→Dz

111110**********

00000iiiiiiizzzz

1 Update

115

Table 5.25 Logical Shift Operation Instructions

Instruction Operation Code Cycles DC Bit

PSHL Sx,Sy,Dz if Sy≥0,Sx<<Sy→Dz, clear
LSW of Dz

if Sy<0,Sx>>Sy→Dz, clear
LSW of Dz

111110**********

10000001xxyyzzzz

1 Update

DCT PSHL
Sx,Sy,Dz

if DC=1 &
Sy≥0,Sx<<Sy→Dz, clear
LSW of Dz

if DC=1 &
Sy<0,Sx>>Sy→Dz, clear
LSW of Dz

if DC=0,nop

111110**********

10000010xxyyzzzz

1 —

DCF PSHL
Sx,Sy,Dz

if DC=0 &
Sy≥0,Sx<<Sy→Dz, clear
LSW of Dz

if DC=0 &
Sy<0,Sx>>Sy→Dz, clear
LSW of Dz

if DC=1,nop

111110**********

10000011xxyyzzzz

1 —

 PSHL #imm,Dz if imm≥0,Dz<<imm→Dz,
clear LSW of Dz

if imm<0,Dz>>imm→Dz,
clear LSW of Dz

111110**********

00010iiiiiiizzzz

1 Update

116

5.3.5 System Control Instructions

Table 5.26 System Control Instructions

Instruction Operation Code Cycles DC Bit

PLDS
Dz,MACH

Dz→MACH 111110**********

111011010000zzzz

1 —

PLDS
Dz,MACL

Dz→MACL 111110**********

111111010000zzzz

1 —

DCT PLDS
Dz,MACH

if DC=1,Dz→MACH

if 0,nop

111110**********

111011100000zzzz

1 —

DCT PLDS
Dz,MACL

if DC=1,Dz→MACL

if 0,nop

111110**********

111111100000zzzz

1 —

DCF PLDS
Dz,MACH

if DC=0,Dz→MACH

if 1,nop

111110**********

111011110000zzzz

1 —

DCF PLDS
Dz,MACL

if DC=0,Dz→MACL

if 1,nop

111110**********

111111110000zzzz

1 —

PSTS
MACH,Dz

MACH→Dz 111110**********

110011010000zzzz

1 —

PSTS
MACL,Dz

MACL→Dz 111110**********

110111010000zzzz

1 —

DCT PSTS
MACH,Dz

if DC=1,MACH→Dz

if 0,nop

111110**********

110011100000zzzz

1 —

DCT PSTS
MACL,Dz

if DC=1,MACL→Dz

if 0,nop

111110**********

110111100000zzzz

1 —

DCF PSTS
MACH,Dz

if DC=0,MACH→Dz

if 1,nop

111110**********

110011110000zzzz

1 —

DCF PSTS
MACL,Dz

if DC=0,MACL→Dz

if 1,nop

111110**********

110111110000zzzz

1 —

5.3.6 NOPX and NOPY Instruction Code

When there is no data transfer instruction to be processed in parallel with the DSP operation
instruction, a NOPX or NOPY instruction can be written as the data transfer instruction or the
instruction can be omitted. The operation code is the same in either case. Table 5.27 shows the
NOPX and NOPY instruction code.

117

Table 5.27 Sample NOPX and NOPY Instruction Code

Instruction Code

PADD X0, Y0, A0 MOVX. W @R4+, X0 MOVY.W @R6+R9, Y0 1111100010110000

1000000010100000

PADD X0, Y0, A0 NOPX MOVY.W @R6+R9, Y0 1111100000110000

1000000010100000

PADD X0, Y0, A0 NOPX NOPY 1111100000000000

1000000010100000

PADD X0, Y0, A0 NOPX

PADD X0, Y0, A0

 MOVX. W @R4+, X0 MOVY.W @R6+R9, Y0 1111000010110000

 MOVX. W @R4+, X0 NOPY 1111000010000000

 MOVS. W @R4+, X0 1111011010000000

 NOPX MOVY.W @R6+R9, Y0 1111000000110000

 MOVY.W @R6+R9, Y0

 NOPX NOPY 1111000000000000

NOP 0000000000001001

118

119

Section 6 Instruction Descriptions

6.1 Instruction Descriptions

Instructions are described in alphabetical order in three sections: CPU instructions, DSP data
transfer instructions, and DSP operation instructions.

This section describes instructions in alphabetical order using the format shown below in section
6.1.1. The actual descriptions begin at section 6.2.2.

6.1.1 Sample Description (Name): Classification

Class: Indicates if the instruction is a delayed branch instruction or interrupt disabled instruction

Format Abstract Code Cycle T Bit
Applicable
Instructions

Assembler input
format; imm and disp
are numbers,
expressions, or
symbols

A brief
description
of operation

Displayed in
order MSB ↔
LSB

Number of
cycles
when there
is no wait
state

The value of
T bit after the
instruction is
executed

Indicates
whether the
instruction
applies to the
SH-1, SH-2,
or SH-DSP.

Description: Description of operation

Notes: Notes on using the instruction

Operation: Operation written in C language. The following resources should be used.

• Reads data of each length from address Addr. An address error will occur if word data is read
from an address other than 2n or if longword data is read from an address other than 4n:

unsigned char Read_Byte(unsigned long Addr);

unsigned short Read_Word(unsigned long Addr);

unsigned long Read_Long(unsigned long Addr);

• Writes data of each length to address Addr. An address error will occur if word data is written
to an address other than 2n or if longword data is written to an address other than 4n:

unsigned char Write_Byte(unsigned long Addr, unsigned long Data);

unsigned short Write_Word(unsigned long Addr, unsigned long Data);

unsigned long Write_Long(unsigned long Addr, unsigned long Data);

120

• Starts execution from the slot instruction located at an address (Addr – 4). For Delay_Slot (4),
execution starts from an instruction at address 0 rather than address 4. When execution moves
from this function to one of the following instructions and one of the listed instructions
precedes it, it will be considered an illegal slot instruction (the listed instructions become
illegal slot instructions when used as delay slot instructions):

BF, BT, BRA, BSR, JMP, JSR, RTS, RTE, TRAPA, BF/S, BT/S, BRAF, BSRF

Delay_Slot(unsigned long Addr);

unsigned log IS_32bit_Inst(unsigned long Addr)

If the address (Addr_4) instruction is 32-bit, 2 is returned; 0 is returned if it is 16-bit.

• List registers:

unsigned long R[16];

unsigned long SR,GBR,VBR;

unsigned long MACH,MACL,PR;

unsigned long PC;

• Definition of SR structures:

struct SR0 {

unsigned long dummy0:4;

unsigned long RC0:12;

unsigned long dummy1:4;

unsigned long DMY0:1;

unsigned long DMX0:1;

unsigned long M0:1;

unsigned long Q0:1;

unsigned long I0:4;

unsigned long RF10:1;

unsigned long RF00:1;

unsigned long S0:1;

unsigned long T0:1;

};

121

• Definition of bits in SR:

#define M ((*(struct SR0 *)(&SR)).M0)

#define Q ((*(struct SR0 *)(&SR)).Q0)

#define S ((*(struct SR0 *)(&SR)).S0)

#define T ((*(struct SR0 *)(&SR)).T0)

#define RF1 ((*struct SRO *)(&SR)).RF10)

#define RF0 ((*struct SRO *)(&SR)).RF00)

• Error display function:

Error(char *er);

The PC should point to the location four bytes after the current instruction. Therefore, PC = 4;

means the instruction starts execution from address 0, not address 4.

Examples: Examples are written in assembler mnemonics and describe status before and after
executing the instruction. Characters in italics such as .align are assembler control instructions
(listed below). For more information, see the Cross Assembler User Manual.

.org Location counter set

.data.w Securing integer word data

.data.l Securing integer longword data

.sdata Securing string data

.align 2 2-byte boundary alignment

.align 4 2-byte boundary alignment

.arepeat 16 16-repeat expansion

.arepeat 32 32-repeat expansion

.aendr End of repeat expansion of specified number

Note that the SuperH series cross assembler version 1.0 does not support the conditional assembler
functions.

Notes: 1. In addressing modes that use the displacements listed below (disp), the assembler
statements in this manual show the value prior to scaling (×1, ×2, and ×4) according to
the operand size. This is done to clarify the LSI operation. Actual assembler statements
should follow the rules of the assembler in question.
@(disp:4, Rn); Indirect register addressing with displacement
@(disp:8, GBR); Indirect GBR addressing with displacement
@(disp:8, PC); Indirect PC addressing with displacement
disp:8, disp:12:; PC relative addressing

122

2. 16-bit instruction code that is not assigned as instructions is handled as an ordinary
illegal instruction and produces illegal instruction exception processing.
Example: H'FFFF [ordinary illegal instruction]

3. An ordinary illegal instruction or branched instruction (i.e., an illegal slot instruction)
that follows a BRA, BT/S or another delayed branch instruction will cause illegal
instruction exception processing.
Example 1:
....

BRA LABEL

.data.w H'FFFF ← Illegal slot instruction

.... [H'FFFF is an ordinary illegal instruction from the start]
Example 2:
RTE

BT/S LABEL ← Illegal slot instruction

4. The delayed branch actual occurs after the slot instruction is executed. Except for
branches such as register updates, however, delayed branch instructions are executed
before delayed slot instructions. For example, even when the contents of a register that
stores a branch destination address in a delay slot are changed, the branch destination
remains the register contents prior to the change.

5. When there ia an ordinary illegal instruction, branched instruction or an instruction to
renew the SR, RS or RE register (SETRC, LDRS, etc.) in the last three instructions of a
repeat program (loop) with three or less instructions or a program (loop) with four or
more instructions, illegal instruction exception processing is started. Refer to 4.19, DSP
Repeat (Loop) Control, for more information.

123

6.1.2 ADD (ADD Binary): Arithmetic Instruction

Applicable
Instructions

Format Abstract Code Cycle T Bit SH-1 SH-2
SH-
DSP

ADD Rm,Rn Rm + Rn → Rn 0011nnnnmmmm1100 1 —

ADD #imm,Rn Rn + #imm → Rn 0111nnnniiiiiiii 1 —

Description: Adds general register Rn data to Rm data, and stores the result in Rn. 8-bit
immediate data can be added instead of Rm data. Since the 8-bit immediate data is sign-extended
to 32 bits, this instruction can add and subtract immediate data.

Operation:

ADD(long m,long n) /* ADD Rm,Rn */

{

R[n]+=R[m];

PC+=2;

}

ADDI(long i,long n) /* ADD #imm,Rn */

{

if ((i&0x80)==0) R[n]+=(0x000000FF & (long)i);

else R[n]+=(0xFFFFFF00 | (long)i);

PC+=2;

}

Examples:

ADD R0,R1 ;Before execution: R0 = H'7FFFFFFF, R1 = H'00000001

;After execution: R1 = H'80000000

ADD #H'01,R2 ;Before execution: R2 = H'00000000

; After execution: R2 = H'00000001

ADD #H'FE,R3 ;Before execution: R3 = H'00000001

;After execution: R3 = H'FFFFFFFF

124

6.1.3 ADDC (ADD with Carry): Arithmetic Instruction

Applicable
Instructions

Format Abstract Code Cycle T Bit SH-1 SH-2
SH-
DSP

ADDC Rm,Rn Rn + Rm + T →
Rn, carry → T

0011nnnnmmmm1110 1 Carry

Description: Adds Rm data and the T bit to general register Rn data, and stores the result in Rn.
The T bit changes according to the result. This instruction can add data that has more than 32 bits.

Operation:

ADDC (long m,long n) /* ADDC Rm,Rn */

{

unsigned long tmp0,tmp1;

tmp1=R[n]+R[m];

tmp0=R[n];

R[n]=tmp1+T;

if (tmp0>tmp1) T=1;

else T=0;

if (tmp1>R[n]) T=1;

PC+=2;

}

Examples:

CLRT ;R0:R1 (64 bits) + R2:R3 (64 bits) = R0:R1 (64 bits)

ADDC R3,R1 ;Before execution: T = 0, R1 = H'00000001, R3 = H'FFFFFFFF

;After execution: T = 1, R1 = H'0000000

ADDC R2,R0 ;Before execution: T = 1, R0 = H'00000000, R2 = H'00000000

;After execution: T = 0, R0 = H'00000001

125

6.1.4 ADDV (ADD with V Flag Overflow Check): Arithmetic Instruction

Applicable
Instructions

Format Abstract Code Cycle T Bit SH-1 SH-2
SH-
DSP

ADDV Rm,Rn Rn + Rm → Rn,
overflow → T

0011nnnnmmmm1111 1 Overflow

Description: Adds general register Rn data to Rm data, and stores the result in Rn. If an overflow
occurs, the T bit is set to 1.

Operation:

ADDV(long m,long n) /*ADDV Rm,Rn */

{

long dest,src,ans;

if ((long)R[n]>=0) dest=0;

else dest=1;

if ((long)R[m]>=0) src=0;

else src=1;

src+=dest;

R[n]+=R[m];

if ((long)R[n]>=0) ans=0;

else ans=1;

ans+=dest;

if (src==0 || src==2) {

if (ans==1) T=1;

else T=0;

}

else T=0;

PC+=2;

}

Examples:

ADDV R0,R1 ;Before execution: R0 = H'00000001, R1 = H'7FFFFFFE, T = 0

;After execution: R1 = H'7FFFFFFF, T = 0

ADDV R0,R1 ;Before execution: R0 = H'00000002, R1 = H'7FFFFFFE, T = 0

;After execution: R1 = H'80000000, T = 1

126

6.1.5 AND (AND Logical): Logic Operation Instruction

Applicable
Instructions

Format Abstract Code Cycle T Bit SH-1 SH-2
SH-
DSP

AND Rm,Rn Rn & Rm → Rn 0010nnnnmmmm1001 1 —

AND #imm,R0 R0 & imm → R0 11001001iiiiiiii 1 —

AND.B #imm,
@(R0,GBR)

(R0 + GBR) &
imm → (R0 + GBR)

11001101iiiiiiii 3 —

Description: Logically ANDs the contents of general registers Rn and Rm, and stores the result in
Rn. The contents of general register R0 can be ANDed with zero-extended 8-bit immediate data.
8-bit memory data pointed to by GBR relative addressing can be ANDed with 8-bit immediate
data.

Note: After AND #imm, R0 is executed and the upper 24 bits of R0 are always cleared to 0.

Operation:

AND(long m,long n) /* AND Rm,Rn */

{

R[n]&=R[m]

PC+=2;

}

ANDI(long i) /* AND #imm,R0 */

{

R[0]&=(0x000000FF & (long)i);

PC+=2;

}

ANDM(long i) /* AND.B #imm,@(R0,GBR) */

{

long temp;

temp=(long)Read_Byte(GBR+R[0]);

temp&=(0x000000FF & (long)i);

Write_Byte(GBR+R[0],temp);

PC+=2;

}

127

Examples:

AND R0,R1 ; Before execution: R0 = H'AAAAAAAA, R1 = H'55555555

;After execution: R1 = H'00000000

AND #H'0F,R0 ; Before execution: R0 = H'FFFFFFFF

;After execution: R0 = H'0000000F

AND.B #H'80,@(R0,GBR) ; Before execution: @(R0,GBR) = H'A5

;After execution: @(R0,GBR) = H'80

128

6.1.6 BF (Branch if False): Branch Instruction

Applicable
Instructions

Format Abstract Code Cycle T Bit SH-1 SH-2
SH-
DSP

BF label When T = 0,
disp × 2 + PC → PC;
When T = 1, nop

10001011dddddddd 3/1 —

Description: Reads the T bit, and conditionally branches. If T = 0, it branches to the branch
destination address. If T = 1, BF executes the next instruction. The branch destination is an
address specified by PC + displacement. However, in this case it is used for address calculation.
The PC is the address 4 bytes after this instruction. The 8-bit displacement is sign-extended and
doubled. Consequently, the relative interval from the branch destination is –256 to +254 bytes. If
the displacement is too short to reach the branch destination, use BF with the BRA instruction or
the like.

Note: When branching, three cycles; when not branching, one cycle.

Operation:

BF(long d) /* BF disp */

{

long disp;

if ((d&0x80)==0) disp=(0x000000FF & (long)d);

else disp=(0xFFFFFF00 | (long)d);

if (T==0) PC=PC+(disp<<1);

else PC+=2;

}

Example:

CLRT ;T is always cleared to 0

BT TRGET_T ;Does not branch, because T = 0

BF TRGET_F ;Branches to TRGET_F, because T = 0

NOP ;

NOP ;← The PC location is used to calculate the branch destination
.......... address of the BF instruction

TRGET_F: ;← Branch destination of the BF instruction

129

6.1.7 BF/S (Branch if False with Delay Slot): Branch Instruction

Applicable
Instructions

Format Abstract Code Cycle T Bit SH-1 SH-2
SH-
DSP

BF/S label When T = 0,
disp × 2+ PC → PC;
When T = 1, nop

10001111dddddddd 2/1 — —

Description: Reads the T bit and conditionally branches. If T = 0, it branches after executing the
next instruction. If T = 1, BF/S executes the next instruction. The branch destination is an address
specified by PC + displacement. However, in this case it is used for address calculation. The PC is
the address 4 bytes after this instruction. The 8-bit displacement is sign-extended and doubled.
Consequently, the relative interval from the branch destination is –256 to +254 bytes. If the
displacement is too short to reach the branch destination, use BF with the BRA instruction or the
like.

Note: Since this is a delay branch instruction, the instruction immediately following is executed
before the branch. No interrupts and address errors are accepted between this instruction
and the next instruction. When the instruction immediately following is a branch
instruction, it is recognized as an illegal slot instruction. When branching, this is a two-
cycle instruction; when not branching, one cycle.

Operation:

BFS(long d) /* BFS disp */

{

long disp;

unsigned long temp;

temp=PC;

if ((d&0x80)==0) disp=(0x000000FF & (long)d);

else disp=(0xFFFFFF00 | (long)d);

if (T==0) {

PC=PC+(disp<<1);

Delay_Slot(temp+2);

}

else PC+=2;

}

130

Example:

CLRT ;T is always 0

BT/S TRGET_T ;Does not branch, because T = 0

NOP ;

BF/S TRGET_F ;Branches to TRGET_F, because T = 0

ADD R0,R1 ;Executed before branch.

NOP ;← The PC location is used to calculate the branch destination
.......... address of the BF/S instruction

TRGET_F: ;← Branch destination of the BF/S instruction

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed
branch instruction, then delay slot instruction. For example, even if the register in which
the branch destination address has been loaded is changed by the delay slot instruction,
the branch will still be made using the value of the register prior to the change as the
branch destination address.

131

6.1.8 BRA (Branch): Branch Instruction

Applicable
Instructions

Format Abstract Code Cycle T Bit SH-1 SH-2
SH-
DSP

BRA label disp × 2 + PC → PC 1010dddddddddddd 2 —

Description: Branches unconditionally after executing the instruction following this BRA
instruction. The branch destination is an address specified by PC + displacement However, in this
case it is used for address calculation. The PC is the address 4 bytes after this instruction. The 12-
bit displacement is sign-extended and doubled. Consequently, the relative interval from the branch
destination is –4096 to +4094 bytes. If the displacement is too short to reach the branch
destination, this instruction must be changed to the JMP instruction. Here, a MOV instruction
must be used to transfer the destination address to a register.

Note: Since this is a delayed branch instruction, the instruction after BRA is executed before
branching. No interrupts and address errors are accepted between this instruction and the
next instruction. If the next instruction is a branch instruction, it is acknowledged as an
illegal slot instruction.

Operation:

BRA(long d) /* BRA disp */

{

unsigned long temp;

long disp;

if ((d&0x800)==0) disp=(0x00000FFF & (long) d);

else disp=(0xFFFFF000 | (long) d);

temp=PC;

PC=PC+(disp<<1);

Delay_Slot(temp+2);

}

Example:

BRA TRGET ;Branches to TRGET

ADD R0,R1 ;Executes ADD before branching

NOP ;← The PC location is used to calculate the branch destination
.......... address of the BRA instruction

TRGET: ;← Branch destination of the BRA instruction

132

Note: With delayed branching, branching occurs after execution of the slot instruction. However,
instructions such as register changes etc. are executed in the order of delayed branch
instruction, then delay slot instruction. For example, even if the register in which the
branch destination address has been loaded is changed by the delay slot instruction, the
branch will still be made using the value of the register prior to the change as the branch
destination address.

133

6.1.9 BRAF (Branch Far): Branch Instruction

Applicable
Instructions

Format Abstract Code Cycle T Bit SH-1 SH-2
SH-
DSP

BRAF Rm Rm + PC → PC 0000mmmm00100011 2 — —

Description: Branches unconditionally. The branch destination is PC + the 32-bit contents of the
general register Rm. However, in this case it is used for address calculation. The PC is the address
4 bytes after this instruction.

Note: Since this is a delayed branch instruction, the instruction after BRAF is executed before
branching. No interrupts and address errors are accepted between this instruction and the
next instruction. If the next instruction is a branch instruction, it is acknowledged as an
illegal slot instruction.

Operation:

BRAF(long m) /* BRAF Rm */

{

unsigned long temp;

temp=PC;

PC+=R[m];

Delay_Slot(temp+2);

}

Example:

MOV.L #(TARGET-BSRF_PC),R0 ;Sets displacement.

BRA TRGET ;Branches to TARGET

ADD R0,R1 ;Executes ADD before branching

 BRAF_PC: ;← The PC location is used to calculate the
branch destination address of the BRAF
instruction

NOP

....................

 TARGET: ;← Branch destination of the BRAF instruction

134

Note: With delayed branching, branching occurs after execution of the slot instruction. However,
instructions such as register changes etc. are executed in the order of delayed branch
instruction, then delay slot instruction. For example, even if the register in which the
branch destination address has been loaded is changed by the delay slot instruction, the
branch will still be made using the value of the register prior to the change as the branch
destination address.

135

6.1.10 BSR (Branch to Subroutine): Branch Instruction

Format Abstract Code Cycle T Bit

BSR label PC → PR, disp × 2+ PC → PC 1011dddddddddddd 2 —

Description: Branches to the subroutine procedure at a specified address. The PC value is stored
in the PR, and the program branches to an address specified by PC + displacement However, in
this case it is used for address calculation. The PC is the address 4 bytes after this instruction. The
12-bit displacement is sign-extended and doubled. Consequently, the relative interval from the
branch destination is –4096 to +4094 bytes. If the displacement is too short to reach the branch
destination, the JSR instruction must be used instead. With JSR, the destination address must be
transferred to a register by using the MOV instruction. This BSR instruction and the RTS
instruction are used together for a subroutine procedure call.

Note: Since this is a delayed branch instruction, the instruction after BSR is executed before
branching. No interrupts and address errors are accepted between this instruction and the
next instruction. If the next instruction is a branch instruction, it is acknowledged as an
illegal slot instruction.

Operation:

BSR(long d) /* BSR disp */

{

long disp;

if ((d&0x800)==0) disp=(0x00000FFF & (long) d);

else disp=(0xFFFFF000 | (long) d);

PR=PC+Is_32bit_Inst(PR+2);

PC=PC+(disp<<1);

Delay_Slot(PR+2);

}

136

Example:

BSR TRGET ;Branches to TRGET

MOV R3,R4 ;Executes the MOV instruction before branching

ADD R0,R1 ; ← The PC location is used to calculate the branch destination
address of the BSR instruction (return address for when the
subroutine procedure is completed (PR data))

.......

.......

TRGET: ;← Procedure entrance

MOV R2,R3 ;

RTS ;Returns to the above ADD instruction

MOV #1,R0 ;Executes MOV before branching

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed
branch instruction, then delay slot instruction. For example, even if the register in which
the branch destination address has been loaded is changed by the delay slot instruction,
the branch will still be made using the value of the register prior to the change as the
branch destination address.

137

6.1.11 BSRF (Branch to Subroutine Far): Branch Instruction

Applicable
Instructions

Format Abstract Code Cycle T Bit SH-1 SH-2
SH-
DSP

BSRF Rm PC → PR,
Rm + PC → PC

0000mmmm00000011 2 — —

Description: Branches to the subroutine procedure at a specified address after executing the
instruction following this BSRF instruction. The PC value is stored in the PR. The branch
destination is PC + the 32-bit contents of the general register Rm. However, in this case it is used
for address calculation. The PC is the address 4 bytes after this instruction. Used as a subroutine
procedure call in combination with RTS.

Note: Since this is a delayed branch instruction, the instruction after BSR is executed before
branching. No interrupts and address errors are accepted between this instruction and the
next instruction. If the next instruction is a branch instruction, it is acknowledged as an
illegal slot instruction.

Operation:

BSRF(long m) /* BSRF Rm */

{

PR=PC+Is_32bit_Inst(PR+2);

PC+=R[m];

Delay_Slot(PR+2);

}

Example:

MOV.L #(TARGET-BSRF_PC),R0 ; Sets displacement.

BRSF R0 ;Branches to TARGET

MOV R3,R4 ;Executes the MOV instruction before
branching

BSRF_PC: ;← The PC location is used to calculate the
branch destination with BSRF.

ADD R0,R1

.....

.....

TARGET: ;←Procedure entrance

MOV R2,R3 ;

RTS ;Returns to the above ADD instruction

MOV #1,R0 ;Executes MOV before branching

138

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed
branch instruction, then delay slot instruction. For example, even if the register in which
the branch destination address has been loaded is changed by the delay slot instruction,
the branch will still be made using the value of the register prior to the change as the
branch destination address.

139

6.1.12 BT (Branch if True): Branch Instruction

Applicable
Instructions

Format Abstract Code Cycle T Bit SH-1 SH-2
SH-
DSP

BT label When T = 1,
disp × 2 + PC → PC;
When T = 0, nop

10001001dddddddd 3/1 —

Description: Reads the T bit, and conditionally branches. If T = 1, BT branches. If T = 0, BT
executes the next instruction. The branch destination is an address specified by PC +
displacement. However, in this case it is used for address calculation. The PC is the address 4
bytes after this instruction. The 8-bit displacement is sign-extended and doubled. Consequently,
the relative interval from the branch destination is –256 to +254 bytes. If the displacement is too
short to reach the branch destination, use BT with the BRA instruction or the like.

Note: When branching, requires three cycles; when not branching, one cycle.

Operation:

BT(long d) /* BT disp */

{

long disp;

if ((d&0x80)==0) disp=(0x000000FF & (long)d);

else disp=(0xFFFFFF00 | (long)d);

if (T==1) PC=PC+(disp<<1);

else PC+=2;

}

Example:

SETT ;T is always 1

BF TRGET_F ;Does not branch, because T = 1

BT TRGET_T ;Branches to TRGET_T, because T = 1

NOP ;

NOP ;← The PC location is used to calculate the branch destination
.......... address of the BT instruction

TRGET_T: ;← Branch destination of the BT instruction

140

6.1.13 BT/S (Branch if True with Delay Slot): Branch Instruction

Applicable
Instructions

Format Abstract Code Cycle T Bit SH-1 SH-2
SH-
DSP

BT/S label When T = 1,
disp × 2 + PC → PC;
When T = 0, nop

10001101dddddddd 2/1 — —

Description: Reads the T bit and conditionally branches. If T = 1, BT/S branches after the
following instruction executes. If T = 0, BT/S executes the next instruction. The branch
destination is an address specified by PC + displacement. However, in this case it is used for
address calculation. The PC is the address 4 bytes after this instruction. The 8-bit displacement is
sign-extended and doubled. Consequently, the relative interval from the branch destination is –256
to +254 bytes. If the displacement is too short to reach the branch destination, use BT/S with the
BRA instruction or the like.

Note: Since this is a delay branch instruction, the instruction immediately following is executed
before the branch. No interrupts and address errors are accepted between this instruction
and the next instruction. When the immediately following instruction is a branch
instruction, it is recognized as an illegal slot instruction. When branching, requires two
cycles; when not branching, one cycle.

Operation:

BTS(long d) /* BTS disp */

{

long disp;

unsigned long temp;

temp=PC;

if ((d&0x80)==0) disp=(0x000000FF & (long)d);

else disp=(0xFFFFFF00 | (long)d);

if (T==1) {

PC=PC+(disp<<1);

Delay_Slot(temp+2);

}

else PC+=2;

}

141

Example:

SETT ;T is always 1

BF/S TARGET_F ;Does not branch, because T = 1

NOP ;

BT/S TARGET_T ;Branches to TARGET, because T = 1

ADD R0,R1 ;Executes before branching.

NOP ;← The PC location is used to calculate the branch destination
.......... address of the BT/S instruction

TARGET_T: ;← Branch destination of the BT/S instruction

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed
branch instruction, then delay slot instruction. For example, even if the register in which
the branch destination address has been loaded is changed by the delay slot instruction,
the branch will still be made using the value of the register prior to the change as the
branch destination address.

142

6.1.14 CLRMAC (Clear MAC Register): System Control Instruction

Applicable
Instructions

Format Abstract Code Cycle T Bit SH-1 SH-2
SH-
DSP

CLRMAC 0 → MACH, MACL 0000000000101000 1 —

Description: Clear the MACH and MACL Register.

Operation:

CLRMAC() /* CLRMAC */

{

MACH=0;

MACL=0;

PC+=2;

}

Example:

CLRMAC ;Clears and initializes the MAC register

MAC.W @R0+,@R1+ ;Multiply and accumulate operation

MAC.W @R0+,@R1+ ;

143

6.1.15 CLRT (Clear T Bit): System Control Instruction

Applicable
Instructions

Format Abstract Code Cycle T Bit SH-1 SH-2
SH-
DSP

CLRT 0 → T 0000000000001000 1 0

Description: Clears the T bit.

Operation:

CLRT() /* CLRT */

{

T=0;

PC+=2;

}

Example:

CLRT ;Before execution: T = 1

;After execution: T = 0

144

6.1.16 CMP/cond (Compare Conditionally): Arithmetic Instruction

Applicable
Instructions

Format Abstract Code Cycle T Bit SH-1 SH-2
SH-
DSP

CMP/ Rm,Rn

EQ

When Rn = Rm,
1 → T

0011nnnnmmmm0000 1 Comparison
result

CMP/ Rm,Rn

GE

When signed and
Rn ≥ Rm, 1 → T

0011nnnnmmmm0011 1 Comparison
result

CMP/ Rm,Rn

GT

When signed and
Rn > Rm, 1 → T

0011nnnnmmmm0111 1 Comparison
result

CMP/ Rm,Rn

HI

When unsigned
and Rn > Rm, 1 → T

0011nnnnmmmm0110 1 Comparison
result

CMP/ Rm,Rn

HS

When unsigned
and Rn ≥ Rm, 1 → T

0011nnnnmmmm0010 1 Comparison
result

CMP/ Rn

PL

When Rn > 0, 1 → T 0100nnnn00010101 1 Comparison
result

CMP/ Rn

PZ

When Rn ≥ 0, 1 → T 0100nnnn00010001 1 Comparison
result

CMP/ Rm,Rn

STR

When a byte in Rn
equals a byte in Rm,
1 → T

0010nnnnmmmm1100 1 Comparison
result

CMP/ #imm,R0

EQ

When R0 = imm,
1 → T

10001000iiiiiiii 1 Comparison
result

Description: Compares general register Rn data with Rm data, and sets the T bit to 1 if a specified
condition (cond) is satisfied. The T bit is cleared to 0 if the condition is not satisfied. The Rn data
does not change. The following eight conditions can be specified. Conditions PZ and PL are the
results of comparisons between Rn and 0. Sign-extended 8-bit immediate data can also be
compared with R0 by using condition EQ. Here, R0 data does not change. Table 6.2 shows the
mnemonics for the conditions.

145

Table 6.2 CMP Mnemonics

Mnemonics Condition

CMP/EQ Rm,Rn If Rn = Rm, T = 1

CMP/GE Rm,Rn If Rn ≥ Rm with signed data, T = 1

CMP/GT Rm,Rn If Rn > Rm with signed data, T = 1

CMP/HI Rm,Rn If Rn > Rm with unsigned data, T = 1

CMP/HS Rm,Rn If Rn ≥ Rm with unsigned data, T = 1

CMP/PL Rn If Rn > 0, T = 1

CMP/PZ Rn If Rn ≥ 0, T = 1

CMP/STR Rm,Rn If a byte in Rn equals a byte in Rm, T = 1

CMP/EQ #imm,R0 If R0 = imm, T = 1

Operation:

CMPEQ(long m,long n) /* CMP_EQ Rm,Rn */

{

if (R[n]==R[m]) T=1;

else T=0;

PC+=2;

}

CMPGE(long m,long n) /* CMP_GE Rm,Rn */

{

if ((long)R[n]>=(long)R[m]) T=1;

else T=0;

PC+=2;

}

CMPGT(long m,long n) /* CMP_GT Rm,Rn */

{

if ((long)R[n]>(long)R[m]) T=1;

else T=0;

PC+=2;

}

146

CMPHI(long m,long n) /* CMP_HI Rm,Rn */

{

if ((unsigned long)R[n]>(unsigned long)R[m]) T=1;

else T=0;

PC+=2;

}

CMPHS(long m,long n) /* CMP_HS Rm,Rn */

{

if ((unsigned long)R[n]>=(unsigned long)R[m]) T=1;

else T=0;

PC+=2;

}

CMPPL(long n) /* CMP_PL Rn */

{

if ((long)R[n]>0) T=1;

else T=0;

PC+=2;

}

CMPPZ(long n) /* CMP_PZ Rn */

{

if ((long)R[n]>=0) T=1;

else T=0;

PC+=2;

}

147

CMPSTR(long m,long n) /* CMP_STR Rm,Rn */

{

unsigned long temp;

long HH,HL,LH,LL;

temp=R[n]̂ R[m];

HH=(temp>>12)&0x000000FF;

HL=(temp>>8)&0x000000FF;

LH=(temp>>4)&0x000000FF;

LL=temp&0x000000FF;

HH=HH&&HL&&LH&&LL;

if (HH==0) T=1;

else T=0;

PC+=2;

}

CMPIM(long i) /* CMP_EQ #imm,R0 */

{

long imm;

if ((i&0x80)==0) imm=(0x000000FF & (long i));

else imm=(0xFFFFFF00 | (long i));

if (R[0]==imm) T=1;

else T=0;

PC+=2;

}

Example:

CMP/GE R0,R1 ;R0 = H'7FFFFFFF, R1 = H'80000000

BT TRGET_T ;Does not branch because T = 0

CMP/HS R0,R1 ;R0 = H'7FFFFFFF, R1 = H'80000000

BT TRGET_T ;Branches because T = 1

CMP/STR R2,R3 ;R2 = “ABCD”, R3 = “XYCZ”

BT TRGET_T ;Branches because T = 1

148

6.1.17 DIV0S (Divide Step 0 as Signed): Arithmetic Instruction

Applicable
Instructions

Format Abstract Code Cycle T Bit SH-1 SH-2
SH-
DSP

DIV0S Rm,Rn MSB of Rn → Q,
MSB of Rm → M,
M^Q → T

0010nnnnmmmm0111 1 Calculation
result

Description: DIV0S is an initialization instruction for signed division. It finds the quotient by
repeatedly dividing in combination with the DIV1 or another instruction that divides for each bit
after this instruction. See the description given with DIV1 for more information.

Operation:

DIV0S(long m,long n) /* DIV0S Rm,Rn */

{

if ((R[n]&0x80000000)==0) Q=0;

else Q=1;

if ((R[m]&0x80000000)==0) M=0;

else M=1;

T=!(M==Q);

PC+=2;

}

Example: See DIV1.

149

6.1.18 DIV0U (Divide Step 0 as Unsigned): Arithmetic Instruction

Applicable
Instructions

Format Abstract Code Cycle T Bit SH-1 SH-2
SH-
DSP

DIV0U 0 → M/Q/T 0000000000011001 1 0

Description: DIV0U is an initialization instruction for unsigned division. It finds the quotient by
repeatedly dividing in combination with the DIV1 or another instruction that divides for each bit
after this instruction. See the description given with DIV1 for more information.

Operation:

DIV0U() /* DIV0U */

{

M=Q=T=0;

PC+=2;

}

Example: See DIV1.

150

6.1.19 DIV1 (Divide 1 Step): Arithmetic Instruction

Applicable
Instructions

Format Abstract Code Cycle T Bit SH-1 SH-2
SH-
DSP

DIV1 Rm,Rn 1 step division
(Rn ÷ Rm)

0011nnnnmmmm0100 1 Calculation
result

Description: Uses single-step division to divide one bit of the 32-bit data in general register Rn
(dividend) by Rm data (divisor). It finds a quotient through repetition either independently or used
in combination with other instructions. During this repetition, do not rewrite the specified register
or the M, Q, and T bits.

In one-step division, the dividend is shifted one bit left, the divisor is subtracted and the quotient
bit reflected in the Q bit according to the status (positive or negative). To find the remainder in a
division, first find the quotient using a DIV1 instruction, then find the remainder as follows:

(dividend) – (divisor) × (quotient) = (remainder)

Zero division, overflow detection, and remainder operation are not supported. Check for zero
division and overflow division before dividing.

Find the remainder by first finding the sum of the divisor and the quotient obtained and then
subtracting it from the dividend. That is, first initialize with DIV0S or DIV0U. Repeat DIV1 for
each bit of the divisor to obtain the quotient. When the quotient requires 17 or more bits, place
ROTCL before DIV1. For the division sequence, see the following examples.

151

Operation:

DIV1(long m,long n) /* DIV1 Rm,Rn */

{

unsigned long tmp0;

unsigned char old_q,tmp1;

old_q=Q;

Q=(unsigned char)((0x80000000 & R[n])!=0);

R[n]<<=1;

R[n]|=(unsigned long)T;

switch(old_q){

case 0:switch(M){

case 0:tmp0=R[n];

R[n]-=R[m];

tmp1=(R[n]>tmp0);

switch(Q){

case 0:Q=tmp1;

break;

case 1:Q=(unsigned char)(tmp1==0);

break;

}

break;

case 1:tmp0=R[n];

R[n]+=R[m];

tmp1=(R[n]<tmp0);

switch(Q){

case 0:Q=(unsigned char)(tmp1==0);

break;

case 1:Q=tmp1;

break;

}

break;

}

break;

152

case 1:switch(M){

case 0:tmp0=R[n];

R[n]+=R[m];

tmp1=(R[n]<tmp0);

switch(Q){

case 0:Q=tmp1;

break;

case 1:Q=(unsigned char)(tmp1==0);

break;

}

break;

case 1:tmp0=R[n];

R[n]-=R[m];

tmp1=(R[n]>tmp0);

switch(Q){

case 0:Q=(unsigned char)(tmp1==0);

break;

case 1:Q=tmp1;

break;

}

break;

}

break;

}

T=(Q==M);

PC+=2;

}

153

Example 1:

;R1 (32 bits) / R0 (16 bits) = R1 (16 bits):Unsigned

SHLL16 R0 ;Upper 16 bits = divisor, lower 16 bits = 0

TST R0,R0 ;Zero division check

BT ZERO_DIV ;

CMP/HS R0,R1 ;Overflow check

BT OVER_DIV ;

DIV0U ;Flag initialization

.arepeat 16 ;

DIV1 R0,R1 ;Repeat 16 times

.aendr ;

ROTCL R1 ;

EXTU.W R1,R1 ;R1 = Quotient

Example 2:

; R1:R2 (64 bits)/R0 (32 bits) = R2 (32 bits):Unsigned

TST R0,R0 ;Zero division check

BT ZERO_DIV ;

CMP/HS ;R0,R1 ;Overflow check

BT OVER_DIV ;

DIV0U ;Flag initialization

.arepeat 32 ;

ROTCL R2 ;Repeat 32 times

DIV1 R0,R1 ;

.aendr ;

ROTCL R2 ;R2 = Quotient

154

Example 3:

;R1 (16 bits)/R0 (16 bits) = R1 (16 bits):Signed

SHLL16 R0 ;Upper 16 bits = divisor, lower 16 bits = 0

EXTS.W R1,R1 ;Sign-extends the dividend to 32 bits

XOR R2,R2 ;R2 = 0

MOV R1,R3 ;

ROTCL R3 ;

SUBC R2,R1 ;Decrements if the dividend is negative

DIV0S R0,R1 ;Flag initialization

.arepeat 16 ;

DIV1 R0,R1 ;Repeat 16 times

.aendr

EXTS.W R1,R1 ;

ROTCL R1 ;R1 = quotient (one’s complement)

ADDC R2,R1 ;Increments and takes the two’s complement if the MSB of the
quotient is 1

EXTS.W R1,R1 ;R1 = quotient (two’s complement)

Example 4:

;R2 (32 bits) / R0 (32 bits) = R2 (32 bits):Signed

MOV R2,R3 ;

ROTCL R3 ;

SUBC R1,R1 ;Sign-extends the dividend to 64 bits (R1:R2)

XOR R3,R3 ;R3 = 0

SUBC R3,R2 ;Decrements and takes the one’s complement if the dividend is
negative

DIV0S R0,R1 ;Flag initialization

.arepeat 32 ;

ROTCL R2 ;Repeat 32 times

DIV1 R0,R1 ;

.aendr ;

ROTCL R2 ;R2 = Quotient (one’s complement)

ADDC R3,R2 ;Increments and takes the two’s complement if the MSB of the
quotient is 1. R2 = Quotient (two’s complement)

155

6.1.20 DMULS.L (Double-Length Multiply as Signed): Arithmetic Instruction

Applicable
Instructions

Format Abstract Code Cycle T Bit SH-1 SH-2
SH-
DSP

DMULS.L Rm,
Rn

With sign, Rn ×
Rm → MACH,
MACL

0011nnnnmmmm1101 2 to 4 — —

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm, and
stores the 64-bit results in the MACL and MACH register. The operation is a signed arithmetic
operation.

Operation:

DMULS(long m,long n) /* DMULS.L Rm,Rn */

{

unsigned long RnL,RnH,RmL,RmH,Res0,Res1,Res2;

unsigned long temp0,temp1,temp2,temp3;

long tempm,tempn,fnLmL;

tempn=(long)R[n];

tempm=(long)R[m];

if (tempn<0) tempn=0-tempn;

if (tempm<0) tempm=0-tempm;

if ((long)(R[n]̂ R[m])<0) fnLmL=-1;

else fnLmL=0;

temp1=(unsigned long)tempn;

temp2=(unsigned long)tempm;

RnL=temp1&0x0000FFFF;

RnH=(temp1>>16)&0x0000FFFF;

RmL=temp2&0x0000FFFF;

RmH=(temp2>>16)&0x0000FFFF;

156

temp0=RmL*RnL;

temp1=RmH*RnL;

temp2=RmL*RnH;

temp3=RmH*RnH;

Res2=0

Res1=temp1+temp2;

if (Res1<temp1) Res2+=0x00010000;

temp1=(Res1<<16)&0xFFFF0000;

Res0=temp0+temp1;

if (Res0<temp0) Res2++;

Res2=Res2+((Res1>>16)&0x0000FFFF)+temp3;

if (fnLmL<0) {

Res2=~Res2;

if (Res0==0)

Res2++;

else

Res0=(~Res0)+1;

}

MACH=Res2;

MACL=Res0;

PC+=2;

}

Example:

DMULS.L R0,R1 ;Before execution: R0 = H'FFFFFFFE, R1 = H'00005555

;After execution: MACH = H'FFFFFFFF, MACL = H'FFFF5556

STS MACH,R0 ;Operation result (top)

STS MACL,R0 ;Operation result (bottom)

157

6.1.21 DMULU.L (Double-Length Multiply as Unsigned): Arithmetic Instruction

Applicable
Instructions

Format Abstract Code Cycle T Bit SH-1 SH-2
SH-
DSP

DMULU.L Rm,
Rn

Without sign, Rn ×
Rm → MACH,
MACL

0011nnnnmmmm0101 2 to 4 — —

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm, and
stores the 64-bit results in the MACL and MACH register. The operation is an unsigned arithmetic
operation.

Operation:

DMULU(long m,long n) /* DMULU.L Rm,Rn */

{

unsigned long RnL,RnH,RmL,RmH,Res0,Res1,Res2;

unsigned long temp0,temp1,temp2,temp3;

RnL=R[n]&0x0000FFFF;

RnH=(R[n]>>16)&0x0000FFFF;

RmL=R[m]&0x0000FFFF;

RmH=(R[m]>>16)&0x0000FFFF;

temp0=RmL*RnL;

temp1=RmH*RnL;

temp2=RmL*RnH;

temp3=RmH*RnH;

Res2=0

Res1=temp1+temp2;

if (Res1<temp1) Res2+=0x00010000;

temp1=(Res1<<16)&0xFFFF0000;

Res0=temp0+temp1;

if (Res0<temp0) Res2++;

158

Res2=Res2+((Res1>>16)&0x0000FFFF)+temp3;

MACH=Res2;

MACL=Res0;

PC+=2;

}

Example:

DMULU.L R0,R1 ;Before execution: R0 = H'FFFFFFFE, R1 = H'00005555

;After execution: MACH = H'FFFFFFFF, MACL = H'FFFF5556

STS MACH,R0 ;Operation result (top)

STS MACL,R0 ;Operation result (bottom)

159

6.1.22 DT (Decrement and Test): Arithmetic Instruction

Applicable
Instructions

Format Abstract Code Cycle T Bit SH-1 SH-2
SH-
DSP

DT Rn Rn – 1 → Rn;
When Rn is 0,
1 → T,
when Rn is
nonzero, 0 → T

0100nnnn00010000 1 Comparison
result

—

Description: The contents of general register Rn are decremented by 1 and the result compared to
0 (zero). When the result is 0, the T bit is set to 1. When the result is not zero, the T bit is set to 0.

Operation:

DT(long n) /* DT Rn */

{

R[n]--;

if (R[n]==0) T=1;

else T=0;

PC+=2;

}

Example:

MOV #4,R5 ;Sets the number of loops.

LOOP:

ADD R0,R1 ;

DT RS ;Decrements the R5 value and checks whether it has become 0.

BF LOOP ;Branches to LOOP is T=0. (In this example, loops 4 times.)

160

6.1.23 EXTS (Extend as Signed): Arithmetic Instruction

Applicable
Instructions

Format Abstract Code Cycle T Bit SH-1 SH-2
SH-
DSP

EXTS.B Rm,
Rn

Sign-extend Rm
from byte → Rn

0110nnnnmmmm1110 1 —

EXTS.W Rm,
Rn

Sign-extend Rm
from word → Rn

0110nnnnmmmm1111 1 —

Description: Sign-extends general register Rm data, and stores the result in Rn. If byte length is
specified, the bit 7 value of Rm is copied into bits 8 to 31 of Rn. If word length is specified, the bit
15 value of Rm is copied into bits 16 to 31 of Rn.

Operation:

EXTSB(long m,long n) /* EXTS.B Rm,Rn */

{

R[n]=R[m];

if ((R[m]&0x00000080)==0) R[n]&=0x000000FF;

else R[n]|=0xFFFFFF00;

PC+=2;

}

EXTSW(long m,long n) /* EXTS.W Rm,Rn */

{

R[n]=R[m];

if ((R[m]&0x00008000)==0) R[n]&=0x0000FFFF;

else R[n]|=0xFFFF0000;

PC+=2;

}

Examples:

EXTS.B R0,R1 ;Before execution: R0 = H'00000080

;After execution: R1 = H'FFFFFF80

EXTS.W R0,R1 ;Before execution: R0 = H'00008000

;After execution: R1 = H'FFFF8000

161

6.1.24 EXTU (Extend as Unsigned): Arithmetic Instruction

Applicable
Instructions

Format Abstract Code Cycle T Bit SH-1 SH-2
SH-
DSP

EXTU.B Rm,
Rn

Zero-extend Rm
from byte → Rn

0110nnnnmmmm1100 1 —

EXTU.W Rm,
Rn

Zero-extend Rm
from word → Rn

0110nnnnmmmm1101 1 —

Description: Zero-extends general register Rm data, and stores the result in Rn. If byte length is
specified, 0s are written in bits 8 to 31 of Rn. If word length is specified, 0s are written in bits 16
to 31 of Rn.

Operation:

EXTUB(long m,long n) /* EXTU.B Rm,Rn */

{

R[n]=R[m];

R[n]&=0x000000FF;

PC+=2;

}

EXTUW(long m,long n) /* EXTU.W Rm,Rn */

{

R[n]=R[m];

R[n]&=0x0000FFFF;

PC+=2;

}

Examples:

EXTU.B R0,R1 ;Before execution: R0 = H'FFFFFF80

;After execution: R1 = H'00000080

EXTU.W R0,R1 ;Before execution: R0 = H'FFFF8000

;After execution: R1 = H'00008000

162

6.1.25 JMP (Jump): Branch Instruction

Class: Delayed branch instruction

Applicable
Instructions

Format Abstract Code Cycle T Bit SH-1 SH-2
SH-
DSP

JMP @Rm Rm → PC 0100mmmm00101011 2 —

Description: Branches unconditionally to the address specified by register indirect addressing.
The branch destination is an address specified by the 32-bit data in general register Rm.

Note: Since this is a delayed branch instruction, the instruction after JMP is executed before
branching. No interrupts or address errors are accepted between this instruction and the
next instruction. If the next instruction is a branch instruction, it is acknowledged as an
illegal slot instruction.

Operation:

JMP(long m) /* JMP @Rm */

{

unsigned long temp;

temp=PC;

PC=R[m]+4;

Delay_Slot(temp+2);

}

Example:

MOV.L JMP_TABLE,R0 ;Address of R0 = TRGET

JMP @R0 ;Branches to TRGET

MOV R0,R1 ;Executes MOV before branching

.align 4

JMP_TABLE: .data.l TRGET ;Jump table

.................

TRGET: ADD #1,R1 ;← Branch destination

163

6.1.26 JSR (Jump to Subroutine): Branch Instruction (Class: Delayed Branch

Instruction)

Applicable
Instructions

Format Abstract Code Cycle T Bit SH-1 SH-2
SH-
DSP

JSR @Rm PC → PR, Rm → PC 0100mmmm00001011 2 —

Description: Branches to the subroutine procedure at the address specified by register indirect
addressing. The PC value is stored in the PR. The jump destination is an address specified by the
32-bit data in general register Rm. The stored/saved PC is the address four bytes after this
instruction. The JSR instruction and RTS instruction are used together for subroutine procedure
calls.

Note: Since this is a delayed branch instruction, the instruction after JSR is executed before
branching. No interrupts and address errors are accepted between this instruction and the
next instruction. If the next instruction is a branch instruction, it is acknowledged as an
illegal slot instruction.

Operation:

JSR(long m) /* JSR @Rm */

{

PR=PC;

PC=R[m]+4;

Delay_Slot(PR+2);

}

164

Example:

MOV.L JSR_TABLE,R0 ;Address of R0 = TRGET

JSR @R0 ;Branches to TRGET

XOR R1,R1 ;Executes XOR before branching

ADD R0,R1 ;← Return address for when the subroutine
procedure is completed (PR data)

...........

.align 4

JSR_TABLE: .data.l TRGET ;Jump table

TRGET: NOP ;← Procedure entrance

MOV R2,R3 ;

RTS ;Returns to the above ADD instruction

MOV #70,R1 ;Executes MOV before RTS

Note: When a delayed branch instruction is used, the branching operation takes place after the
slot instruction is executed, but the execution of instructions (register update, etc.) takes
place in the sequence delayed branch instruction → delayed slot instruction. For
example, even if a delayed slot instruction is used to change the register where the
branch destination address is stored, the register content previous to the change will be
used as the branch destination address.

165

6.1.27 LDC (Load to Control Register): System Control Instruction (Class: Interrupt

Disabled Instruction)

Format Abstract Code Cycle T Bit

LDC Rm,SR Rm → SR 0100mmmm00001110 1 LSB

LDC Rm,GBR Rm → GBR 0100mmmm00011110 1 —

LDC Rm,VBR Rm → VBR 0100mmmm00101110 1 —

LDC Rm,MOD Rm → MOD 0100mmmm01011110 1 —

LDC Rm,RE Rm → RE 0100mmmm01111110 1 —

LDC Rm,RS Rm → RS 0100mmmm01101110 1 —

LDC.L @Rm+,SR (Rm) → SR, Rm + 4 → Rm 0100mmmm00000111 3 LSB

LDC.L @Rm+,GBR (Rm) → GBR, Rm + 4 → Rm 0100mmmm00010111 3 —

LDC.L @Rm+,VBR (Rm) → VBR, Rm + 4 → Rm 0100mmmm00100111 3 —

LDC.L @Rm+,MOD (Rm) → MOD, Rm + 4 → Rm 0100mmmm01010111 3 —

LDC.L @Rm+,RE (Rm) → RE, Rm + 4 → Rm 0100mmmm01110111 3 —

LDC.L @Rm+,RS (Rm) → RS, Rm + 4 → Rm 0100mmmm01100111 3 —

Description: Store the source operand into control register SR, GBR, VBR, MOD, RE, or RS.

Note: No interrupts are accepted between this instruction and the next instruction. Address errors
are accepted.

Operation:

LDCSR(long m) /* LDC Rm,SR */

{

SR=R[m]&0x0FFF0FFF;

PC+=2;

}

LDCGBR(long m) /* LDC Rm,GBR */

{

GBR=R[m];

PC+=2;

}

166

LDCVBR(long m) /* LDC Rm,VBR */

{

VBR=R[m];

PC+=2;

}

LDCMOD(long m) /* LDC Rm,MOD */

{

MOD=R[m];

PC+=2;

}

LDCRE(long m) /* LDC Rm,RE */

{

RE=R[m];

PC+=2;

}

LDCRS(long m) /* LDC Rm,RS */

{

RSR=R[m];

PC+=2;

}

LDCMSR(long m) /* LDC.L @Rm+,SR */

{

SR=Read_Long(R[m])&0x0FFF0FFF;

R[m]+=4;

PC+=2;

}

LDCMGBR(long m) /* LDC.L @Rm+,GBR */

{

GBR=Read_Long(R[m]);

R[m]+=4;

PC+=2;

}

167

LDCMVBR(long m) /* LDC.L @Rm+,VBR */

{

VBR=Read_Long(R[m]);

R[m]+=4;

PC+=2;

}

LDCMMOD(long m) /* LDC.L @Rm+,MOD */

{

MOD=Read_Long(R[m]);

R[m]+=4;

PC+=2;

}

LDCMRE(long m) /* LDC.L @Rm+,RE */

{

RE=Read_Long(R[m]);

R[m]+=4;

PC+=2;

}

LDCMRS(long m) /* LDC.L @Rm+,RS */

{

RS=Read_Long(R[m]);

R[m]+=4;

PC+=2;

}

Examples:

LDC R0,SR ;Before execution: R0 = H'FFFFFFFF, SR = H'00000000

;After execution: SR = H'0FFF0FFF

LDC.L @R15+,GBR ;Before execution: R15 = H'10000000

;After execution: R15 = H'10000004, GBR = @H'10000000

Note: This is the execution result for the SH-DSP.

168

6.1.28 LDRE (Load Effective Address to RE Register): System Control Instruction

Applicable
Instructions

Format Abstract Code Cycle T Bit SH-1 SH-2
SH-
DSP

LDRE @(disp,PC) disp × 2 + PC
→ RE

10001110dddddddd 1 — — —

Description: Stores the effective address of the source operand in the repeat end register RE. The
effective address is an address specified by PC + displacement. The PC is the address four bytes
after this instruction. The 8-bit displacement is sign-extended and doubled. Consequently, the
relative interval from the branch destination is –256 to +254 bytes.

Note: The effective address value designated for the RE reregister is different from the actual
repeat end address. Refer to table 4.35, RS and RE Design Rule, for more information.
When this instruction is arranged immediately after the delayed branch instruction, PC
becomes the "first address +2" of the branch destination.

Operation:

LDRE(long d) /* LDRE @(disp, PC) */

{

long disp;

if ((d&0x80)==0) disp=(0x000000FF & (long)d);

else disp=(0xFFFFFF00 | (long)d);

RE=PC+(disp<<1);

PC+=2;

}

169

Example:

LDRS STA ;Set repeat start address to RS.

LDRE END ;Set repeat end address to RE.

SETRC #32 ;Repeat 32 times from inst.A to inst.C.

inst.0 ;

STA: inst.A ;

inst.B ;

............

END: inst.C ;

inst.E ;

............

170

6.1.29 LDRS (Load Effective Address to RS Register): System Control Instruction

Applicable
Instructions

Format Abstract Code Cycle T Bit SH-1 SH-2
SH-
DSP

LDRS @(disp,PC) disp × 2 + PC
→ RS

10001100dddddddd 1 — — —

Description: Stores the effective address of the source operand in the repeat start register RS. The
effective address is an address specified by PC + displacement. The PC is the address four bytes
after this instruction. The 8-bit displacement is sign-extended and doubled. Consequently, the
relative interval from the branch destination is –256 to +254 bytes.

Note: When the instructions of the repeat (loop) program are below 3, the effective address value
designated for the RS register is different from the actual repeat start address. Refer to
Table 4.35. "RS and RE setting rule", for more information. If this instruction is arranged
immediately after the delayed branch instruction, the PC becomes "the first address +2" of
the branch destination.

Operation:

LDRS(long d) /* LDRS @(disp, PC) */

{

long disp;

if ((d&0x80)==0) disp=(0x000000FF & (long)d);

else disp=(0xFFFFFF00 | (long)d);

RS=PC+(disp<<1);

PC+=2;

}

171

Example:

LDRS STA ;Set repeat start address to RS.

LDRE END ;Set repeat end address to RE.

SETRC #32 ;Repeat 32 times from inst.A to inst.C.

inst.0 ;

STA: inst.A ;

inst.B ;

............

END: inst.C ;

inst.D ;

............

172

6.1.30 LDS (Load to System Register): System Control Instruction

Class: Interrupt disabled instruction

Applicable
Instructions

Format Abstract Code Cycle T Bit SH-1 SH-2
SH-
DSP

LDS Rm,MACH Rm → MACH 0100mmmm00001010 1 —

LDS Rm,MACL Rm → MACL 0100mmmm00011010 1 —

LDS Rm,PR Rm → PR 0100mmmm00101010 1 —

LDS Rm,DSR Rm → DSR 0100mmmm01101010 1 — — —

LDS Rm,A0 Rm → A0 0100mmmm01111010 1 — — —

LDS Rm,X0 Rm → X0 0100mmmm10001010 1 — — —

LDS Rm,X1 Rm → X1 0100mmmm10011010 1 — — —

LDS Rm,Y0 Rm → Y0 0100mmmm10101010 1 — — —

LDS Rm,Y1 Rm → Y1 0100mmmm10111010 1 — — —

LDS.L @Rm+,
MACH

(Rm) → MACH,
Rm + 4 → Rm

0100mmmm00000110 1 —

LDS.L @Rm+,
MACL

(Rm) → MACL,
Rm + 4 → Rm

0100mmmm00010110 1 —

LDS.L @Rm+,PR (Rm) → PR,
Rm + 4 → Rm

0100mmmm00100110 1 —

LDS.L @Rm+,
DSR

(Rm) → DSR,
Rm + 4 → Rm

0100mmmm01100110 1 — — —

LDS.L @Rm+,A0 (Rm) → A0,
Rm + 4 → Rm

0100mmmm01110110 1 — — —

LDS.L @Rm+,
X0

(Rm) → X0,
Rm+4 → Rm

0100nnnn10000110 1 — — —

LDS.L @Rm+,
X1

(Rm) → X1,
Rm+4 → Rm

0100nnnn10010110 1 — — —

LDS.L @Rm+,
Y0

(Rm) → Y0,
Rm+4 → Rm

0100nnnn10100110 1 — — —

LDS.L @Rm+,
Y1

(Rm) → Y1,
Rm+4 → Rm

0100nnnn10110110 1 — — —

Description: Store the source operand into the system register MACH, MACL, or PR or the DSP
register DSR, A0, X0, X1, Y0, or Y1. When A0 is designated as the destination, the MSB of the
data is copied into A0G.

173

Note: No interrupts are accepted between this instruction and the next instruction. Address errors
are accepted.

For the SH-1 CPU, the lower 10 bits are stored in MACH. For the SH-2 and SH-DSP CPU, 32 bits
are stored in MACH.

Operation:

LDSMACH(long m) /* LDS Rm,MACH */

{

MACH=R[m];

if ((MACH&0x00000200)==0) MACH&=0x000003FF; For SH-1 CPU(these 2 lines

else MACH|=0xFFFFFC00; not needed for SH-2 and V

PC+=2; N SH-DSP CPU)

}

LDSMACL(long m) /* LDS Rm,MACL */

{

MACL=R[m];

PC+=2;

}

LDSPR(long m) /* LDS Rm,PR */

{

PR=R[m];

PC+=2;

}

LDSDSR(long m) /* LDS Rm,DSR */

{

DSR=R[m]&0x0000000F;

PC+=2;

}

LDSA0(long m) /* LDS Rm,A0 */

{

A0=R[m];

if((A0&0x80000000)==0) A0G=0x00;

else A0G=0xFF;

PC+=2;

}

LDSX0(long m) /* LDS Rm, X0 */

{

174

X0=R[m];

PC+=2;

}

LDSX1(long m) /* LDS Rm, X1 */

{

X1=R[m];

PC+=2;

}

LDSY0(long m) /* LDS Rm, Y0 */

{

Y0=R[m];

PC+=2;

}

LDSY1(long m) /* LDS Rm, Y1 */

{

Y1=R[m];

PC+=2;

}

LDSMMACH(long m) /* LDS.L @Rm+,MACH */

{

MACH=Read_Long(R[m]);

if ((MACH&0x00000200)==0) MACH&=0x000003FF; For SH-1 CPU (these 2 lines

else MACH|=0xFFFFFC00; not needed for SH-2 and

R[m]+=4; SH-DSP CPU)

PC+=2;

}

LDSMMACL(long m) /* LDS.L @Rm+,MACL */

{

MACL=Read_Long(R[m]);

R[m]+=4;

PC+=2;

}

LDSMPR(long m) /* LDS.L @Rm+,PR */

{

PR=Read_Long(R[m]);

R[m]+=4;

PC+=2;

175

}

LDSMDSR(long m) /* LDS.L @Rm+,DSR */

{

DSR=Read_Long(R[m])&0x0000000F;

R[m]+=4;

PC+=2;

}

LDSMA0(long m) /* LDS.L @Rm+,A0 */

{

A0=Read_Long(R[m]);

if((A0&0x80000000)==0) A0G=0x00;

else A0G=0xFF;

R[m]+=4;

PC+=2;

}

LDSMX0(long m) /* LDS.L @Rm+,X0 */

{

X0=Read_Long(R[m]);

R[m]+=4;

PC+=2;

}

LDSMX1(long m) /* LDS.L @Rm+,X1 */

{

X1=Read_Long(R[m]);

R[m]+=4;

PC+=2;

}

LDSMY0(long m) /* LDS.L @Rm+,Y0 */

{

Y0=Read_Long(R[m]);

R[m]+=4;

PC+=2;

}

LDSMY1(long m) /* LDS.L @Rm+,Y1 */

{

Y1=Read_Long(R[m]);

R[m]+=4;

176

PC+=2;

}

Examples:

LDS R0,PR ;Before execution: R0 = H'12345678, PR = H'00000000

;After execution: PR = H'12345678

LDS.L @R15+,MACL ;Before execution: R15 = H'10000000

;After execution: R15 = H'10000004, MACL = @H'10000000

177

6.1.31 MAC.L (Multiply and Accumulate Calculation Long): Arithmetic Instruction

Applicable
Instructions

Format Abstract Code Cycle T Bit SH-1 SH-2
SH-
DSP

MAC.L @Rm+,
@Rn+

Signed operation,
(Rn) × (Rm) + MAC
→ MAC

0000nnnnmmmm1111 3/(2
to 4)

— —

Description: Does signed multiplication of 32-bit operands obtained using the contents of general
registers Rm and Rn as addresses. The 64-bit result is added to contents of the MAC register, and
the final result is stored in the MAC register. Every time an operand is read, they increment Rm
and Rn by four.

When the S bit is cleared to 0, the 64-bit result is stored in the coupled MACH and MACL
registers. When bit S is set to 1, addition to the MAC register is a saturation operation of 48 bits
starting from the LSB. For the saturation operation, only the lower 48 bits of the MACL register
are enabled and the result is limited to a range of H'FFFF800000000000 (minimum) and
H'00007FFFFFFFFFFF (maximum).

Operation:

MACL(long m,long n) /* MAC.L @Rm+,@Rn+*/

{

unsigned long RnL,RnH,RmL,RmH,Res0,Res1,Res2;

unsigned long temp0,templ,temp2,temp3;

long tempm,tempn,fnLmL;

tempn=(long)Read_Long(R[n]);

R[n]+=4;

tempm=(long)Read_Long(R[m]);

R[m]+=4;

if ((long)(tempn t̂empm)<0) fnLmL=-1;

else fnLmL=0;

if (tempn<0) tempn=0-tempn;

if (tempm<0) tempm=0-tempm;

temp1=(unsigned long)tempn;

178

temp2=(unsigned long)tempm;

RnL=temp1&0x0000FFFF;

RnH=(temp1>>16)&0x0000FFFF;

RmL=temp2&0x0000FFFF;

RmH=(temp2>>16)&0x0000FFFF;

temp0=RmL*RnL;

temp1=RmH*RnL;

temp2=RmL*RnH;

temp3=RmH*RnH;

Res2=0

Res1=temp1+temp2;

if (Res1<temp1) Res2+=0x00010000;

temp1=(Res1<<16)&0xFFFF0000;

Res0=temp0+temp1;

if (Res0<temp0) Res2++;

Res2=Res2+((Res1>>16)&0x0000FFFF)+temp3;

if(fnLm<0){

Res2=~Res2;

if (Res0==0) Res2++;

else Res0=(~Res0)+1;

}

if(S==1){

Res0=MACL+Res0;

if (MACL>Res0) Res2++;

Res2+=(MACH&0x0000FFFF);

if(((long)Res2<0)&&(Res2<0xFFFF8000)){

Res2=0x00008000;

Res0=0x00000000;

}

179

if(((long)Res2>0)&&(Res2>0x00007FFF)){

Res2=0x00007FFF;

Res0=0xFFFFFFFF;

};

MACH={Res2;

MACL=Res0;

}

else {

Res0=MACL+Res0;

if (MACL>Res0) Res2++;

Res2+=MACH

MACH=Res2;

MACL=Res0;

}

PC+=2;

}

Example:

MOVA TBLM,R0 ;Table address

MOV R0,R1 ;

MOVA TBLN,R0 ;Table address

CLRMAC ;MAC register initialization

MAC.L @R0+,@R1+ ;

MAC.L @R0+,@R1+ ;

STS MACL,R0 ;Store result into R0

...............

.align 2 ;

TBLM .data.l H'1234ABCD ;

.data.l H'5678EF01 ;

TBLN .data.l H'0123ABCD ;

.data.l H'4567DEF0 ;

180

6.1.32 MAC.W (Multiply and Accumulate Calculation Word): Arithmetic Instruction

Applicable
Instructions

Format Abstract Code Cycle
T
Bit SH-1 SH-2

SH-
DSP

MAC.W @Rm+,
@Rn+

With sign, (Rn) × (Rm)
+ MAC → MAC

0100nnnnmmmm1111 3/(2) — —

MAC @Rm+,
@Rn+

Description: Does signed multiplication of 16-bit operands obtained using the contents of general
registers Rm and Rn as addresses. The 32-bit result is added to contents of the MAC register, and
the final result is stored in the MAC register. Rm and Rn data are incremented by 2 after the
operation.

When the S bit is cleared to 0, the operation is 16 × 16 + 64 → 64-bit multiply and accumulate and
the 64-bit result is stored in the coupled MACH and MACL registers.

When the S bit is set to 1, the operation is 16 × 16 + 32 → 32-bit multiply and accumulate and
addition to the MAC register is a saturation operation. For the saturation operation, only the
MACL register is enabled and the result is limited to a range of H'80000000 (minimum) and
H'7FFFFFFF (maximum).

If an overflow occurs, the LSB of the MACH register is set to 1. The result is stored in the MACL
register. The result is limited to a value between H'80000000 (minimum) for overflows in the
negative direction and H'7FFFFFFF (maximum) for overflows in the positive direction.

Note: When the S bit is 0, the SH-2 and SH-DSP CPU perform a 16 × 16 + 64 → 64 bit multiply
and accumulate operation and the SH-1 CPU performs a 16 × 16 + 42 → 42 bit multiply
and accumulate operation.

181

Operation:

MACW(long m,long n) /* MAC.W @Rm+,@Rn+*/

{

long tempm,tempn,dest,src,ans;

unsigned long templ;

tempn=(long)Read_Word(R[n]);

R[n]+=2;

tempm=(long)Read_Word(R[m]);

R[m]+=2;

templ=MACL;

tempm=((long)(short)tempn*(long)(short)tempm);

if ((long)MACL>=0) dest=0;

else dest=1;

if ((long)tempm>=0 {

src=0;

tempn=0;

}

else {

src=1;

tempn=0xFFFFFFFF;

}

src+=dest;

MACL+=tempm;

if ((long)MACL>=0) ans=0;

else ans=1;

ans+=dest;

182

if (S==1) {

if (ans==1) {

if (src==0 || src==2) For SH-1 CPU (these 2 lines

 MACH|=0x00000001; not needed for SH-2 and

if (src==0) MACL=0x7FFFFFFF; SH-DSP CPU)

if (src==2) MACL=0x80000000;

}

}

else {

MACH+=tempn;

if (templ>MACL) MACH+=1;

if ((MACH&0x00000200)==0) For SH-1 CPU (these 3 lines

 MACH&=0x000003FF; not needed for SH-2 and

else MACH|=0xFFFFFC00; SH-DSP CPU)

}

PC+=2;

}

Example:

MOVA TBLM,R0 ;Table address

MOV R0,R1 ;

MOVA TBLN,R0 ;Table address

CLRMAC ;MAC register initialization

MAC.W @R0+,@R1+ ;

MAC.W @R0+,@R1+ ;

STS MACL,R0 ;Store result into R0

...............

.align 2 ;

TBLM .data.w H'1234 ;

.data.w H'5678 ;

TBLN .data.w H'0123 ;

.data.w H'4567 ;

183

6.1.33 MOV (Move Data): Data Transfer Instruction

Applicable
Instructions

Format Abstract Code Cycle T Bit SH-1 SH-2
SH-
DSP

MOV Rm,Rn Rm → Rn 0110nnnnmmmm0011 1 —

MOV.B Rm,@Rn Rm → (Rn) 0010nnnnmmmm0000 1 —

MOV.W Rm,@Rn Rm → (Rn) 0010nnnnmmmm0001 1 —

MOV.L Rm,@Rn Rm → (Rn) 0010nnnnmmmm0010 1 —

MOV.B @Rm,Rn (Rm) → sign
extension → Rn

0110nnnnmmmm0000 1 —

MOV.W @Rm,Rn (Rm) → sign
extension → Rn

0110nnnnmmmm0001 1 —

MOV.L @Rm,Rn (Rm) → Rn 0110nnnnmmmm0010 1 —

MOV.B Rm,@–Rn Rn – 1 → Rn,
Rm → (Rn)

0010nnnnmmmm0100 1 —

MOV.W Rm,@–Rn Rn – 2 → Rn,
Rm → (Rn)

0010nnnnmmmm0101 1 —

MOV.L Rm,@–Rn Rn – 4 → Rn,
Rm → (Rn)

0010nnnnmmmm0110 1 —

MOV.B @Rm+,Rn (Rm) → sign
extension → Rn,
Rm + 1 → Rm

0110nnnnmmmm0100 1 —

MOV.W @Rm+,Rn (Rm) → sign
extension → Rn,
Rm + 2 → Rm

0110nnnnmmmm0101 1 —

MOV.L @Rm+,Rn (Rm) → Rn,
Rm + 4 → Rm

0110nnnnmmmm0110 1 —

MOV.B Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0100 1 —

MOV.W Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0101 1 —

MOV.L Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0110 1 —

MOV.B @(R0,Rm),Rn (R0 + Rm) → sign
extension → Rn

0000nnnnmmmm1100 1 —

MOV.W @(R0,Rm),Rn (R0 + Rm) → sign
extension → Rn

0000nnnnmmmm1101 1 —

MOV.L @(R0,Rm),Rn (R0 + Rm) → Rn 0000nnnnmmmm1110 1 —

Description: Transfers the source operand to the destination. When the operand is stored in
memory, the transferred data can be a byte, word, or longword. Loaded data from memory is
stored in a register after it is sign-extended to a longword.

184

Operation:

MOV(long m,long n) /* MOV Rm,Rn */

{

R[n]=R[m];

PC+=2;

}

MOVBS(long m,long n) /* MOV.B Rm,@Rn */

{

Write_Byte(R[n],R[m]);

PC+=2;

}

MOVWS(long m,long n) /* MOV.W Rm,@Rn */

{

Write_Word(R[n],R[m]);

PC+=2;

}

MOVLS(long m,long n) /* MOV.L Rm,@Rn */

{

Write_Long(R[n],R[m]);

PC+=2;

}

MOVBL(long m,long n) /* MOV.B @Rm,Rn */

{

R[n]=(long)Read_Byte(R[m]);

if ((R[n]&0x80)==0) R[n]&0x000000FF;

else R[n]|=0xFFFFFF00;

PC+=2;

}

185

MOVWL(long m,long n) /* MOV.W @Rm,Rn */

{

R[n]=(long)Read_Word(R[m]);

if ((R[n]&0x8000)==0) R[n]&0x0000FFFF;

else R[n]|=0xFFFF0000;

PC+=2;

}

MOVLL(long m,long n) /* MOV.L @Rm,Rn */

{

R[n]=Read_Long(R[m]);

PC+=2;

}

MOVBM(long m,long n) /* MOV.B Rm,@–Rn */

{

Write_Byte(R[n]–1,R[m]);

R[n]–=1;

PC+=2;

}

MOVWM(long m,long n) /* MOV.W Rm,@–Rn */

{

Write_Word(R[n]–2,R[m]);

R[n]–=2;

PC+=2;

}

MOVLM(long m,long n) /* MOV.L Rm,@–Rn */

{

Write_Long(R[n]–4,R[m]);

R[n]–=4;

PC+=2;

}

186

MOVBP(long m,long n) /* MOV.B @Rm+,Rn */

{

R[n]=(long)Read_Byte(R[m]);

if ((R[n]&0x80)==0) R[n]&0x000000FF;

else R[n]|=0xFFFFFF00;

if (n!=m) R[m]+=1;

PC+=2;

}

MOVWP(long m,long n) /* MOV.W @Rm+,Rn */

{

R[n]=(long)Read_Word(R[m]);

if ((R[n]&0x8000)==0) R[n]&0x0000FFFF;

else R[n]|=0xFFFF0000;

if (n!=m) R[m]+=2;

PC+=2;

}

MOVLP(long m,long n) /* MOV.L @Rm+,Rn */

{

R[n]=Read_Long(R[m]);

if (n!=m) R[m]+=4;

PC+=2;

}

MOVBS0(long m,long n) /* MOV.B Rm,@(R0,Rn) */

{

Write_Byte(R[n]+R[0],R[m]);

PC+=2;

}

MOVWS0(long m,long n) /* MOV.W Rm,@(R0,Rn) */

{

Write_Word(R[n]+R[0],R[m]);

PC+=2;

}

187

MOVLS0(long m,long n) /* MOV.L Rm,@(R0,Rn) */

{

Write_Long(R[n]+R[0],R[m]);

PC+=2;

}

MOVBL0(long m,long n) /* MOV.B @(R0,Rm),Rn */

{

R[n]=(long)Read_Byte(R[m]+R[0]);

if ((R[n]&0x80)==0) R[n]&0x000000FF;

else R[n]|=0xFFFFFF00;

PC+=2;

}

MOVWL0(long m,long n) /* MOV.W @(R0,Rm),Rn */

{

R[n]=(long)Read_Word(R[m]+R[0]);

if ((R[n]&0x8000)==0) R[n]&0x0000FFFF;

else R[n]|=0xFFFF0000;

PC+=2;

}

MOVLL0(long m,long n) /* MOV.L @(R0,Rm),Rn */

{

R[n]=Read_Long(R[m]+R[0]);

PC+=2;

}

Example:

MOV R0,R1 ;Before execution: R0 = H'FFFFFFFF, R1 = H'00000000

;After execution: R1 = H'FFFFFFFF

MOV.W R0,@R1 ;Before execution: R0 = H'FFFF7F80

;After execution: @R1 = H'7F80

MOV.B @R0,R1 ;Before execution: @R0 = H'80, R1 = H'00000000

;After execution: R1 = H'FFFFFF80

MOV.W R0,@–R1 ;Before execution: R0 = H'AAAAAAAA, R1 = H'FFFF7F80

;After execution: R1 = H'FFFF7F7E, @R1 = H'AAAA

188

MOV.L @R0+,R1 ;Before execution: R0 = H'12345670

;After execution: R0 = H'12345674, R1 = @H'12345670

MOV.B R1,@(R0,R2) ;Before execution: R2 = H'00000004, R0 = H'10000000

;After execution: R1 = @H'10000004

MOV.W @(R0,R2),R1 ;Before execution: R2 = H'00000004, R0 = H'10000000

;After execution: R1 = @H'10000004

189

6.1.34 MOV (Move Immediate Data): Data Transfer Instruction

Applicable
Instructions

Format Abstract Code Cycle
T
Bit SH-1 SH-2

SH-
DSP

MOV #imm,Rn imm → sign
extension → Rn

1110nnnniiiiiiii 1 —

MOV.W @(disp,
PC),Rn

(disp × 2 + PC) → sign
extension → Rn

1001nnnndddddddd 1 —

MOV.L @(disp,
PC),Rn

(disp × 4 + PC) → Rn 1101nnnndddddddd 1 —

Description: Stores immediate data, which has been sign-extended to a longword, into general
register Rn.

If the data is a word or longword, table data stored in the address specified by PC + displacement
is accessed. If the data is a word, the 8-bit displacement is zero-extended and doubled.
Consequently, the relative interval from the table can be up to PC + 510 bytes. The PC points to
the starting address of the second instruction after this MOV instruction. If the data is a longword,
the 8-bit displacement is zero-extended and quadrupled. Consequently, the relative interval from
the table can be up to PC + 1020 bytes. The PC points to the starting address of the second
instruction after this MOV instruction, but the lowest two bits of the PC are corrected to B'00.

Note: The optimum table assignment is at the rear end of the module or one instruction after the
unconditional branch instruction. If the optimum assignment is impossible for the reason
of no unconditional branch instruction in the 510 byte/1020 byte or some other reason,
means to jump past the table by the BRA instruction are required. By assigning this
instruction immediately after the delayed branch instruction, the PC becomes the "first
address + 2".

Operation:

MOVI(long i,long n) /* MOV #imm,Rn */

{

if ((i&0x80)==0) R[n]=(0x000000FF & (long)i);

else R[n]=(0xFFFFFF00 | (long)i);

PC+=2;

}

190

MOVWI(long d,long n) /* MOV.W @(disp,PC),Rn */

{

long disp;

disp=(0x000000FF & (long)d);

R[n]=(long)Read_Word(PC+(disp<<1));

if ((R[n]&0x8000)==0) R[n]&=0x0000FFFF;

else R[n]|=0xFFFF0000;

PC+=2;

}

MOVLI(long d,long n) /* MOV.L @(disp,PC),Rn */

{

long disp;

disp=(0x000000FF & (long)d);

R[n]=Read_Long((PC&0xFFFFFFFC)+(disp<<2));

PC+=2;

}

Example:

Address

1000 MOV #H'80,R1 ;R1 = H'FFFFFF80

1002 MOV.W IMM,R2 ;R2 = H'FFFF9ABC, IMM means @(H'08,PC)

1004 ADD #–1,R0 ;

1006 TST R0,R0 ;← PC location used for address calculation for the
MOV.W instruction

1008 MOVT R13 ;

100A BRA NEXT ;Delayed branch instruction

100C MOV.L @(4,PC),R3 ;R3 = H'12345678

100E IMM .data.w H'9ABC ;

1010 .data.w H'1234 ;

1012 NEXT JMP @R3 ;Branch destination of the BRA instruction

1014 CMP/EQ #0,R0 ;← PC location used for address calculation for the
;MOV.L instruction

.align 4 ;

1018 .data.l H'12345678 ;

191

6.1.35 MOV (Move Peripheral Data): Data Transfer Instruction

Applicable
Instructions

Format Abstract Code Cycle
T
Bit SH-1 SH-2

SH-
DSP

MOV.B

@(disp,GBR),R0

(disp + GBR) → sign
extension → R0

11000100dddddddd 1 —

MOV.W

@(disp,GBR),R0

(disp × 2 + GBR) → sign
extension → R0

11000101dddddddd 1 —

MOV.L

@(disp,GBR),R0

(disp × 4 + GBR) → R0 11000110dddddddd 1 —

MOV.B

R0,@(disp,GBR)

R0 → (disp + GBR) 11000000dddddddd 1 —

MOV.W

R0,@(disp,GBR)

R0 → (disp × 2 + GBR) 11000001dddddddd 1 —

MOV.L

R0,@(disp,GBR)

R0 → (disp × 4 + GBR) 11000010dddddddd 1 —

Description: Transfers the source operand to the destination. This instruction is optimum for
accessing data in the peripheral module area. The data can be a byte, word, or longword, but only
the R0 register can be used.

A peripheral module base address is set to the GBR. When the peripheral module data is a byte,
the only change made is to zero-extend the 8-bit displacement. Consequently, an address within
+255 bytes can be specified. When the peripheral module data is a word, the 8-bit displacement is
zero-extended and doubled. Consequently, an address within +510 bytes can be specified. When
the peripheral module data is a longword, the 8-bit displacement is zero-extended and is
quadrupled. Consequently, an address within +1020 bytes can be specified. If the displacement is
too short to reach the memory operand, the above @(R0,Rn) mode must be used after the GBR
data is transferred to a general register. When the source operand is in memory, the loaded data is
stored in the register after it is sign-extended to a longword.

Note: The destination register of a data load is always R0. R0 cannot be accessed by the next
instruction until the load instruction is finished. The instruction order shown in figure 6.1
will give better results.

MOV.B

AND

ADD

@(12, GBR), R0

#80, R0

#20, R1

MOV.B

ADD

AND

@(12, GBR), R0

#20, R1

#80, R0

Figure 6.1 Using R0 after MOV

192

Operation:

MOVBLG(long d) /* MOV.B @(disp,GBR),R0 */

{

long disp;

disp=(0x000000FF & (long)d);

R[0]=(long)Read_Byte(GBR+disp);

if ((R[0]&0x80)==0) R[0]&=0x000000FF;

else R[0]|=0xFFFFFF00;

PC+=2;

}

MOVWLG(long d) /* MOV.W @(disp,GBR),R0 */

{

long disp;

disp=(0x000000FF & (long)d);

R[0]=(long)Read_Word(GBR+(disp<<1));

if ((R[0]&0x8000)==0) R[0]&=0x0000FFFF;

else R[0]|=0xFFFF0000;

PC+=2;

}

MOVLLG(long d) /* MOV.L @(disp,GBR),R0 */

{

long disp;

disp=(0x000000FF & (long)d);

R[0]=Read_Long(GBR+(disp<<2));

PC+=2;

}

193

MOVBSG(long d) /* MOV.B R0,@(disp,GBR) */

{

long disp;

disp=(0x000000FF & (long)d);

Write_Byte(GBR+disp,R[0]);

PC+=2;

}

MOVWSG(long d) /* MOV.W R0,@(disp,GBR) */

{

long disp;

disp=(0x000000FF & (long)d);

Write_Word(GBR+(disp<<1),R[0]);

PC+=2;

}

MOVLSG(long d) /* MOV.L R0,@(disp,GBR) */

{

long disp;

disp=(0x000000FF & (long)d);

Write_Long(GBR+(disp<<2),R[0]);

PC+=2;

}

Examples:

MOV.L @(2,GBR),R0 ;Before execution: @(GBR + 8) = H'12345670

;After execution: R0 = H'12345670

MOV.B R0,@(1,GBR) ;Before execution: R0 = H'FFFF7F80

;After execution: @(GBR + 1) = H'80

194

6.1.36 MOV (Move Structure Data): Data Transfer Instruction

Applicable
Instructions

Format Abstract Code Cycle
T
Bit SH-1 SH-2

SH-
DSP

MOV.B
R0,@(disp,Rn)

R0 → (disp + Rn) 10000000nnnndddd 1 —

MOV.W
R0,@(disp,Rn)

R0 → (disp × 2 + Rn) 10000001nnnndddd 1 —

MOV.L
Rm,@(disp,Rn)

Rm → (disp × 4 + Rn) 0001nnnnmmmmdddd 1 —

MOV.B
@(disp,Rm),R0

(disp + Rm) → sign
extension → R0

10000100mmmmdddd 1 —

MOV.W
@(disp,Rm),R0

(disp × 2 + Rm) → sign
extension → R0

10000101mmmmdddd 1 —

MOV.L
@(disp,Rm),Rn

disp × 4 + Rm) → Rn 0101nnnnmmmmdddd 1 —

Description: Transfers the source operand to the destination. This instruction is optimum for
accessing data in a structure or a stack. The data can be a byte, word, or longword, but when a byte
or word is selected, only the R0 register can be used. When the data is a byte, the only change
made is to zero-extend the 4-bit displacement. Consequently, an address within +15 bytes can be
specified. When the data is a word, the 4-bit displacement is zero-extended and doubled.
Consequently, an address within +30 bytes can be specified. When the data is a longword, the
4-bit displacement is zero-extended and quadrupled. Consequently, an address within +60 bytes
can be specified. If the displacement is too short to reach the memory operand, the aforementioned
@(R0,Rn) mode must be used. When the source operand is in memory, the loaded data is stored in
the register after it is sign-extended to a longword.

Note: When byte or word data is loaded, the destination register is always R0. R0 cannot be
accessed by the next instruction until the load instruction is finished. The instruction order
in figure 6.2 will give better results.

MOV.B

AND

ADD

@(2, R1), R0

#80, R0

#20, R1

MOV.B

ADD

AND

@(2, R1), R0

#20, R1

#80, R0

Figure 6.2 Using R0 after MOV

195

Operation:

MOVBS4(long d,long n) /* MOV.B R0,@(disp,Rn) */

{

long disp;

disp=(0x0000000F & (long)d);

Write_Byte(R[n]+disp,R[0]);

PC+=2;

}

MOVWS4(long d,long n) /* MOV.W R0,@(disp,Rn) */

{

long disp;

disp=(0x0000000F & (long)d);

Write_Word(R[n]+(disp<<1),R[0]);

PC+=2;

}

MOVLS4(long m,long d,long n) /* MOV.L Rm,@(disp,Rn) */

{

long disp;

disp=(0x0000000F & (long)d);

Write_Long(R[n]+(disp<<2),R[m]);

PC+=2;

}

MOVBL4(long m,long d) /* MOV.B @(disp,Rm),R0 */

{

long disp;

disp=(0x0000000F & (long)d);

R[0]=Read_Byte(R[m]+disp);

if ((R[0]&0x80)==0) R[0]&=0x000000FF;

else R[0]|=0xFFFFFF00;

PC+=2;

}

196

MOVWL4(long m,long d) /* MOV.W @(disp,Rm),R0 */

{

long disp;

disp=(0x0000000F & (long)d);

R[0]=Read_Word(R[m]+(disp<<1));

if ((R[0]&0x8000)==0) R[0]&=0x0000FFFF;

else R[0]|=0xFFFF0000;

PC+=2;

}

MOVLL4(long m,long d,long n)

/* MOV.L @(disp,Rm),Rn */

{

long disp;

disp=(0x0000000F & (long)d);

R[n]=Read_Long(R[m]+(disp<<2));

PC+=2;

}

Examples:

MOV.L @(2,R0),R1 ;Before execution: @(R0 + 8) = H'12345670

;After execution: R1 = H'12345670

MOV.L R0,@(H'F,R1) ;Before execution: R0 = H'FFFF7F80

;After execution: @(R1 + 60) = H'FFFF7F80

197

6.1.37 MOVA (Move Effective Address): Data Transfer Instruction

Applicable
Instructions

Format Abstract Code Cycle
T
Bit SH-1 SH-2

SH-
DSP

MOVA
@(disp,PC),R0

disp × 4 + PC → R0 11000111dddddddd 1 —

Description: Stores the effective address of the source operand into general register R0. The 8-bit
displacement is zero-extended and quadrupled. Consequently, the relative interval from the
operand is PC + 1020 bytes. The PC is the address four bytes after this instruction, but the lowest
two bits of the PC are corrected to B'00.

Note: If this instruction is placed immediately after a delayed branch instruction, the PC must
point to an address specified by (the starting address of the branch destination) + 2.

Operation:

MOVA(long d) /* MOVA @(disp,PC),R0 */

{

long disp;

disp=(0x000000FF & (long)d);

R[0]=(PC&0xFFFFFFFC)+(disp<<2);

PC+=2;

}

Example:

Address.org H'1006

1006 MOVA STR,R0 ;Address of STR → R0

1008 MOV.B @R0,R1 ;R1 = “X” ← PC location after correcting the lowest
two bits

100A ADD R4,R5 ;← Original PC location for address calculation for the
MOVA instruction

.align 4

100C STR: .sdata “XYZP12”

...............

2002 BRA TRGET ;Delayed branch instruction

2004 MOVA @(0,PC),R0 ;Address of TRGET + 2 → R0

2006 NOP ;

198

6.1.38 MOVT (Move T Bit): Data Transfer Instruction

Applicable
Instructions

Format Abstract Code Cycle
T
Bit SH-1 SH-2

SH-
DSP

MOVT Rn T → Rn 0000nnnn00101001 1 —

Description: Stores the T bit value into general register Rn. When T = 1, 1 is stored in Rn, and
when T = 0, 0 is stored in Rn.

Operation:

MOVT(long n) /* MOVT Rn */

{

R[n]=(0x00000001 & SR);

PC+=2;

}

Example:

XOR R2,R2 ;R2 = 0

CMP/PZ R2 ;T = 1

MOVT R0 ;R0 = 1

CLRT ;T = 0

MOVT R1 ;R1 = 0

199

6.1.39 MUL.L (Multiply Long): Arithmetic Instruction

Applicable
Instructions

Format Abstract Code Cycle
T
Bit SH-1 SH-2

SH-
DSP

MUL.L Rm,Rn Rn × Rm → MACL 0000nnnnmmmm0111 2 (to 4) — —

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm, and
stores the bottom 32 bits of the result in the MACL register. The MACH register data does not
change.

Operation:

MUL.L(long m,long n) /* MUL.L Rm,Rn */

{

MACL=R[n]*R[m];

PC+=2;

}

Example:

MULL R0,R1 ;Before execution: R0 = H'FFFFFFFE, R1 = H'00005555

;After execution: MACL = H'FFFF5556

STS MACL,R0 ;Operation result

200

6.1.40 MULS.W (Multiply as Signed Word): Arithmetic Instruction

Applicable
Instructions

Format Abstract Code Cycle
T
Bit SH-1 SH-2

SH-
DSP

MULS.W Rm,Rn
MULS Rm,Rn

Signed operation, Rn ×
Rm → MACL

0010nnnnmmmm1111 1 (to 3) —

Description: Performs 16-bit multiplication of the contents of general registers Rn and Rm, and
stores the 32-bit result in the MACL register. The operation is signed and the MACH register data
does not change.

Operation:

MULS(long m,long n) /* MULS Rm,Rn */

{

MACL=((long)(short)R[n]*(long)(short)R[m]);

PC+=2;

}

Example:

MULS R0,R1 ;Before execution: R0 = H'FFFFFFFE, R1 = H'00005555

;After execution: MACL = H'FFFF5556

STS MACL,R0 Operation result

201

6.1.41 MULU.W (Multiply as Unsigned Word): Arithmetic Instruction

Applicable
Instructions

Format Abstract Code Cycle
T
Bit SH-1 SH-2

SH-
DSP

MULU.W Rm,Rn
MULU Rm,Rn

Unsigned,
Rn × Rm → MACL

0010nnnnmmmm1110 1 (to 3) —

Description: Performs 16-bit multiplication of the contents of general registers Rn and Rm, and
stores the 32-bit result in the MACL register. The operation is unsigned and the MACH register
data does not change.

Operation:

MULU(long m,long n) /* MULU Rm,Rn */

{

MACL=((unsigned long)(unsigned short)R[n]

*(unsigned long)(unsigned short)R[m]);

PC+=2;

}

Example:

MULU R0,R1 ;Before execution: R0 = H'00000002, R1 = H'FFFFAAAA

;After execution: MACL = H'00015554

STS MACL,R0 ;Operation result

202

6.1.42 NEG (Negate): Arithmetic Instruction

Applicable
Instructions

Format Abstract Code Cycle
T
Bit SH-1 SH-2

SH-
DSP

NEG Rm,Rn 0 – Rm → Rn 0110nnnnmmmm1011 1 —

Description: Takes the two’s complement of data in general register Rm, and stores the result in
Rn. This effectively subtracts Rm data from 0, and stores the result in Rn.

Operation:

NEG(long m,long n) /* NEG Rm,Rn */

{

R[n]=0-R[m];

PC+=2;

}

Example:

NEG R0,R1 ;Before execution: R0 = H'00000001

;After execution: R1 = H'FFFFFFFF

203

6.1.43 NEGC (Negate with Carry): Arithmetic Instruction

Applicable
Instructions

Format Abstract Code Cycle T Bit SH-1 SH-2
SH-
DSP

NEGC Rm,Rn 0 – Rm – T → Rn,
Borrow → T

0110nnnnmmmm1010 1 Borrow

Description: Subtracts general register Rm data and the T bit from 0, and stores the result in Rn.
If a borrow is generated, T bit changes accordingly. This instruction is used for inverting the sign
of a value that has more than 32 bits.

Operation:

NEGC(long m,long n) /* NEGC Rm,Rn */

{

unsigned long temp;

temp=0-R[m];

R[n]=temp-T;

if (0<temp) T=1;

else T=0;

if (temp<R[n]) T=1;

PC+=2;

}

Examples:

CLRT ;Sign inversion of R1 and R0 (64 bits)

NEGC R1,R1 ;Before execution: R1 = H'00000001, T = 0

;After execution: R1 = H'FFFFFFFF, T = 1

NEGC R0,R0 ;Before execution: R0 = H'00000000, T = 1

;After execution: R0 = H'FFFFFFFF, T = 1

204

6.1.44 NOP (No Operation): System Control Instruction

Applicable
Instructions

Format Abstract Code Cycle
T
Bit SH-1 SH-2

SH-
DSP

NOP No operation 0000000000001001 1 —

Description: Increments the PC to execute the next instruction.

Operation:

NOP() /* NOP */

{

PC+=2;

}

Example:

NOP ;Executes in one cycle

205

6.1.45 NOT (NOT—Logical Complement): Logic Operation Instruction

Applicable
Instructions

Format Abstract Code Cycle
T
Bit SH-1 SH-2

SH-
DSP

NOT Rm,Rn ~Rm → Rn 0110nnnnmmmm0111 1 —

Description: Takes the one’s complement of general register Rm data, and stores the result in Rn.
This effectively inverts each bit of Rm data and stores the result in Rn.

Operation:

NOT(long m,long n) /* NOT Rm,Rn */

{

R[n]=~R[m];

PC+=2;

}

Example:

NOT R0,R1 ;Before execution: R0 = H'AAAAAAAA

;After execution: R1 = H'55555555

206

6.1.46 OR (OR Logical) Logic Operation Instruction

Applicable
Instructions

Format Abstract Code Cycle
T
Bit SH-1 SH-2

SH-
DSP

OR Rm,Rn Rn | Rm → Rn 0010nnnnmmmm1011 1 —

OR #imm,R0 R0 | imm → R0 11001011iiiiiiii 1 —

OR.B #imm,@(R0,GBR) (R0 + GBR) |
imm → (R0 + GBR)

11001111iiiiiiii 3 —

Description: Logically ORs the contents of general registers Rn and Rm, and stores the result in
Rn. The contents of general register R0 can also be ORed with zero-extended 8-bit immediate
data, or 8-bit memory data accessed by using indirect indexed GBR addressing can be ORed with
8-bit immediate data.

Operation:

OR(long m,long n) /* OR Rm,Rn */

{

R[n]|=R[m];

PC+=2;

}

ORI(long i) /* OR #imm,R0 */

{

R[0]|=(0x000000FF & (long)i);

PC+=2;

}

ORM(long i) /* OR.B #imm,@(R0,GBR) */

{

long temp;

temp=(long)Read_Byte(GBR+R[0]);

temp|=(0x000000FF & (long)i);

Write_Byte(GBR+R[0],temp);

PC+=2;

}

207

Examples:

OR R0,R1 ;Before execution: R0 = H'AAAA5555, R1 = H'55550000

;After execution: R1 = H'FFFF5555

OR #H'F0,R0 ;Before execution: R0 = H'00000008

;After execution: R0 = H'000000F8

OR.B #H'50,@(R0,GBR) ;Before execution: @(R0,GBR) = H'A5

;After execution: @(R0,GBR) = H'F5

208

6.1.47 ROTCL (Rotate with Carry Left): Shift Instruction

Applicable
Instructions

Format Abstract Code Cycle T Bit SH-1 SH-2
SH-
DSP

ROTCL Rn T ← Rn ← T 0100nnnn00100100 1 MSB

Description: Rotates the contents of general register Rn and the T bit to the left by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure
6.3).

LSBMSB

T
ROTCL

Figure 6.3 Rotate with Carry Left

Operation:

ROTCL(long n) /* ROTCL Rn */

{

long temp;

if ((R[n]&0x80000000)==0) temp=0;

else temp=1;

R[n]<<=1;

if (T==1) R[n]|=0x00000001;

else R[n]&=0xFFFFFFFE;

if (temp==1) T=1;

else T=0;

PC+=2;

}

Example:

ROTCL R0 ;Before execution: R0 = H'80000000, T = 0

;After execution: R0 = H'00000000, T = 1

209

6.1.48 ROTCR (Rotate with Carry Right): Shift Instruction

Applicable
Instructions

Format Abstract Code Cycle T Bit SH-1 SH-2
SH-
DSP

ROTCR Rn T → Rn → T 0100nnnn00100101 1 LSB

Description: Rotates the contents of general register Rn and the T bit to the right by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 6.4).

LSBMSB

T
ROTCR

Figure 6.4 Rotate with Carry Right

Operation:

ROTCR(long n) /* ROTCR Rn */

{

long temp;

if ((R[n]&0x00000001)==0) temp=0;

else temp=1;

R[n]>>=1;

if (T==1) R[n]|=0x80000000;

else R[n]&=0x7FFFFFFF;

if (temp==1) T=1;

else T=0;

PC+=2;

}

Examples:

ROTCR R0 ;Before execution: R0 = H'00000001, T = 1

;After execution: R0 = H'80000000, T = 1

210

6.1.49 ROTL (Rotate Left): Shift Instruction

Applicable
Instructions

Format Abstract Code Cycle T Bit SH-1 SH-2
SH-
DSP

ROTL Rn T ← Rn ← MSB 0100nnnn00000100 1 MSB

Description: Rotates the contents of general register Rn to the left by one bit, and stores the result
in Rn (figure 6.5). The bit that is shifted out of the operand is transferred to the T bit.

LSBMSB

TROTL

Figure 6.5 Rotate Left

Operation:

ROTL(long n) /* ROTL Rn */

{

if ((R[n]&0x80000000)==0) T=0;

else T=1;

R[n]<<=1;

if (T==1) R[n]|=0x00000001;

else R[n]&=0xFFFFFFFE;

PC+=2;

}

Examples:

ROTL R0 ;Before execution: R0 = H'80000000, T = 0

;After execution: R0 = H'00000001, T = 1

211

6.1.50 ROTR (Rotate Right): Shift Instruction

Applicable
Instructions

Format Abstract Code Cycle T Bit SH-1 SH-2
SH-
DSP

ROTR Rn LSB → Rn → T 0100nnnn00000101 1 LSB

Description: Rotates the contents of general register Rn to the right by one bit, and stores the
result in Rn (figure 6.6). The bit that is shifted out of the operand is transferred to the T bit.

LSBMSB

T
ROTR

Figure 6.6 Rotate Right

Operation:

ROTR(long n) /* ROTR Rn */

{

if ((R[n]&0x00000001)==0) T=0;

else T=1;

R[n]>>=1;

if (T==1) R[n]|=0x80000000;

else R[n]&=0x7FFFFFFF;

PC+=2;

}

Examples:

ROTR R0 ;Before execution: R0 = H'00000001, T = 0

;After execution: R0 = H'80000000, T = 1

212

6.1.51 RTE (Return from Exception): System Control Instruction

Class: Delayed branch instruction

Applicable
Instructions

Format Abstract Code Cycle T Bit SH-1 SH-2
SH-
DSP

RTE Delayed branch,
Stack area → PC/SR

0000000000101011 4 LSB

Description: Returns from an interrupt routine. The PC and SR values are restored from the stack,
and the program continues from the address specified by the restored PC value. The T bit is used
as the LSB bit in the SR register restored from the stack area.

Note: Since this is a delayed branch instruction, the instruction after this RTE is executed before
branching. No address errors and interrupts are accepted between this instruction and the
next instruction. If the next instruction is a branch instruction, it is acknowledged as an
illegal slot instruction.

Operation:

RTE() /* RTE */

{

unsigned long temp;

temp=PC;

PC=Read_Long(R[15])+4;

R[15]+=4;

SR=Read_Long(R[15])&0x0FFF0FFF;

R[15]+=4;

Delay_Slot(temp+2);

}

Example:

RTE ;Returns to the original routine

ADD #8,R14 ;Executes ADD before branching

213

Note: With delayed branching, branching occurs after execution of the slot instruction. However,
instructions such as register changes etc. are executed in the order of delayed branch
instruction, then delay slot instruction. For example, even if the register in which the
branch destination address has been loaded is changed by the delay slot instruction, the
branch will still be made using the value of the register prior to the change as the branch
destination address.

214

6.1.52 RTS (Return from Subroutine): Branch Instruction (Class: Delayed Branch

Instruction)

Applicable
Instructions

Format Abstract Code Cycle
T
Bit SH-1 SH-2

SH-
DSP

RTS Delayed branch,
PR → PC

0000000000001011 2 —

Description: Returns from a subroutine procedure. The PC values are restored from the PR, and
the program continues from the address specified by the restored PC value. This instruction is used
to return to the program from a subroutine program called by a BSR, BSRF, or JSR instruction.

Note: Since this is a delayed branch instruction, the instruction after this RTS is executed before
branching. No address errors and interrupts are accepted between this instruction and the
next instruction. If the next instruction is a branch instruction, it is acknowledged as an
illegal slot instruction.

Operation:

RTS() /* RTS */

{

unsigned long temp;

temp=PC;

PC=PR+4;

Delay_Slot(temp+2);

}

215

Example:

MOV.L TABLE,R3 ;R3 = Address of TRGET

JSR @R3 ;Branches to TRGET

NOP ;Executes NOP before branching

ADD R0,R1 ;← Return address for when the subroutine procedure is
completed (PR data)

TABLE: .data.l TRGET ;Jump table

TRGET: MOV R1,R0 ;← Procedure entrance

RTS ;PR data → PC

MOV #12,R0 ;Executes MOV before branching

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed
branch instruction, then delay slot instruction. For example, even if the register in which
the branch destination address has been loaded is changed by the delay slot instruction,
the branch will still be made using the value of the register prior to the change as the
branch destination address.

216

6.1.53 SETRC (Set Repeat Count to RC): System Control Instruction

Applicable
Instructions

Format Abstract Code Cycle
T
Bit SH-1 SH-2

SH-
DSP

SETRC Rm Rm[11:0]
RCCSR[27:16]
Repeat control flag
→ RF1, RF0

0100mmmm00010100 1 — — —

SETRC #imm imm → RC [23:26]
zeros → SR[27:24],
Repeat control flag
→ RF1, RF0

10000010iiiiiiii 1 — — —

Description: Sets the repeat count to the SR register’s RC counter. When the operand is a register,
the bottom 12 bits are used as the repeat count. When the operand is an immediate data value, 8
bits are used as the repeat count. Set repeat control flags to RF1, RF0 bits of the SR register. Use
of the SETRC instruction is subject to any limitations. Refer to section 4.19, DSP Repeat (Loop)
Control, for more information.

Operation:

SETRC(long m) /* SETRC Rm */

{

long temp;

temp=(R[m] & 0x00000FFF)<<16;

SR&=0x00000FF3;

SR|=temp;

RF1=Repeat_Control_Flag1;

RF0=Repeat_Control_Flag0;

PC+=2;

}

217

SETRCI(long i) /* SETRC #imm */

{

long temp;

temp=((long)i & 0x000000FF)<<16;

SR&=0x00000FFF;

SR|=temp;

RF1=Repeat_Control_Flag1;

RF0=Repeat_Control_Flag0;

PC+=2;

}

SETRC #imm

7 0

SETRC Rn

imm

SR

8 bits

31 12 11 0

Rn

SR

1 ≤ imm ≤ 255 1 ≤ Rm [11:0] ≤ 4095

12 bits

31 27 23 16 15 0

0 8 bits 12 bits

31 27 16 15 0

Repeat control flag Repeat control flag

3 2 3 2

Figure 6.7 SETRC Instruction

Example:

LDRS STA ;Set repeat start address to RS.

LDRE END ;Set repeat end address to RE.

SETRC #32 ;Repeat 32 times from inst.A to inst.C.

inst.0 ;

STA: inst.A ;

inst.B ;

............

END: inst.C ;

inst.D ;

218

6.1.54 SETT (Set T Bit): System Control Instruction

Applicable
Instructions

Format Abstract Code Cycle
T
Bit SH-1 SH-2

SH-
DSP

SETT 1 → T 0000000000011000 1 1

Description: Sets the T bit to 1.

Operation:

SETT() /* SETT */

{

T=1;

PC+=2;

}

Example:

SETT ;Before execution: T = 0

;After execution: T = 1

219

6.1.55 SHAL (Shift Arithmetic Left): Shift Instruction

Applicable
Instructions

Format Abstract Code Cycle T Bit SH-1 SH-2
SH-
DSP

SHAL Rn T ← Rn ← 0 0100nnnn00100000 1 MSB

Description: Arithmetically shifts the contents of general register Rn to the left by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 6.8).

LSBMSB

T 0SHAL

Figure 6.8 Shift Arithmetic Left

Operation:

SHAL(long n) /* SHAL Rn (Same as SHLL) */

{

if ((R[n]&0x80000000)==0) T=0;

else T=1;

R[n]<<=1;

PC+=2;

}

Example:

SHAL R0 ;Before execution: R0 = H'80000001, T = 0

;After execution: R0 = H'00000002, T = 1

220

6.1.56 SHAR (Shift Arithmetic Right): Shift Instruction

Applicable
Instructions

Format Abstract Code Cycle T Bit SH-1 SH-2
SH-
DSP

SHAR Rn MSB → Rn → T 0100nnnn00100001 1 LSB

Description: Arithmetically shifts the contents of general register Rn to the right by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure
6.9).

LSBMSB

T
SHAR

Figure 6.9 Shift Arithmetic Right

Operation:

SHAR(long n) /* SHAR Rn */

{

long temp;

if ((R[n]&0x00000001)==0) T=0;

else T=1;

if ((R[n]&0x80000000)==0) temp=0;

else temp=1;

R[n]>>=1;

if (temp==1) R[n]|=0x80000000;

else R[n]&=0x7FFFFFFF;

PC+=2;

}

Example:

SHAR R0 ;Before execution: R0 = H'80000001, T = 0

;After execution: R0 = H'C0000000, T = 1

221

6.1.57 SHLL (Shift Logical Left): Shift Instruction

Applicable
Instructions

Format Abstract Code Cycle T Bit SH-1 SH-2
SH-
DSP

SHLL Rn T ← Rn ← 0 0100nnnn00000000 1 MSB

Description: Logically shifts the contents of general register Rn to the left by one bit, and stores
the result in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure 6.10).

LSBMSB

T 0SHLL

Figure 6.10 Shift Logical Left

Operation:

SHLL(long n) /* SHLL Rn (Same as SHAL) */

{

if ((R[n]&0x80000000)==0) T=0;

else T=1;

R[n]<<=1;

PC+=2;

}

Examples:

SHLL R0 ;Before execution: R0 = H'80000001, T = 0

;After execution: R0 = H'00000002, T = 1

222

6.1.58 SHLLn (Shift Logical Left n Bits): Shift Instruction

Applicable
Instructions

Format Abstract Code Cycle
T
Bit SH-1 SH-2

SH-
DSP

SHLL2 Rn Rn << 2 → Rn 0100nnnn00001000 1 —

SHLL8 Rn Rn << 8 → Rn 0100nnnn00011000 1 —

SHLL16 Rn Rn << 16 → Rn 0100nnnn00101000 1 —

Description: Logically shifts the contents of general register Rn to the left by 2, 8, or 16 bits, and
stores the result in Rn. Bits that are shifted out of the operand are not stored (figure 6.11).

0

0

0

MSB LSB

MSB LSB

MSB LSB

SHLL2

SHLL8

SHLL16

Figure 6.11 Shift Logical Left n Bits

223

Operation:

SHLL2(long n) /* SHLL2 Rn */

{

R[n]<<=2;

PC+=2;

}

SHLL8(long n) /* SHLL8 Rn */

{

R[n]<<=8;

PC+=2;

}

SHLL16(long n) /* SHLL16 Rn */

{

R[n]<<=16;

PC+=2;

}

Examples:

SHLL2 R0 ;Before execution: R0 = H'12345678

;After execution: R0 = H'48D159E0

SHLL8 R0 ;Before execution: R0 = H'12345678

;After execution: R0 = H'34567800

SHLL16 R0 ;Before execution: R0 = H'12345678

;After execution: R0 = H'56780000

224

6.1.59 SHLR (Shift Logical Right): Shift Instruction

Applicable
Instructions

Format Abstract Code Cycle T Bit SH-1 SH-2
SH-
DSP

SHLR Rn 0 → Rn → T 0100nnnn00000001 1 LSB

Description: Logically shifts the contents of general register Rn to the right by one bit, and stores
the result in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure 6.12).

LSBMSB

T0SHLR

Figure 6.12 Shift Logical Right

Operation:

SHLR(long n) /* SHLR Rn */

{

if ((R[n]&0x00000001)==0) T=0;

else T=1;

R[n]>>=1;

R[n]&=0x7FFFFFFF;

PC+=2;

}

Examples:

SHLR R0 ;Before execution: R0 = H'80000001, T = 0

;After execution: R0 = H'40000000, T = 1

225

6.1.60 SHLRn (Shift Logical Right n Bits): Shift Instruction

Applicable
Instructions

Format Abstract Code Cycle
T
Bit SH-1 SH-2

SH-
DSP

SHLR2 Rn Rn>>2 → Rn 0100nnnn00001001 1 —

SHLR8 Rn Rn>>8 → Rn 0100nnnn00011001 1 —

SHLR16 Rn Rn>>16 → Rn 0100nnnn00101001 1 —

Description: Logically shifts the contents of general register Rn to the right by 2, 8, or 16 bits,
and stores the result in Rn. Bits that are shifted out of the operand are not stored (figure 6.13).

0

0

0

MSB LSB

MSB LSB

MSB LSB

SHLR2

SHLR8

SHLR16

Figure 6.13 Shift Logical Right n Bits

226

Operation:

SHLR2(long n) /* SHLR2 Rn */

{

R[n]>>=2;

R[n]&=0x3FFFFFFF;

PC+=2;

}

SHLR8(long n) /* SHLR8 Rn */

{

R[n]>>=8;

R[n]&=0x00FFFFFF;

PC+=2;

}

SHLR16(long n) /* SHLR16 Rn */

{

R[n]>>=16;

R[n]&=0x0000FFFF;

PC+=2;

}

Examples:

SHLR2 R0 ;Before execution: R0 = H'12345678

;After execution: R0 = H'048D159E

SHLR8 R0 ;Before execution: R0 = H'12345678

;After execution: R0 = H'00123456

SHLR16 R0 ;Before execution: R0 = H'12345678

;After execution: R0 = H'00001234

227

6.1.61 SLEEP (Sleep): System Control Instruction

Applicable
Instructions

Format Abstract Code Cycle
T
Bit SH-1 SH-2

SH-
DSP

SLEEP Sleep 0000000000011011 3 —

Description: Sets the CPU into power-down mode. In power-down mode, instruction execution
stops, but the CPU internal status is maintained, and the CPU waits for an interrupt request. If an
interrupt is requested, the CPU exits the power-down mode and begins exception processing.

Note: The number of cycles given is for the transition to sleep mode.

Operation:

SLEEP() /* SLEEP */

{

PC-=2;

wait_for_exception;

}

Example:

SLEEP ;Enters power-down mode

228

6.1.62 STC (Store Control Register): System Control Instruction (Interrupt Disabled

Instruction)

Applicable
Instructions

Format Abstract Code Cycle
T
Bit SH-1 SH-2

SH-
DSP

STC SR,Rn SR → Rn 0000nnnn00000010 1 —

STC GBR,Rn GBR → Rn 0000nnnn00010010 1 —

STC VBR,Rn VBR → Rn 0000nnnn00100010 1 —

STC MOD,Rn MOD → Rn 0000nnnn01010010 1 — — —

STC RE,Rn RE → Rn 0000nnnn01110010 1 — — —

STC RS,Rn RS → Rn 0000nnnn01100010 1 — — —

STC.L SR,@-Rn Rn – 4 → Rn, SR → (Rn) 0100nnnn00000011 2 —

STC.L GBR,@-Rn Rn – 4 → Rn, GBR → (Rn) 0100nnnn00010011 2 —

STC.L VBR,@-Rn Rn – 4 → Rn, VBR → (Rn) 0100nnnn00100011 2 —

STC.L MOD,@-Rn Rn – 4 → Rn,
MOD → (Rn)

0100nnnn01010011 2 — — —

STC.L RE,@-Rn Rn – 4 → Rn, RE → (Rn) 0100nnnn01110011 2 — — —

STC.L RS,@-Rn Rn – 4 → Rn, RS → (Rn) 0100nnnn01100011 2 — — —

Description: Stores control register SR, GBR, VBR, MOD, RE, or RS data into a specified
destination.

Note: No interrupts are accepted between this instruction and the next instruction. Address errors
are accepted.

Operation:

STCSR(long n) /* STC SR,Rn */

{

R[n]=SR;

PC+=2;

}

229

STCGBR(long n) /* STC GBR,Rn */

{

R[n]=GBR;

PC+=2;

}

STCVBR(long n) /* STC VBR,Rn */

{

R[n]=VBR;

PC+=2;

}

STCMOD(long n) /* STC MOD,Rn */

{

R[n]=MOD;

PC+=2;

}

STCRE(long n) /* STC RE,Rn */

{

R[n]=RE;

PC+=2;

}

STCRS(long n) /* STC RS,Rn */

{

R[n]=RS;

PC+=2;

}

STCMSR(long n) /* STC.L SR,@-Rn */

{

R[n]-=4;

Write_Long(R[n],SR);

PC+=2;

}

230

STCMGBR(long n) /* STC.L GBR,@-Rn */

{

R[n]-=4;

Write_Long(R[n],GBR);

PC+=2;

}

STCMVBR(long n) /* STC.L VBR,@-Rn */

{

R[n]-=4;

Write_Long(R[n],VBR);

PC+=2;

}

STCMMOD(long n) /* STC.L MOD,@-Rn */

{

R[n]-=4;

Write_Long(R[n],MOD);

PC+=2;

}

STCMRE(long n) /* STC.L RE,@-Rn */

{

R[n]-=4;

Write_Long(R[n],RE);

PC+=2;

}

STCMRS(long n) /* STC.L RS,@-Rn */

{

R[n]-=4;

Write_Long(R[n],SR);

PC+=2;

}

Examples:

STC SR,R0 ;Before execution: R0 = H'FFFFFFFF, SR = H'00000000

;After execution: R0 = H'00000000

STC.L GBR,@-R15 ;Before execution: R15 = H'10000004

;After execution: R15 = H'10000000, @R15 = GBR

231

6.1.63 STS (Store System Register): System Control Instruction (Interrupt Disabled

Instruction)

Applicable
Instructions

Format Abstract Code Cycle
T
Bit SH-1 SH-2

SH-
DSP

STS MACH,Rn MACH → Rn 0000nnnn00001010 1 —

STS MACL,Rn MACL → Rn 0000nnnn00011010 1 —

STS PR,Rn PR → Rn 0000nnnn00101010 1 —

STS DSR,Rn DSR → Rn 0000nnnn01101010 1 — — —

STS A0,Rn A0 → Rn 0000nnnn01111010 1 — — —

STS X0,Rn X0→Rn 0000nnnn10001010 1 — — —

STS X1,Rn X1→Rn 0000nnnn10011010 1 — — —

STS Y0,Rn Y0→Rn 0000nnnn10101010 1 — — —

STS Y1,Rn Y1→Rn 0000nnnn10111010 1 — — —

STS.L MACH,@–Rn Rn – 4 → Rn,
MACH → (Rn)

0100nnnn00000010 1 —

STS.L MACL,@–Rn Rn – 4 → Rn,
MACL → (Rn)

0100nnnn00010010 1 —

STS.L PR,@–Rn Rn – 4 → Rn,
PR → (Rn)

0100nnnn00100010 1 —

STS.L DSR,@–Rn Rn – 4 → Rn,
DSR → (Rn)

0100nnnn01100010 1 — — —

STS.L A0,@–Rn Rn – 4 → Rn, A0 → (Rn) 0100nnnn01100010 1 — — —

STS.L X0,@-Rn Rn–4→Rn,X0→(Rn) 0100nnnn10000010 1 — — —

STS.L X1,@-Rn Rn–4→Rn,X1→(Rn) 0100nnnn10010010 1 — — —

STS.L Y0,@-Rn Rn–4→Rn,Y0→(Rn) 0100nnnn10100010 1 — — —

STS.L Y1,@-Rn Rn–4→Rn,Y1→(Rn) 0100nnnn10110010 1 — — —

Description: Stores data from system register MACH, MACL, or PR or DSP register DSR, A0,
X0, X1, Y0, or Y1 into a specified destination.

Note: No interrupts are accepted between this instruction and the next instruction. Address errors
are accepted.

If the system register is MACH in the SH-1 series, the value of bit 9 is transferred to and stored in
the higher 22 bits (bits 31 to 10) of the destination. With the SH-2 and SH-DSP, the 32 bits of
MACH are stored directly.

232

Operation:

STSMACH(long n) /* STS MACH,Rn */

{

R[n]=MACH;

if ((R[n]&0x00000200)==0) For SH-1 CPU (these 2 lines not

R[n]&=0x000003FF; needed for SH-2 and SH-DSP CPU)

else R[n]|=0xFFFFFC00;

PC+=2;

}

STSMACL(long n) /* STS MACL,Rn */

{

R[n]=MACL;

PC+=2;

}

STSPR(long n) /* STS PR,Rn */

{

R[n]=PR;

PC+=2;

}

STSDSR(long n) /* STS DSR,Rn */

{

R[n]=DSR;

PC+=2;

}

STSA0(long n) /* STS A0,Rn */

{

R[n]=A0;

PC+=2;

}

STSX0(long n) /* STS X0,Rn */

{

R[n]=X0;

PC+=2;

}

233

STSX1(long n) /* STS X1,Rn */

{

R[n]=X1;

PC+=2;

}

STSY0(long n) /* STS Y0,Rn */

{

R[n]=Y0;

PC+=2;

}

STSY1(long n) /* STS Y1,Rn */

{

R[n]=Y1;

PC+=2;

}

STSMMACH(long n) /* STS.L MACH,@–Rn */

{

R[n]–=4;

if ((MACH&0x00000200)==0)

Write_Long(R[n],MACH&0x000003FF); For SH-1 CPU

else Write_Long
(R[n],MACH|0xFFFFFC00)

Write_Long(R[n], MACH); For SH-2 and SH-DSP CPU

PC+=2;

}

STSMMACL(long n) /* STS.L MACL,@–Rn */

{

R[n]–=4;

Write_Long(R[n],MACL);

PC+=2;

}

234

STSMPR(long n) /* STS.L PR,@–Rn */

{

R[n]–=4;

Write_Long(R[n],PR);

PC+=2;

}

STSMDSR(long n) /* STS.L DSR,@–Rn */

{

R[n]–=4;

Write_Long(R[n],DSR);

PC+=2;

}

STSMA0(long n) /* STS.L A0,@–Rn */

{

R[n]–=4;

Write_Long(R[n],A0);

PC+=2;

}

STSMX0(long n) /* STS.L X0,@–Rn */

{

R[n]–=4;

Write_Long(R[n],X0);

PC+=2;

}

STSMX1(long n) /* STS.L X1,@–Rn */

{

R[n]–=4;

Write_Long(R[n],X1);

PC+=2;

}

235

STSMY0(long n) /* STS.L Y0,@–Rn */

{

R[n]–=4;

Write_Long(R[n],Y0);

PC+=2;

}

STSMY1(long n) /* STS.L Y1,@–Rn */

{

R[n]–=4;

Write_Long(R[n],Y1);

PC+=2;

}

Example:

STS MACH,R0 ;Before execution: R0 = H'FFFFFFFF, MACH = H'00000000

;After execution: R0 = H'00000000

STS.L PR,@–R15 ;Before execution: R15 = H'10000004

;After execution: R15 = H'10000000, @R15 = PR

236

6.1.64 SUB (Subtract Binary): Arithmetic Instruction

Applicable
Instructions

Format Abstract Code Cycle
T
Bit SH-1 SH-2

SH-
DSP

SUB Rm,Rn Rn – Rm → Rn 0011nnnnmmmm1000 1 —

Description: Subtracts general register Rm data from Rn data, and stores the result in Rn. To
subtract immediate data, use ADD #imm,Rn.

Operation:

SUB(long m,long n) /* SUB Rm,Rn */

{

R[n]-=R[m];

PC+=2;

}

Example:

SUB R0,R1 ;Before execution: R0 = H'00000001, R1 = H'80000000

;After execution: R1 = H'7FFFFFFF

237

6.1.65 SUBC (Subtract with Carry): Arithmetic Instruction

Applicable
Instructions

Format Abstract Code Cycle T Bit SH-1 SH-2
SH-
DSP

SUBC Rm,Rn Rn – Rm– T → Rn,
Borrow → T

0011nnnnmmmm1010 1 Borrow

Description: Subtracts Rm data and the T bit value from general register Rn data, and stores the
result in Rn. The T bit changes according to the result. This instruction is used for subtraction of
data that has more than 32 bits.

Operation:

SUBC(long m,long n) /* SUBC Rm,Rn */

{

unsigned long tmp0,tmp1;

tmp1=R[n]-R[m];

tmp0=R[n];

R[n]=tmp1-T;

if (tmp0<tmp1) T=1;

else T=0;

if (tmp1<R[n]) T=1;

PC+=2;

}

Examples:

CLRT ;R0:R1(64 bits) – R2:R3(64 bits) = R0:R1(64 bits)

SUBC R3,R1 ;Before execution: T = 0, R1 = H'00000000, R3 = H'00000001

;After execution: T = 1, R1 = H'FFFFFFFF

SUBC R2,R0 ;Before execution: T = 1, R0 = H'00000000, R2 = H'00000000

;After execution: T = 1, R0 = H'FFFFFFFF

238

6.1.66 SUBV (Subtract with V Flag Underflow Check): Arithmetic Instruction

Applicable
Instructions

Format Abstract Code Cycle T Bit SH-1 SH-2
SH-
DSP

SUBV Rm,Rn Rn – Rm → Rn,
underflow → T

0011nnnnmmmm1011 1 Underflow

Description: Subtracts Rm data from general register Rn data, and stores the result in Rn. If an
underflow occurs, the T bit is set to 1.

Operation:

SUBV(long m,long n) /* SUBV Rm,Rn */

{

long dest,src,ans;

if ((long)R[n]>=0) dest=0;

else dest=1;

if ((long)R[m]>=0) src=0;

else src=1;

src+=dest;

R[n]-=R[m];

if ((long)R[n]>=0) ans=0;

else ans=1;

ans+=dest;

if (src==1) {

if (ans==1) T=1;

else T=0;

}

else T=0;

PC+=2;

}

Examples:

SUBV R0,R1 ;Before execution: R0 = H'00000002, R1 = H'80000001

;After execution: R1 = H'7FFFFFFF, T = 1

SUBV R2,R3 ;Before execution: R2 = H'FFFFFFFE, R3 = H'7FFFFFFE

;After execution: R3 = H'80000000, T = 1

239

6.1.67 SWAP (Swap Register Halves): Data Transfer Instruction

Applicable
Instructions

Format Abstract Code Cycle
T
Bit SH-1 SH-2

SH-
DSP

SWAP.B Rm,Rn Rm → Swap upper and lower
halves of lower 2 bytes → Rn

0110nnnnmmmm1000 1 —

SWAP.W Rm,Rn Rm → Swap upper and lower
word → Rn

0110nnnnmmmm1001 1 —

Description: Swaps the upper and lower bytes of the general register Rm data, and stores the
result in Rn. If a byte is specified, bits 0 to 7 of Rm are swapped for bits 8 to 15. The upper 16 bits
of Rm are transferred to the upper 16 bits of Rn. If a word is specified, bits 0 to 15 of Rm are
swapped for bits 16 to 31.

Operation:

SWAPB(long m,long n) /* SWAP.B Rm,Rn */

{

unsigned long temp0,temp1;

temp0=R[m]&0xffff0000;

temp1=(R[m]&0x000000ff)<<8;

R[n]=(R[m]>>8)&0x000000ff;

R[n]=R[n]|temp1|temp0;

PC+=2;

}

SWAPW(long m,long n) /* SWAP.W Rm,Rn */

{

unsigned long temp;

temp=(R[m]>>16)&0x0000FFFF;

R[n]=R[m]<<16;

R[n]|=temp;

PC+=2;

}

240

Examples:

SWAP.B R0,R1 ;Before execution: R0 = H'12345678

;After execution: R1 = H'12347856

SWAP.W R0,R1 ;Before execution: R0 = H'12345678

;After execution: R1 = H'56781234

241

6.1.68 TAS (Test and Set): Logic Operation Instruction

Applicable
Instructions

Format Abstract Code Cycle T Bit SH-1 SH-2
SH-
DSP

TAS.B @Rn When (Rn) is 0, 1 → T, 1 →
MSB of (Rn)

0100nnnn00011011 4 Test
results

Description: Reads byte data from the address specified by general register Rn, and sets the T bit
to 1 if the data is 0, or clears the T bit to 0 if the data is not 0. Then, data bit 7 is set to 1, and the
data is written to the address specified by Rn. During this operation, the bus is not released.

Operation:

TAS(long n) /* TAS.B @Rn */

{

long temp;

temp=(long)Read_Byte(R[n]); /* Bus Lock enable */

if (temp==0) T=1;

else T=0;

temp|=0x00000080;

Write_Byte(R[n],temp); /* Bus Lock disable */

PC+=2;

}

Example:

_LOOP TAS.B @R7 ;R7 = 1000

BF _LOOP ;Loops until data in address 1000 is 0

242

6.1.69 TRAPA (Trap Always): System Control Instruction

Applicable
Instructions

Format Abstract Code Cycle
T
Bit SH-1 SH-2

SH-
DSP

TRAPA #imm PC/SR → Stack area,
(imm × 4 + VBR) → PC

11000011iiiiiiii 8 —

Description: Starts the trap exception processing. The PC and SR values are stored on the stack,
and the program branches to an address specified by the vector. The vector is a memory address
obtained by zero-extending the 8-bit immediate data and then quadrupling it. The PC is the start
address of the next instruction. TRAPA and RTE are both used together for system calls.

Operation:

TRAPA(long i) /* TRAPA #imm */

{

long imm;

imm=(0x000000FF & i);

R[15]-=4;

Write_Long(R[15],SR);

R[15]-=4;

Write_Long(R[15],PC–2);

PC=Read_Long(VBR+(imm<<2))+4;

}

Example:

Address

VBR+H'80 .data.l 10000000 ;

TRAPA #H'20 ;Branches to an address specified by data in address VBR +
H'80

TST #0,R0 ;← Return address from the trap routine (stacked PC value)

100000000 XOR R0,R0 ;← Trap routine entrance

100000002 RTE ;Returns to the TST instruction

100000004 NOP ;Executes NOP before RTE

243

6.1.70 TST (Test Logical): Logic Operation Instruction

Applicable
Instructions

Format Abstract Code Cycle T Bit SH-1 SH-2
SH-
DSP

TST
Rm,Rn

Rn & Rm, when result is
0, 1 → T

0010nnnnmmmm1000 1 Test
results

TST
#imm,R0

R0 & imm, when result is
0, 1 → T

11001000iiiiiiii 1 Test
results

TST.B
#imm,
@(R0,GBR)

(R0 + GBR) & imm,
when result is 0, 1 → T

11001100iiiiiiii 3 Test
results

Description: Logically ANDs the contents of general registers Rn and Rm, and sets the T bit to 1
if the result is 0 or clears the T bit to 0 if the result is not 0. The Rn data does not change. The
contents of general register R0 can also be ANDed with zero-extended 8-bit immediate data, or the
contents of 8-bit memory accessed by indirect indexed GBR addressing can be ANDed with 8-bit
immediate data. The R0 and memory data do not change.

Operation:

TST(long m,long n) /* TST Rm,Rn */

{

if ((R[n]&R[m])==0) T=1;

else T=0;

PC+=2;

}

TSTI(long i) /* TEST #imm,R0 */

{

long temp;

temp=R[0]&(0x000000FF & (long)i);

if (temp==0) T=1;

else T=0;

PC+=2;

}

244

TSTM(long i) /* TST.B #imm,@(R0,GBR) */

{

long temp;

temp=(long)Read_Byte(GBR+R[0]);

temp&=(0x000000FF & (long)i);

if (temp==0) T=1;

else T=0;

PC+=2;

}

Examples:

TST R0,R0 ;Before execution: R0 = H'00000000

;After execution: T = 1

TST #H'80,R0 ;Before execution: R0 = H'FFFFFF7F

;After execution: T = 1

TST.B #H'A5,@(R0,GBR) ;Before execution: @(R0,GBR) = H'A5

;After execution: T = 0

245

6.1.71 XOR (Exclusive OR Logical): Logic Operation Instruction

Applicable
Instructions

Format Abstract Code Cycle
T
Bit SH-1 SH-2

SH-
DSP

XOR
Rm,Rn

Rn ^ Rm → Rn 0010nnnnmmmm1010 1 —

XOR
#imm,R0

R0 ^ imm → R0 11001010iiiiiiii 1 —

XOR.B
#imm,@(R0,GBR)

(R0 + GBR) ^ imm →
(R0 + GBR)

11001110iiiiiiiii 3 —

Description: Exclusive ORs the contents of general registers Rn and Rm, and stores the result in
Rn. The contents of general register R0 can also be exclusive ORed with zero-extended 8-bit
immediate data, or 8-bit memory accessed by indirect indexed GBR addressing can be exclusive
ORed with 8-bit immediate data.

Operation:

XOR(long m,long n) /* XOR Rm,Rn */

{

R[n]̂ =R[m];

PC+=2;

}

XORI(long i) /* XOR #imm,R0 */

{

R[0]̂ =(0x000000FF & (long)i);

PC+=2;

}

XORM(long i) /* XOR.B #imm,@(R0,GBR) */

{

long temp;

temp=(long)Read_Byte(GBR+R[0]);

temp^=(0x000000FF & (long)i);

Write_Byte(GBR+R[0],temp);

PC+=2;

}

246

Examples:

XOR R0,R1 ;Before execution: R0 = H'AAAAAAAA, R1 = H'55555555

;After execution: R1 = H'FFFFFFFF

XOR #H'F0,R0 ;Before execution: R0 = H'FFFFFFFF

;After execution: R0 = H'FFFFFF0F

XOR.B #H'A5,@(R0,GBR) ;Before execution: @(R0,GBR) = H'A5

;After execution: @(R0,GBR) = H'00

247

6.1.72 XTRCT (Extract): Data Transfer Instruction

Applicable
Instructions

Format Abstract Code Cycle
T
Bit SH-1 SH-2

SH-
DSP

XTRCT Rm,Rn Rm: Center 32 bits
of Rn → Rn

0010nnnnmmmm1101 1 —

Description: Extracts the middle 32 bits from the 64 bits of coupled general registers Rm and Rn,
and stores the 32 bits in Rn (figure 6.14).

Rm Rn

Rn

MSB MSBLSB LSB

Figure 6.14 Extract

Operation:

XTRCT(long m,long n) /* XTRCT Rm,Rn */

{

unsigned long temp;

temp=(R[m]<<16)&0xFFFF0000;

R[n]=(R[n]>>16)&0x0000FFFF;

R[n]|=temp;

PC+=2;

}

Example:

XTRCT R0,R1 ;Before execution: R0 = H'01234567, R1 = H'89ABCDEF

;After execution: R1 = H'456789AB

248

6.2 DSP Data Transfer Instructions

Table 6.3 lists the DSP data transfer instructions in alphabetical order.

Table 6.3 DSP Data Transfer Instructions in Alphabetical Order

Applicable
Instructions

Instruction Operation Code Cycles
DC
Bit SH-1 SH-2

SH-
DSP

MOVS.L
@-As,Ds

As–4→As,(As)→Ds 111101AADDDD0010 1 — — —

MOVS.L
@As,Ds

(As)→Ds 111101AADDDD0110 1 — — —

MOVS.L
@As+,Ds

(As)→Ds,As+4→As 111101AADDDD1010 1 — — —

MOVS.L
@As+Ix,Ds

(As)→Ds,As+Ix→As 111101AADDDD1110 1 — — —

MOVS.L
Ds,@-As

As–4→As,Ds→(As) 111101AADDDD0011 1 — — —

MOVS.L
Ds,@As

Ds→(As) 111101AADDDD0111 1 — — —

MOVS.L
Ds,@As+

Ds→(As),As+4→As 111101AADDDD1011 1 — — —

MOVS.L
Ds,@As+Ix

Ds→(As),As+Ix→As 111101AADDDD1111 1 — — —

MOVS.W
@-As,Ds

As–2→As,(As)→MSW of
Ds,0→LSW of Ds

111101AADDDD0000 1 — — —

MOVS.W
@As,Ds

(As)→MSW of Ds,0→LSW of
Ds

111101AADDDD0100 1 — — —

MOVS.W
@As+,Ds

(As)→MSW of Ds,0→LSW of
Ds, As+2→As

111101AADDDD1000 1 — — —

MOVS.W
@As+Ix,Ds

(As)→MSW of Ds,0→LSW of
Ds, As+Ix→As

111101AADDDD1100 1 — — —

MOVS.W
Ds,@-As

As–2→As,MSW of Ds→(As) 111101AADDDD0001 1 — — —

MOVS.W
Ds,@As

MSW of Ds→(As) 111101AADDDD0101 1 — — —

MOVS.W
Ds,@As+

MSW of Ds→(As),As+2→As 111101AADDDD1001 1 — — —

MOVS.W
Ds,@As+Ix

MSW of Ds→(As),As+Ix→As 111101AADDDD1101 1 — — —

MOVX.W
@Ax,Dx

(Ax)→MSW of Dx,0→LSW of
Dx

111100A*D*0*01** 1 — — —

MOVX.W
@Ax+,Dx

(Ax)→MSW of Dx,0→LSW of
Dx,Ax+2→Ax

111100A*D*0*10** 1 — — —

249

Table 6.3 DSP Data Transfer Instructions in Alphabetical Order (cont)

Applicable
Instructions

Instruction Operation Code Cycles
DC
Bit SH-1 SH-2

SH-
DSP

MOVX.W
@Ax+Ix,Dx

(Ax)→MSW of Dx,0→LSW of
Dx,Ax+Ix→Ax

111100A*D*0*11** 1 —

MOVX.W
Da,@Ax

MSW of Da→(Ax) 111100A*D*1*01** 1 —

MOVX.W
Da,@Ax+

MSW of Da→(Ax),Ax+2→Ax 111100A*D*1*10** 1 —

MOVX.W
Da,@Ax+Ix

MSW of Da→(Ax),Ax+Ix→Ax 111100A*D*1*11** 1 —

MOVY.W
@Ay,Dy

(Ay)→MSW of Dy,0→LSW of
Dy

111100*A*D*0**01 1 —

MOVY.W
@Ay+,Dy

(Ay)→MSW of Dy,0→LSW of
Dy, Ay+2→Ay

111100*A*D*0**10 1 —

MOVY.W
@Ay+Iy,Dy

(Ay)→MSW of Dy,0→LSW of
Dy, Ay+Iy→Ay

111100*A*D*0**11 1 —

MOVY.W
Da,@Ay

MSW of Da→(Ay) 111100*A*D*1**01 1 —

MOVY.W
Da,@Ay+

MSW of Da→(Ay),Ay+2→Ay 111100*A*D*1**10 1 —

MOVY.W
Da,@Ay+Iy

MSW of Da→(Ay),Ay+Iy→Ay 111100*A*D*1**11 1 —

NOPx No Operation 1111000*0*0*00** 1 —

NOPY No Operation 111100*0*0*0**00 1 —

Note: MSW = High-order word of operand
LSW = Low-order word of operand

6.2.1 X and Y Data Transfers (MOVX.W and MOVY.W)

These instructions use the XDB and YDB buses to access X and Y memory. Areas other than X
and Y memory cannot be accessed. Memory is accessed in word units. Since independent bus is
used, it does not create access contention with instruction fetches (using the Main buses).

X and Y data transfer instructions are executed regardless of conditions even when the data
operation instruction executed in parallel has conditions.

Figure 6.15 shows the load and store operations in X and Y data transfers.

250

Instruction code
 for X data transfer

operation

R4 [Ax]
R5 [Ax]

R6 [Ay]
R7 [Ay]

Control for
X memory

Control for
Y memory

ABx ABy

31 0 31 0

15 1 15 1

X data
memory
4 kbytes

Y data
memory
4 kbytes

XAB 15 bits

YAB 15 bits

16 bits

16 bits

XDB

YDB

X_MEM Y_MEM

X R/W Y R/W

X_MEM, Y_MEM: Select signals for X and Y data memory

Instruction code
 for Y data transfer

operation

DSP data
register

X0/X1, A0/A1
input/output

control

DSP data
register
Y0/Y1, A0/A1
input/output
control

Figure 6.15 Load and Store Operations in X and Y Data Transfers

X memory data transfer operation is shown below. Y memory data transfers are the same.

if (!NOP) {

X_MEM=1; XAB=ABx; X R/W=1;

if (load operation) {

DX[31:16]=XDB;

DX[15:0] =0x0000; /* Dx is X0 or X1 */

}

else {XDB=Dx[31:16];X R/W=0;} /* Dx is A0 or A1 */

}

else { X_MEM=0; XAB=Unknown; }

251

6.2.2 Single Data Transfers (MOVS.W and MOVS.L)

Single data transfers are instructions that load to and store from the DSP register. They are like
system register load and store instructions. Data transfers between the DSP register and memory
use the main buses. Like CPU core instructions, data accesses can create access contention with
instruction memory accesses.

Single data transfers can use either word or longword data. Figure 6.16 shows the load and store
operations in single data transfers.

WL LS

MAB

Memory

Control is
SH core

Control

31 0

31 0

32 bits

32 bits

IAB, IDB: Main buses

IAB

IDB

R2 [As]
R3 [As]
R4 [As]
R5 [As]

Instruction code for single
data transfer operation

DSP data register
input/output control

Figure 6.16 Load and Store Operations in Single Data Transfers

Load and store operations in single data transfers are shown below.

IAB = MAB;

if (Ms!=NLS @@ W/L is word access {/* MOVS.W */

if (LS==load) {

if (DS!=A0G @@ Ds!=A1G){

Ds[31:16] = IDB[15:0]; Ds[15:0] = 0x0000;

if (Ds==A0) A0G[7:0] = IDB[15];

if (Ds==A1) A1G[7:0] = IDB[15];

}

else Ds[7:0] = IDB[7:0] /* Ds is A0G or A1G */

}

else { /* Store */

252

if (DS!=A0G @@ Ds!=A1G) IDB[15:0] = Ds[31:16];

/* Ds is A0G or A1G */

else IDB[15:0] = Ds[7:0] with 8-bit sign extension

}

}

else if (MA!=NLS @@ W/L is longword access) { /* MOVS.L */

if (LS==load {

if (Ds!=A0G @@ Ds!=A1G) {

Ds[31:0] = IDB[31:0];

if (Ds==A0) A0G[7:0] = IDB[31];

if (Ds==A1) A1G[7:0] = IDB[31];

}

else Ds[7:0] = IDB[7:0] /* Ds is A0G or A1G */

}

else { /* Store */

if (DS!=A0G @@ Ds!=A1G) IDB[31:0] = Ds[31:0]

/* Ds is A0G or A1G */

else IDB[31:0] = Ds[7:0] with 24-bit sign extension

}

}

6.2.3 Sample Description (Name): Classification

This section explains the breakdown of instructions, descriptions, etc. given in the rest of this
section (section 12).

Table 6.4 Sample Description (Name): Classification

Format Abstract Code Cycle DC Bit
Applicable
Instructions

Assembler
input format.

A brief
description
of operation

Displayed in
order MSB ↔
LSB

All DSP
instructions
execute in
1 cycle

The status of
the DC bit after
the instruction
is executed

Indicates whether
the instruction
applies to the SH-1,
SH-2, or SH-DSP.

Format:

[if cc] OP.Sz SRC1,SRC2,DEST

[if cc]: Condition (unconditional, DCT, or DCF)
OP: Operation code

253

Sz: Size
SRC1: Source 1 operand
SRC2: Source 2 operand
DEST: Destination

Table 6.5 Operation Summary

Operation Description

→, ← Direction of transfer

(xx) Memory operand

DC Flag bits in the DSR

& Logical AND of each bit

| Logical OR of each bit

^ Exclusive OR of each bit

~ Logical NOT of each bit

<<n, >>n n-bit shift

MSW Most significant word (bits 16-31)

LSW Least significant word (bits 0-15)

[n1:n2] Bits n1 to n2

Instruction Code: Shows the source register and destination register.

X Data Transfer Instructions:

A(Ax): 0=R4, 1=R5
D(destination, Dx): 0=X0, 1=X1
D (source, Da): 0=A0, 1=A1

Y Data Transfer Instructions:

A(Ay): 0=R6, 1=R7
D(destination, Dy): 0=Y0, 1=Y1
D (source, Da): 0=A0, 1=A1

Single Data Transfer Instructions:

AA(As): 0=R4, 1=R5, 2=R2, 3=R3
DDDD(Ds): 5=A1, 7=A0, 8=X0, 9=X1, A=Y0, B=Y1, C=M0, D=A1G, E=M1
F=A0G

254

DSP Operation Instructions:

iiiiiii(imm): –32 to +32
ee(Se): 0=X0, 1=X1, 2=Y0, 3=A1
ff(Sf): 0=Y0, 1=Y1, 2=X0, 3=A1
xx(Sx): 0=X0, 1=X1, 2=A0, 3=A1
yy(Sy): 0=Y0, 1=Y1, 2=M0, 3=M1
gg(Dg): 0=M0, 1=M1, 2=A0, 3=A1
uu(Du): 0=X0, 1=Y0, 2=A0, 3=A1
zzzz(Dz): 5=A1, 7=A0, 8=X0, 9=X1, A=Y0, B=Y1, C=M0, E=M1

DC Bit:

Update: Updated according to the operation result and the specifications of the CS (condition
select) bits.
—: Not updated.

Description: Description of operation

Notes: Notes on using the instruction

Operation: Operation written in C language.

Examples: Examples are written in assembler mnemonics and describe status before and after
executing the instruction.

255

6.2.4 MOVS (Move Single Data between Memory and DSP Register): DSP Data

Transfer Instruction

Applicable
Instructions

Format Abstract Code Cycle
DC
Bit SH-1 SH-2

SH-
DSP

MOVS.W
@-As,Ds

As–2→As,(As)→MSW of
Ds,0→LSW of Ds

111101AADDDD0000 1 — — —

MOVS.W
@As,Ds

(As)→MSW of Ds,0→LSW of
Ds

111101AADDDD0100 1 — — —

MOVS.W
@As+,Ds

(As)→MSW of Ds,0→LSW of
Ds, As+2→As

111101AADDDD1000 1 — — —

MOVS.W
@As+Ix,Ds

(As)→MSW of Ds,0→LSW of
Ds, As+Ix→As

111101AADDDD1100 1 — — —

MOVS.W
Ds,@-As

As–2→As,MSW of Ds→(As) 111101AADDDD0001 1 — — —

MOVS.W
Ds,@As

MSW of Ds→(As) 111101AADDDD0101 1 — — —

MOVS.W
Ds,@As+

MSW of Ds→(As),As+2→As 111101AADDDD1001 1 — — —

MOVS.W
Ds,@As+Ix

MSW of Ds→(As),As+Ix→As 111101AADDDD1101 1 — — —

MOVS.L
@-As,Ds

As–4→As,(As)→Ds 111101AADDDD0010 1 — — —

MOVS.L
@As,Ds

(As)→Ds 111101AADDDD0110 1 — — —

MOVS.L
@As+,Ds

(As)→Ds,As+4→As 111101AADDDD1010 1 — — —

MOVS.L
@As+Ix,Ds

(As)→Ds,As+Ix→As 111101AADDDD1110 1 — — —

MOVS.L
Ds,@-As

As–4→As,Ds→(As) 111101AADDDD0011 1 — — —

MOVS.L
Ds,@As

Ds→(As) 111101AADDDD0111 1 — — —

MOVS.L
Ds,@As+

Ds→(As),As+4→As 111101AADDDD1011 1 — — —

MOVS.L
Ds,@As+Ix

Ds→(As),As+Ix→As 111101AADDDD1111 1 — — —

Description: Transfers the source operand data to the destination. Transfer can be from memory
to register or register to memory. The transferred data can be a word or longword. When a word is
transferred, the source operand is in memory, and the destination operand is a register, the word
data is loaded to the top word of the register and the bottom word is cleared with zeros. When the
source operand is a register and the destination operand is memory, the top word of the register is

256

stored as the word data . In a longword transfer, the longword data is transferred. When the
destination operand is a register with guard bits, the sign is extended and stored in the guard bits.

Note: When one of the guard bit registers A0G and A1G is the source operand for store
processing, the data is output to the bottom 8 bits (bits 0–7) and the top 24 bits (bits 31–8)
become undefined.

Operation: See figure 6.17.

Memory to register Register to memory

As As

Any memory area Any memory area

31 0 31 0

Post update Post update

Ds All 0 DsS

31 16 0 031 16

IDB[15:0]

Cleared

–2, 0,
+2, +lx

Ignored

Memory to register Register to memory

As As

Any memory area Any memory area

31 0 31 0

Post update Post update

Ds DsS

31 0 031

IDB[31:0]

Longword data transfer

Word data transfer

Sign extension

Sign extension

IDB: Main bus

–2, 0,
+2, +lx

–4, 0,
+4, +lx

–4, 0,
+4, +lx

15 15

Figure 6.17 The MOVS Instruction

Examples:

MOVS.W @R4+,A0 ;Before execution: R4=H'00000400, @R4=H'8765,
A0=H'123456789A

;After execution: R4=H'00000402, A0=H'FF87650000

MOVS.L A1, @-R3 ;Before execution: R3=H'00000800, A1=H'123456789A

257

;After execution: R3=H'000007FC, @(H'000007FC)=H'3456789A

6.2.5 MOVX (Move between X Memory and DSP Register): DSP Data Transfer

Instruction

Applicable
Instructions

Format Abstract Code Cycle
DC
Bit SH-1 SH-2

SH-
DSP

MOVX.W @Ax,Dx (Ax)→MSW of Dx,
0→LSW of Dx

111100A*D*0*01** 1 — — —

MOVX.W @Ax+,Dx (Ax)→MSW of Dx,
0→LSW of Dx,Ax+2→Ax

111100A*D*0*10** 1 — — —

MOVX.W
@Ax+Ix,Dx

(Ax)→MSW of Dx,
0→LSW of Dx,Ax+Ix→Ax

111100A*D*0*11** 1 — — —

MOVX.W Da,@Ax MSW of Da→(Ax) 111100A*D*1*01** 1 — — —

MOVX.W Da,@Ax+ MSW of Da→(Ax),
Ax+2→Ax

111100A*D*1*10** 1 — — —

MOVX.W
Da,@Ax+Ix

MSW of Da→(Ax),
Ax+Ix→Ax

111100A*D*1*11** 1 — — —

Note: "*" of the instruction code is MOVY instruction designation area.

Description: Transfers the source operand data to the destination operand. Transfer can be from
memory to register or register to memory. The transferred data can only be word length for X
memory. When the source operand is in memory, and the destination operand is a register, the
word data is loaded to the top word of the register and the bottom word is cleared with zeros.
When the source operand is a register and the destination operand is memory, the word data is
stored in the top word of the register.

Operation: See figure 6.18.

Memory to register Register to memory

Ax Ax

X memory X memory

31 0 31 0

Post update Post update

Dx All 0 DaS

31 16 0 031 16

XDB[15:0]

Cleared

0, +2,
+lx

0, +2,
+lx

Ignored
1515

Figure 6.18 The MOVX Instruction

Examples:

258

MOVX.W @R4+,X0;Before execution: R4=H'08010000, @R4=H'5555, X0=H'12345678

;After execution: R4=H'08010002, X0=H'55550000

6.2.6 MOVY (Move between Y Memory and DSP Register): DSP Data Transfer

Instruction

Applicable
Instructions

Format Abstract Code Cycle
DC
Bit SH-1 SH-2

SH-
DSP

MOVY.W
@Ay,Dy

(Ay)→MSW of Dy,0→LSW of
Dy

111100*A*D*0**01 1 — — —

MOVY.W
@Ay+,Dy

(Ay)→MSW of Dy,0→LSW of
Dy, Ay+2→Ay

111100*A*D*0**10 1 — — —

MOVY.W
@Ay+Iy,Dy

(Ay)→MSW of Dy,0→LSW of
Dy, Ay+Iy→Ay

111100*A*D*0**11 1 — — —

MOVY.W
Da,@Ay

MSW of Da→(Ay) 111100*A*D*1**01 1 — — —

MOVY.W
Da,@Ay+

MSW of Da→(Ay),Ay+2→Ay 111100*A*D*1**10 1 — — —

MOVY.W
Da,@Ay+Iy

MSW of Da→(Ay),Ay+Iy→Ay 111100*A*D*1**11 1 — — —

Note: "*" of the instruction code is MOVX instruction designation area.

Description: Transfers the source operand data to the destination operand. Transfer can be from
memory to register or register to memory. The transferred data can only be word length for Y
memory. When the source operand is in memory, and the destination operand is a register, the
word data is loaded to the top word of the register and the bottom word is cleared with zeros.
When the source operand is a register and the destination operand is memory, the word data is
stored in the top word of the register.

Operation:

See figure 6.19.

259

Memory to register Register to memory

Ay Ay

Y memory Y memory

31 0 31 0

Post update Post update

Dy All 0 DaS

31 16 0 031 16

YDB[15:0]

Cleared

0, +2,
+ly

0, +2,
+ly

Ignored
15 15

Figure 6.19 The MOVY Instruction

Examples:

MOVY.W A0, @R6+,R9 ;Before execution: R6=H'08020000, R9=H'00000006,
A0=H'123456789A

;After execution: R6=H'08020006, @(H'08020000)=H'3456

260

6.2.7 NOPX (No Access Operation for X Memory): DSP Data Transfer Instruction

Applicable
Instructions

Format Abstract Code Cycle
DC
Bit SH-1 SH-2

SH-
DSP

NOPX No Operation 1111000*0*0*00** 1 — — —

Description: No access operation for X memory.

6.2.8 NOPY (No Access Operation for Y Memory): DSP Data Transfer Instruction

Applicable
Instructions

Format Abstract Code Cycle
DC
Bit SH-1 SH-2

SH-
DSP

NOPY No Operation 111100*0*0*0**00 1 — — —

Description: No access operation for Y memory.

261

6.3 DSP Operation Instructions

The DSP operation instructions are listed below in alphabetical order. See section 6.2.3, Sample
Descriptions (Name): Classification, for an explanation of the format and symbols used in this
description.

Table 6.6 Alphabetical Listing of DSP Operation Instructions

Applicable
Instructions

Instruction Operation Code Cycles DC Bit SH-1 SH-2
SH-
DSP

PABS Sx,Dz If Sx≥0, Sx→Dz

If Sx<0, 0–Sx→Dz

111110**********

10001000xx00zzzz

1 Update — —

PABS Sy,Dz If Sy≥0, Sy→Dz

If Sy<0, 0–Sy→Dz

111110**********

1010100000yyzzzz

1 Update — —

PADD
Sx,Sy,Dz

Sx + Sy→Dz 111110**********

10110001xxyyzzzz

1 Update — —

DCT PADD
Sx,Sy,Dz

If DC = 1, Sx + Sy→Dz;
if 0, nop

111110**********

10110010xxyyzzzz

1 — — —

DCF PADD
Sx,Sy,Dz

If DC = 0, SX + Sy–Dz;
if 1, nop

111110**********

10110011xxyyzzzz

1 — — —

PADD
Sx,Sy,Du

PMULS
Se,Sf,Dg

Sx + Sy→Du;

MSW of Se × MSW of Sf→Dg

111110**********

0111eeffxxyygguu

1 Update* — —

PADDC
Sx,Sy,Dz

Sx + Sy + DC→Dz 111110**********

10110000xxyyzzzz

1 Update — —

PAND
Sx,Sy,Dz

Sx & Sy→Dz; clear LSW of Dz 111110**********

10010101xxyyzzzz

1 Update — —

DCT PAND
Sx,Sy,Dz

If DC = 1, SX & SY→Dz, clear
LSW of Dz; if 0, nop

111110**********

10010110xxyyzzzz

1 — — —

DCF PAND
Sx,Sy,Dz

If DC = 0, SX & SY→Dz, clear
LSW of Dz; if 1, nop

111110**********

10010111xxyyzzzz

1 — — —

PCLR Dz H'00000000→Dz 111110**********

100011010000zzzz

1 Update — —

DCT PCLR Dz If DC = 1, H'00000000 →Dz;
if 0, nop

111110**********

100011100000zzzz

1 — — —

DCF PCLR Dz If DC = 0, H'00000000→Dz;
if 1, nop

111110**********

100011110000zzzz

1 — — —

262

Table 6.6 Alphabetical Listing of DSP Operation Instructions (cont)

Applicable
Instructions

Instruction Operation Code Cycles DC Bit SH-1 SH-2
SH-
DSP

PCMP Sx,Sy Sx – Sy 111110**********

10000100xxyy0000

1 Update — —

PCOPY Sx,Dz Sx→Dz 111110**********

11011001xx00zzzz

1 Update — —

PCOPY Sy,Dz Sy→Dz 111110**********

1111100100yyzzzz

1 Update — —

DCT PCOPY
Sx,Dz

If DC = 1, Sx→Dz; if 0, nop 111110**********

11011010xx00zzzz

1 — — —

DCT PCOPY
Sy,Dz

If DC = 1, Sy→Dz; if 0, nop 111110**********

1111101000yyzzzz

1 — — —

DCF PCOPY
Sx,Dz

If DC = 0, Sx→Dz; if 1, nop 111110**********

11011011xx00zzzz

1 — — —

DCF PCOPY
Sy,Dz

If DC = 0, Sy→Dz; if 1, nop 111110**********

1111101100yyzzzz

1 — — —

PDEC Sx,Dz MSW of Sx–1→MSW of Dz,
clear LSW of Dz

111110**********

10001001xx00zzzz

1 Update — —

PDEC Sy,Dz MSW of Sy–1→MSW of Dz,
clear LSW of Dz

111110**********

10101001xx00zzzz

1 Update — —

DCT PDEC
Sx,Dz

If DC = 1, MSW of Sx–1→
MSW of Dz, clear LSW of Dz;
if 0, nop

111110**********

10001010xx00zzzz

1 — — —

DCT PDEC
Sy,Dz

If DC = 1, MSW of Sy–1→
MSW of Dz, clear LSW of Dz;
if 0, nop

111110**********

10101010xx00zzzz

1 — — —

DCF PDEC
Sx,Dz

If DC = 0, MSW of Sx–1→
MSW of Dz, clear LSW of Dz;
if 1, nop

111110**********

10001011xx00zzzz

1 — — —

DCF PDEC
Sy,Dz

If DC = 0, MSW of Sy–1→
MSW of Dz, clear LSW of Dz;
if 1, nop

111110**********

10101011xx00zzzz

1 — — —

PDMSB Sx,Dz Sx data MSB position → MSW
of Dz, clear LSW of Dz

111110**********

10011101xx00zzzz

1 Update — —

PDMSB Sy,Dz Sy data MSB position → MSW
of Dz, clear LSW of Dz

111110**********

1011110100yyzzzz

1 Update — —

263

Table 6.6 Alphabetical Listing of DSP Operation Instructions (cont)

Applicable
Instructions

Instruction Operation Code Cycles DC Bit SH-1 SH-2
SH-
DSP

DCT PDMSB
Sx,Dz

If DC = 1, Sx data MSB
position → MSW of Dz,
clear LSW of Dz; if 0, nop

111110**********

10011110xx00zzzz

1 — — —

DCT PDMSB
Sy,Dz

If DC = 1, Sy data MSB
position → MSW of Dz,
clear LSW of Dz; if 0, nop

111110**********

1011111000yyzzzz

1 — — —

DCF PDMSB
Sx,Dz

If DC = 0, Sx data MSB
position → MSW of Dz,
clear LSW of Dz; if 1, nop

111110**********

10011111xx00zzzz

1 — — —

DCF PDMSB
Sy,Dz

If DC = 0, Sy data MSB
position → MSW of Dz,
clear LSW of Dz; if 1, nop

111110**********

1011111100yyzzzz

1 — — —

PINC Sx,Dz MSW of Sx + 1→ MSW of Dz,
clear LSW of Dz

111110**********

10011001xx00zzzz

1 Update — —

PINC Sy,Dz MSW of Sy + 1→ MSW of Dz,
clear LSW of Dz

111110**********

1011100100yyzzzz

1 Update — —

DCT PINC
Sx,Dz

If DC = 1, MSW of Sx + 1→
MSW of Dz, clear LSW of Dz;
if 0, nop

111110**********

10011010xx00zzzz

1 — — —

DCT PINC
Sy,Dz

If DC = 1, MSW of Sy + 1→
MSW of Dz, clear LSW of Dz;
if 0, nop

111110**********

1011101000yyzzzz

1 — — —

DCF PINC
Sx,Dz

If DC = 0, MSW of Sx + 1→
MSW of Dz, clear LSW of Dz;
if 1, nop

111110**********

10011011xx00zzzz

1 — — —

DCF PINC
Sy,Dz

If DC = 0, MSW of Sy + 1→
MSW of Dz, clear LSW of Dz;
if 1, nop

111110**********

1011101100yyzzzz

1 — — —

PLDS
Dz,MACH

Dz→MACH 111110**********

111011010000zzzz

1 — — —

PLDS
Dz,MACL

Dz→MACL 111110**********

111111010000zzzz

1 — — —

DCT PLDS
Dz,MACH

If DC = 1, Dz→MACH;
if 0, nop

111110**********

111011100000zzzz

1 — — —

DCT PLDS
Dz,MACL

If DC = 1, Dz→MACL;
if 0, nop

111110**********

111111100000zzzz

1 — — —

DCF PLDS
Dz,MACH

If DC = 0, Dz→MACH;
if 1, nop

111110**********

111011110000zzzz

1 — — —

264

Table 6.6 Alphabetical Listing of DSP Operation Instructions (cont)

Applicable
Instructions

Instruction Operation Code Cycles DC Bit SH-1 SH-2
SH-
DSP

DCF PLDS
Dz,MACL

If DC = 0, Dz→MACL;

if 1, nop

111110**********

111111110000zzzz

1 — — —

PMULS
Se,Sf,Dg

MSW of Se × MSW of Sf→Dg 111110**********

0100eeff0000gg00

1 — — —

PNEG Sx,Dz 0 – Sx → Dz 111110**********

11001001xx00zzzz

1 Update — —

PNEG Sy,Dz 0 – Sy → Dz; 111110**********

1110100100yyzzzz

1 Update — —

DCT PNEG
Sx,Dz

If DC = 1, 0 – Sx→Dz;

if 0, nop

111110**********

11001010xx00zzzz

1 — — —

DCT PNEG
Sy,Dz

If DC = 1, 0 – Sy→Dz;

if 0, nop

111110**********

1110101000yyzzzz

1 — — —

DCF PNEG
Sx,Dz

If DC = 0, 0 – Sx→Dz;

if 1, nop

111110**********

11001011xx00zzzz

1 — — —

DCF PNEG
Sy,Dz

If DC = 0, 0 – Sy→Dz;

if 1, nop

111110**********

1110101100yyzzzz

1 — — —

POR
Sx,Sy,Dz

Sx | Sy→Dz, clear LSW of Dz 111110**********

10110101xxyyzzzz

1 Update — —

DCT POR
Sx,Sy,Dz

If DC = 1, Sx|Sy→Dz,
clear LSW of Dz; if 0, nop

111110**********

10110110xxyyzzzz

1 — — —

DCF POR
Sx,Sy,Dz

If DC = 0, Sx|Sy→Dz,
clear LSW of Dz; if 1, nop

111110**********

10110111xxyyzzzz

1 — — —

PRND Sx,Dz Sx + H'00008000→Dz,
clear LSW of Dz

111110**********

10011000xx00zzzz

1 Update — —

PRND Sy,Dz Sy + H'00008000→Dz,
clear LSW of Dz

111110**********

1011100000yyzzzz

1 Update — —

PSHA
Sx,Sy,Dz

If Sy≥0, Sx<<Sy→Dz;
if Sy<0, Sx>>Sy→Dz

111110**********

10010001xxyyzzzz

1 Update — —

DCT PSHA
Sx,Sy,Dz

If DC = 1 & Sy≥0, Sx<<Sy→Dz;
if DC = 1 & Sy<0, Sx>>Sy→Dz;
if DC = 0, nop

111110**********

10010010xxyyzzzz

1 — — —

265

Table 6.6 Alphabetical Listing of DSP Operation Instructions (cont)

Applicable
Instructions

Instruction Operation Code Cycles DC Bit SH-1 SH-2
SH-
DSP

DCF PSHA
Sx,Sy,Dz

If DC = 0 & Sy≥0, Sx<<Sy→Dz;
if DC = 0 & Sy<0, Sx>>Sy→Dz;
if DC = 1, nop

111110**********

10010011xxyyzzzz

1 — — —

PSHA
#imm,Dz

If imm≥0, Dz<<imm→Dz;
if imm<0, Dz>>imm→Dz

111110**********

00000iiiiiiizzzz

1 Update — —

PSHL
Sx,Sy,Dz

If Sy≥0, Sx<<Sy → Dz,
clear LSW of Dz; if Sy<0,
Sx>>Sy → Dz, clear LSW of Dz

111110**********

10000001xxyyzzzz

1 Update — —

DCT PSHL
Sx,Sy,Dz

If DC=1 & Sy≥0, Sx<<Sy → Dz,
clear LSW of Dz;
 if DC=1 & Sy<0, Sx>>Sy → Dz,
clear LSW of Dz; if DC=0, nop

111110**********

10000010xxyyzzzz

1 — — —

DCF PSHL
Sx,Sy,Dz

If DC=0 & Sy≥0, Sx<<Sy → Dz,
clear LSW of Dz; if DC=0 &
Sy<0, Sx>>Sy → Dz, clear LSW
of Dz; if DC=1, nop

111110**********

10000011xxyyzzzz

1 — — —

PSHL
#imm,Dz

If imm≥0, Dz<<imm → Dz, clear
LSW of Dz; if imm<0, Dz>>imm
→ Dz, clear LSW of Dz

111110**********

00010iiiiiiizzzz

1 Update — —

PSTS
MACH,Dz

MACH → Dz 111110**********

110011010000zzzz

1 — — —

PSTS
MACL,Dz

MACL → Dz 111110**********

110111010000zzzz

1 — — —

DCT PSTS
MACH,Dz

If DC=1, MACH → Dz; if 0, nop 111110**********

110011100000zzzz

1 — — —

DCT PSTS
MACL,Dz

If DC=1, MACL → Dz; if 0, nop 111110**********

110111100000zzzz

1 — — —

DCF PSTS
MACH,Dz

If DC = 0, MACH→Dz;
if 1, nop

111110**********

110011110000zzzz

1 — — —

DCF PSTS
MACL,Dz

If DC = 0, MACL→Dz;
if 1, nop

111110**********

110011110000zzzz

1 — — —

266

Table 6.6 Alphabetical Listing of DSP Operation Instructions (cont)

Applicable
Instructions

Instruction Operation Code Cycles DC Bit SH-1 SH-2
SH-
DSP

PSUB
Sx,Sy,Dz

Sx–Sy→Dz 111110**********

10100001xxyyzzzz

1 Update — —

DCT PSUB
Sx,Sy,Dz

If DC = 1, Sx – Sy→Dz;
if 0, nop

111110**********

10100010xxyyzzzz

1 — — —

DCF PSUB
Sx,Sy,Dz

If DC = 0, Sx – Sy→Dz;
if 1, nop

111110**********

10100011xxyyzzzz

1 — — —

PSUB
Sx,Sy,Du

PMULS
Se,Sf,Dg

Sx – Sy→Du;
MSW of Se × MSW of Sf→Dg

111110**********

0110eeffxxyygguu

1 Update — —

PSUBC
Sx,Sy,Dz

Sx–Sy–DC→Dz 111110**********

10100000xxyyzzzz

1 Update — —

PXOR
Sx,Sy,Dz

Sx ^ Sy→Dz, clear LSW of Dz 111110**********

10100101xxyyzzzz

1 Update — —

DCT PXOR
Sx,Sy,Dz

If DC = 1, Sx ^ Sy→Dz,
clear LSW of Dz; if 0, nop

111110**********

10100110xxyyzzzz

1 — — —

DCF PXOR
Sx,Sy,Dz

If DC = 0, Sx ^ Sy→Dz,
clear LSW of Dz; if 1, nop

111110**********

10100111xxyyzzzz

1 — — —

Note: Updated based on the PADD operation results

DSP instructions are explained using the same form as for CPU instructions. However, in the
description of operation using C, usage of the following DSP resources is presupposed:

1. DSP Register Definitions

The DSP register names are defined based on the union named DSP_Register_Set noted
below. This union is composed of 11 longwords; each of these longwords corresponds to one
of the 11 DSP registers (A0, A1, M0, M1, X0, X1, Y0, Y1, AG0, AG1, DSR).

/* Definition of Union DSP_Register_Set */

union {

unsigned long int uli[11];

unsigned short int usi[22];

struct {

struct {

unsigned short int usi[2];

267

} ee[11];

} dd;

struct {

struct {

union {

unsigned long int uli;

unsigned short int usi[2];

struct {

unsigned msb: 1;

unsigned : 23;

unsigned g_msb: 1;

unsigned : 7;

} bb;

struct {

unsigned : 24;

unsigned lsb8: 8;

} cc;

} mm;

} a0, a1, m0, m1, x0, x1, y0, y1, a0g, a1g;

union {

unsigned long int uli;

struct {

unsigned Reserved: 24;

unsigned gz: 1; /* Signed greater than */

unsigned z: 1; /* Zero value */

unsigned n: 1; /* Negative value */

unsigned v: 1; /* Overflow */

unsigned cs: 3; /* Condition Selection */

unsigned dc: 1; /* dsp condition bit */

} a;

} dsr;

} name;

struct {

unsigned short int a[2][2];

unsigned short int m[2][2];

unsigned short int x[2][2];

unsigned short int y[2][2];

268

unsigned short int ag[2][2];

unsigned short int dsr[2];

} word;

} DSP_Register_Set;

The DSP register names are defined as follows, using the union DSP_Register_Set noted above.

/* Definition of DSP Register names */

#define MACL DSP_Register_Set.name.a0.mm.uli

#define A0 DSP_Register_Set.name.a0.mm.uli

#define A0_HW DSP_Register_Set.name.a0.mm.usi[0]

#define A0_LW DSP_Register_Set.name.a0.mm.usi[1]

#define A0_MSB DSP_Register_Set.name.a0.mm.bb.msb

#define MACH DSP_Register_Set.name.a1.mm.uli

#define A1 DSP_Register_Set.name.a1.mm.uli

#define A1_HW DSP_Register_Set.name.a1.mm.usi[0]

#define A1_LW DSP_Register_Set.name.a1.mm.usi[1]

#define A1_MSB DSP_Register_Set.name.a1.mm.bb.msb

#define M0 DSP_Register_Set.name.m0.mm.uli

#define M0_HW DSP_Register_Set.name.m0.mm.usi[0]

#define M0_LW DSP_Register_Set.name.m0.mm.usi[1]

#define M0_MSB DSP_Register_Set.name.m0.mm.bb.msb

#define M1 DSP_Register_Set.name.m1.mm.uli

#define M1_HW DSP_Register_Set.name.m1.mm.usi[0]

#define M1_LW DSP_Register_Set.name.m1.mm.usi[1]

#define M1_MSB DSP_Register_Set.name.m1.mm.bb.msb

#define X0 DSP_Register_Set.name.x0.mm.uli

#define X0_HW DSP_Register_Set.name.x0.mm.usi[0]

#define X0_LW DSP_Register_Set.name.x0.mm.usi[1]

#define X0_MSB DSP_Register_Set.name.x0.mm.bb.msb

#define X1 DSP_Register_Set.name.x1.mm.uli

#define X1_HW DSP_Register_Set.name.x1.mm.usi[0]

#define X1_LW DSP_Register_Set.name.x1.mm.usi[1]

269

#define X1_MSB DSP_Register_Set.name.x1.mm.bb.msb

#define Y0 DSP_Register_Set.name.y0.mm.uli

#define Y0_HW DSP_Register_Set.name.y0.mm.usi[0]

#define Y0_LW DSP_Register_Set.name.y0.mm.usi[1]

#define Y0_MSB DSP_Register_Set.name.y0.mm.bb.msb

#define Y1 DSP_Register_Set.name.y1.mm.uli

#define Y1_HW DSP_Register_Set.name.y1.mm.usi[0]

#define Y1_LW DSP_Register_Set.name.y1.mm.usi[1]

#define Y1_MSB DSP_Register_Set.name.y1.mm.bb.msb

#define A0G DSP_Register_Set.name.a0g.mm.uli

#define A0G_HW DSP_Register_Set.name.a0g.mm.usi[0]

#define A0G_LW DSP_Register_Set.name.a0g.mm.usi[1]

#define A0G_LSB8 DSP_Register_Set.name.a0g.mm.cc.lsb8

#define A0G_MSB DSP_Register_Set.name.a0g.mm.bb.g_msb

#define A1G DSP_Register_Set.name.a1g.mm.uli

#define A1G_HW DSP_Register_Set.name.a1g.mm.usi[0]

#define A1G_LW DSP_Register_Set.name.a1g.mm.usi[1]

#define A1G_LSB8 DSP_Register_Set.name.a1g.mm.cc.lsb8

#define A1G_MSB DSP_Register_Set.name.a1g.mm.bb.g_msb

#define DSR DSP_Register_Set.name.dsr.uli

Additionally, the individual bits of the DSR register are defined in the same manner, using the
union DSP_Register_Set, as follows:

#define DSPGTBIT DSP_Register_Set.name.dsr.a.gt

#define DSPZBIT DSP_Register_Set.name.dsr.a.z

#define DSPNBIT DSP_Register_Set.name.dsr.a.n

#define DSPVBIT DSP_Register_Set.name.dsr.a.v

#define DSPCSBITS DSP_Register_Set.name.dsr.a.cs

#define DSPDCBIT DSP_Register_Set.name.dsr.a.dc

2. ALU Input/Output and Variables Representing Operation Results

270

The ALU input/output is defined based on the union named DSP_ALU_Set noted below. This
union is composed of six longwords. Three of these longwords correspond to two inputs and
one output (src1, src2, dst). The remaining three longwords are used as guard bits for these two
inputs and one output (src1g, src2g, dstg).

/* Definition of Union DSP_ALU_Set */

union {

unsigned long int uli[6];

unsigned short int usi[12];

struct {

struct {

unsigned msb: 1;

unsigned: 31;

} src1, src2, dst;

struct {

union {

unsigned long int uli;

struct {

unsigned: 24;

unsigned bit7: 1;

unsigned: 7;

} a;

struct {

unsigned: 24;

unsigned lsb8: 8;

} b;

} u;

} src1g, src2g, dstg;

} n;

} DSP_ALU_Set;

The ALU input/output names are defined as follows, using the union DSP_ALU_Set noted above.

/* Definition of ALU input/output in DSP operation instructions */

#define DSP_ALU_SRC1 DSP_ALU_Set.uli[0]

#define DSP_ALU_SRC2 DSP_ALU_Set.uli[1]

#define DSP_ALU_DST DSP_ALU_Set.uli[2]

271

#define DSP_ALU_SRC1G DSP_ALU_Set.uli[3]

#define DSP_ALU_SRC2G DSP_ALU_Set.uli[4]

#define DSP_ALU_DSTG DSP_ALU_Set.uli[5]

#define DSP_ALU_SRC1_HW DSP_ALU_Set.usi[0]

#define DSP_ALU_SRC2_HW DSP_ALU_Set.usi[2]

#define DSP_ALU_DST_HW DSP_ALU_Set.usi[4]

#define DSP_ALU_SRC1_MSB DSP_ALU_Set.n.src1.msb

#define DSP_ALU_SRC2_MSB DSP_ALU_Set.n.src2.msb

#define DSP_ALU_DST_MSB DSP_ALU_Set.n.dst.msb

#define DSP_ALU_SRC1G_BIT7 DSP_ALU_Set.n.src1g.u.a.bit7

#define DSP_ALU_SRC2G_BIT7 DSP_ALU_Set.n.src2g.u.a.bit7

#define DSP_ALU_DSTG_BIT7 DSP_ALU_Set.n.dstg.u.a.bit7

#define DSP_ALU_SRC1G_LSB8 DSP_ALU_Set.n.src1g.u.b.lsb8

#define DSP_ALU_SRC2G_LSB8 DSP_ALU_Set.n.src2g.u.b.lsb8

#define DSP_ALU_DSTG_LSB8 DSP_ALU_Set.n.dstg.u.b.lsb8

Additionally, the variables representing operation results are defined as follows, using the
definitions noted above. These variables are used to calculate the DSR register’s DC bit within the
description of operation of each instruction.

/* Definition of variables representing DSP operation results */

#define PLUS_OP_G_OV ((~DSP_ALU_SRC1G_BIT7 && ~DSP_ALU_SRC2G_BIT7 &&
DSP_ALU_DSTG_BIT7) || (DSP_ALU_SRC1G_BIT7 && DSP_ALU_SRC2G_BIT7 &&
~DSP_ALU_DSTG_BIT7))

#define MINUS_OP_G_OV ((~DSP_ALU_SRC1G_BIT7 && DSP_ALU_SRC2G_BIT7 &&
DSP_ALU_DSTG_BIT7) || (DSP_ALU_SRC1G_BIT7 && ~DSP_ALU_SRC2G_BIT7 &&
~DSP_ALU_DSTG_BIT7))

#define POS_NOT_OV ((DSP_ALU_DSTG_LSB8==0x00) && (DSP_ALU_DST_MSB==0x0))

#define NEG_NOT_OV ((DSP_ALU_DSTG_LSB8==0xff) && (DSP_ALU_DST_MSB==0x1))

3. Multiplier Input/Output

272

The multiplier input/output is defined based on the union named DSP_MUL_Set noted below.
This union is composed of four longwords. One longword each is allocated for the two inputs,
but only the upper 16 bits of both of these (usi [0], usi [2]) are used. Two longwords including
guard bit usage (dst, dstg) correspond to the outputs.

/* Definition of Union DSP_MUL_Set */

union {

unsigned long int uli[4];

struct {

unsigned short int usi[4];

struct {

unsigned msb: 1;

unsigned: 31;

} dst;

struct {

unsigned: 24;

unsigned lsb8: 8;

} dstg;

} aa;

} DSP_MUL_Set;

The multiplier input/output names are defined as follows, using the union DSP_MUL_Set noted
above.

/* Definition of multiplier input/output in DSP operation instructions */

#define DSP_M_SRC1 DSP_MUL_Set.aa.usi[0]

#define DSP_M_SRC2 DSP_MUL_Set.aa.usi[2]

#define DSP_M_DST DSP_MUL_Set.uli[2]

#define DSP_M_DST_MSB DSP_MUL_Set.aa.dst.msb

#define DSP_M_DSTG DSP_MUL_Set.uli[3]

#define DSP_M_DSTG_LSB8 DSP_MUL_Set.aa.dstg.lsb8

4. Variables Used in the Operation Descriptions of other Instructions, etc.

The following variables are used when describing the operation of DSP operation instructions
for which the DCT, DCF conditions can be designated.

In the above definitions, EX_DCT and EX_DCF are variables that become true when the DCT,
DCF conditions are designated in instructions. Refer to (1) DSP register definitions for
DSPDCBIT.

273

#define DSP_UNCONDITIONAL_UPDATE (!EX_DCT && !EX_DCF)

#define DSP_CONDITION_MATCH ((EX_DCT && DSPDCBIT) || (EX_DCF && !DSPDCBIT))

#define DSP_CONDITION_NOT_MATCH ((EX_DCT && !DSPDCBIT)||(EX_DCF && DSPDCBIT))

In DSP arithmetic operations, saturation processing is performed when the SR register’s saturation
bit is a 1. This saturation bit is called SBIT when describing the operations.

Additionally, the following function is defined to be used in common, to simplify the notation
when describing operations:

/* Function used in common in descriptions of DSP operation instructions */

unsigned char carry_bit, borrow_bit, negative_bit, zero_bit, overflow_bit;

overflow_protection()

{

 if(SBIT && overflow_bit) { /* Overflow Protection Enable & overflow */

if(DSP_ALU_DSTG_BIT7==0) { /* positive value */

if((DSP_ALU_DSTG_LSB8!=0x0) || (DSP_ALU_DST_MSB!=0)) {

DSP_ALU_DSTG= 0x0;

DSP_ALU_DST = 0x7fffffff;

}

}

else { /* negative value */

if((DSP_ALU_DSTG_LSB8!=0xff) || (DSP_ALU_DST_MSB!=1)) {

DSP_ALU_DSTG= 0xff;

DSP_ALU_DST = 0x80000000;

}

}

 overflow_bit = 0; /* No more overflow when protected */

 }

}

The six functions noted below are used for DSR register updating. The DC bit in the DSR register
is updated in accordance with the operation results of the DSP operation instructions and the
directions of the status selection bit (CS). The other bits in the DSR register are updated in
accordance with the operation results of the DSP operation instructions only.

274

/* Function to unconditionally update the DC bit (DSPDCBIT) with the borrow
flag */

dc_always_borrow()

{

/* DC update policy: don't care the status of DSPCSBITS */

DSPDCBIT = borrow_bit;

DSPGTBIT = ~((negative_bit ̂ overflow_bit) | zero_bit);

DSPZBIT = zero_bit;

DSPNBIT = negative_bit;

DSPVBIT = overflow_bit;

}

/* Function to unconditionally update the DC bit (DSPDCBIT) with the carry
flag */

dc_always_carry()

{

/* DC update policy: don't care the status of DSPCSBITS */

DSPDCBIT = carry_bit;

DSPGTBIT = ~((negative_bit ̂ overflow_bit) | zero_bit);

DSPZBIT = zero_bit;

DSPNBIT = negative_bit;

DSPVBIT = overflow_bit;

}

/* Function to update the DC bit (DSPDCBIT) upon a subtraction */

minus_dc_bit()

{

switch (DSPCSBITS) {

case 0x0: /* Borrow Mode */

DSPDCBIT = borrow_bit;

break;

case 0x1: /* Negative Value Mode */

DSPDCBIT = negative_bit;

break;

case 0x2: /* Zero Value Mode */

DSPDCBIT = zero_bit;

break;

case 0x3: /* Overflow Mode */

DSPDCBIT = overflow_bit;

275

break;

case 0x4: /* Signed Greater Than Mode */

DSPDCBIT = ~((negative_bit ̂ overflow_bit) | zero_bit);

break;

case 0x5: /* Signed Greater Than or Equal Mode */

DSPDCBIT = ~(negative_bit ̂ overflow_bit);

break;

case 0x6: /* Reserved */

case 0x7: /* Reserved */

break;

}

DSPGTBIT = ~((negative_bit ̂ overflow_bit) | zero_bit);

DSPZBIT = zero_bit;

DSPNBIT = negative_bit;

DSPVBIT = overflow_bit;

}

/* Function to update the DC bit (DSPDCBIT) upon an addition */

plus_dc_bit()

{

switch (DSPCSBITS) {

case 0x0: /* Carry Mode */

DSPDCBIT = carry_bit;

break;

case 0x1: /* Negative Value Mode */

DSPDCBIT = negative_bit;

break;

case 0x2: /* Zero Value Mode */

DSPDCBIT = zero_bit;

break;

case 0x3: /* Overflow Mode */

DSPDCBIT = overflow_bit;

break;

case 0x4: /* Signed Greater Than Mode */

DSPDCBIT = ~((negative_bit ̂ overflow_bit) | zero_bit);

break;

case 0x5: /* Signed Greater Than or Equal Mode */

DSPDCBIT = ~(negative_bit ̂ overflow_bit);

276

break;

case 0x6: /* Reserved */

case 0x7: /* Reserved */

break;

}

DSPGTBIT = ~((negative_bit ̂ overflow_bit) | zero_bit);

DSPZBIT = zero_bit;

DSPNBIT = negative_bit;

DSPVBIT = overflow_bit;

}

/* Function to update the DC bit (DSPDCBIT) upon a logical operation */

logical_dc_bit()

{

switch (DSPCSBITS) {

case 0x0: /* Carry Mode */

DSPDCBIT = 0;

break;

case 0x1: /* Negative Value Mode */

DSPDCBIT = negative_bit;

break;

case 0x2: /* Zero Value Mode */

DSPDCBIT = zero_bit;

break;

case 0x3: /* Overflow Mode */

DSPDCBIT = 0;

break;

case 0x4: /* Signed Greater Than Mode */

DSPDCBIT = 0;

break;

case 0x5: /* Signed Greater Than or Equal Mode */

DSPDCBIT = 0;

break;

case 0x6: /* Reserved */

case 0x7: /* Reserved */

break;

}

 DSPGTBIT = 0;

277

 DSPZBIT = zero_bit;

 DSPNBIT = negative_bit;

 DSPVBIT = 0;

}

shift_dc_bit()

{

switch (DSPCSBITS) {

case 0x0: /* Carry Mode */

DSPDCBIT = carry_bit;

break;

case 0x1: /* Negative Value Mode */

DSPDCBIT = negative_bit;

break;

case 0x2: /* Zero Value Mode */

DSPDCBIT = zero_bit;

break;

case 0x3: /* Overflow Mode */

DSPDCBIT = overflow_bit;

break;

case 0x4: /* Signed Greater Than Mode */

DSPDCBIT = 0;

break;

case 0x5: /* Signed Greater Than or Equal Mode */

DSPDCBIT = 0;

break;

case 0x6: /* Reserved */

case 0x7: /* Reserved */

break;

}

DSPGTBIT = 0;

DSPZBIT = zero_bit;

DSPNBIT = negative_bit;

DSPVBIT = overflow_bit;

}

278

6.3.1 PABS (Absolute): DSP Arithmetic Operation Instruction

Applicable
Instructions

Format Abstract Code Cycle DC Bit SH-1 SH-2
SH-
DSP

PABS Sx,Dz If Sx≥0,Sx→Dz

If Sx<0,0–Sx→Dz

111110**********

10001000xx00zzzz

1 Update — —

PABS Sy,Dz If Sy≥0,Sy→Dz

If Sy<0,0–Sy→Dz

111110**********

1010100000yyzzzz

1 Update — —

Description: Finds absolute values. When the Sx and Sy operands are positive, the contents of the
operands are stored to the Dz operand. If the value is negative, the amounts of the Sx and Sy
operand contents are subtracted from 0 and stored in the Dz operand.

The DC bit of the DSR register are updated according to the specifications of the CS bits. The N,
Z, V, and GT bits of the DSR register are updated.

Operation:

/* Case1: PABS Sx,Dz */

/* Case2: PABS Sx,Dz */

{

unsigned char carry_bit, negative_bit, zero_bit, overflow_bit, borrow_bit;

/* ALU Sources assignment */

DSP_ALU_SRC1 = 0

DSP_ALU_SRC1G = 0

if (Case1) { /* PABS Sx,Dz */

switch (xx) {/* Sx Operand selection bit (xx) */

case 0x0: DSP_ALU_SRC2 = X0;

if (DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G = 0xff;

else DSP_ALU_SRC2G = 0x0;

break;

case 0x1: DSP_ALU_SRC2 = X1;

if (DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G = 0xff;

else DSP_ALU_SRC2G = 0x0;

break;

case 0x2: DSP_ALU_SRC2 = A0;

DSP_ALU_SRC2G = A0G;

break;

279

case 0x3: DSP_ALU_SRC2 = A1;

DSP_ALU_SRC2G = A1G;

break;

}

}

else { /* PABS Sy,Dz */

switch (yy) {

case 0x0: DSP_ALU_SRC2 = Y0;

break;

case 0x1: DSP_ALU_SRC2 = Y1;

break;

case 0x2: DSP_ALU_SRC2 = M0;

break;

case 0x3: DSP_ALU_SRC2 = M1;

break;

}

if (DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G = 0xff;

else DSP_ALU_SRC2G = 0x0;

}

/* ALU Operation */

if(DSP_ALU_SRC2G_BIT7==0) { /* positive value */

DSP_ALU_DST = 0x0 + DSP_ALU_SRC2;

 carry_bit = 0;

DSP_ALU_DSTG_LSB8= 0x0 + DSP_ALU_SRC2G_LSB8 + carry_bit;

}

else { /* negative value */

DSP_ALU_DST = 0x0 - DSP_ALU_SRC2;

borrow_bit = 1;

DSP_ALU_DSTG_LSB8= 0x0 - DSP_ALU_SRC2G_LSB8 - borrow_bit;

}

overflow_bit= PLUS_OP_G_OV || !(POS_NOT_OV || NEG_NOT_OV);

overflow_protection();

/* ALU Destination assignment */

switch (zzzz) { /* Dz Operand selection bit (zzzz) */

case 0x5: A1 = DSP_ALU_DST;

A1G = DSP_ALU_DSTG & 0x000000FF;

280

if(DSP_ALU_DSTG_BIT7) A1G = A1G | 0xFFFFFF00;

break

case 0x7: A0 = DSP_ALU_DSTG;

A0G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A0G = A0G | 0xFFFFFF00;

break;

case 0x8: X0 = DSP_ALU_DST;

break;

case 0x9: X1 = DSP_ALU_DST;

break;

case 0xa: Y0 = DSP_ALU_DST;

break;

case 0xb: Y1 = DSP_ALU_DST;

break;

case 0xc: M0 = DSP_ALU_DST;

break;

case 0xe: M1 = DSP_ALU_DST;

break;

default: printf(“\nERROR: Illegal DSP Instruction”); break;

}

negative _bit = DSP_ALU_DST_BIT7;

zero_bit = (DSP_ALU_DST==0) & (DSP_ALU_DST_LSB8==0);

/* DSR register update */

if(DSP_ALU_SRC2G_BIT7==0) {

 plus_dc_bit ();

}

else {

overflow_bit= MINUS_OP_G_OV || !(POS_NOT_OV || NEG_NOT_OV);

 minus_dc_bit();

}

}

281

Examples:

PABS X0, M0 NOPX NOPY ;Before execution: X0=H'33333333, M0=H'12345678

;After execution: X0=H'33333333, M0=H'33333333

PABS X1, X1 NOPX NOPY ;Before execution: X1=H'DDDDDDDD

;After execution: X1=H'22222223

DC bit is updated depending on the state of CS [2:0].

282

6.3.2 [if cc]PADD (Addition with Condition): DSP Arithmetic Operation Instruction

Applicable
Instructions

Format Abstract Code Cycle DC Bit SH-1 SH-2
SH-
DSP

PADD
Sx,Sy,Dz

Sx+Sy→Dz 111110**********

10110001xxyyzzzz

1 Update — —

DCT PADD
Sx,Sy,Dz

if DC=1,Sx+Sy→Dz
if 0,nop

111110**********

10110010xxyyzzzz

1 — — —

DCF PADD
Sx,Sy,Dz

if DC=0,Sx+Sy→Dz
if 1,nop

111110**********

10110011xxyyzzzz

1 — — —

Description: Adds the contents of the Sx and Sy operands and stores the result in the Dz operand.
When conditions are specified for DCT and DCF, the instruction is executed when those
conditions are TRUE. When they are FALSE, the instruction is not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated. If
conditions are specified, the DC, N, Z, V, and GT bits are not updated even is the conditions were
true and the instruction was executed.

Operation:

/* PADD Sx,Sy,Dz */

{

unsigned char carry_bit, negative_bit, zero_bit, overflow_bit;

/* ALU Sources assignment */

switch (xx) { /* Sx Operand selection bit (xx) */

case 0x0: DSP_ALU_SRC1 = X0;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else DSP_ALU_SRC1G = 0x0;

break;

case 0x1: DSP_ALU_SRC1 = X1;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else DSP_ALU_SRC1G = 0x0;

break;

case 0x2: DSP_ALU_SRC1 = A0;

283

DSP_ALU_SRC1G = A0G;

break;

case 0x3: DSP_ALU_SRC1 = A1;

DSP_ALU_SRC1G = A1G;

break;

}

switch (yy) { /* Sy Operand selection bit (yy) */

case 0x0: DSP_ALU_SRC2 = Y0;

break;

case 0x1: DSP_ALU_SRC2 = Y1;

break;

case 0x2: DSP_ALU_SRC2 = M0;

break;

case 0x3: DSP_ALU_SRC2 = M1;

break;

}

if (DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G = 0xff;

else DSP_ALU_SRC2G = 0x0;

/* ALU Operation */

DSP_ALU_DST = DSP_ALU_SRC1 + DSP_ALU_SRC2;

carry_bit = ((DSP_ALU_SRC1_MSB | DSP_ALU_SRC2_MSB) & !DSP_ALU
_DST_MSB) |

(DSP_ALU_SRC1_MSB & DSP_ALU_SRC2_MSB);

DSP_ALU_DSTG_LSB8 = DSP_ALU_SRC1G_LSB8 + DSP_ALU_SRC2G_LSB8 + carry_bit;

overflow_bit= PLUS_OP_G_OV || !(POS_NOT_OV || NEG_NOT_OV);

overflow_protection();

if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

/* ALU Destination assignment */

switch (zzzz) { /* Dz Operand selection bit (zzzz) */

case 0x5: A1 = DSP_ALU_DST;

A1G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A1G = A1G | 0xFFFFFF00;

break

case 0x7: A0 = DSP_ALU_DST;

A0G = DSP_ALU_DSTG & 0x000000FF;

284

if(DSP_ALU_DSTG_BIT7) A0G = A0G | 0xFFFFFF00;

break;

case 0x8: X0 = DSP_ALU_DST;

break;

case 0x9: X1 = DSP_ALU_DST;

break;

case 0xa: Y0 = DSP_ALU_DST;

break;

case 0xb: Y1 = DSP_ALU_DST;

break;

case 0xc: M0 = DSP_ALU_DST;

break;

case 0xe: M1 = DSP_ALU_DST;

break;

default: printf(“\nERROR: Illegal DSP Instruction”); break;

}

negative _bit = DSP_ALU_DSTG_BIT7;

zero_bit = (DSP_ALU_DST==0) & (DSP_ALU_DST_LSB8==0);

/* DSR register update */

plus_dc_bit ();

}

else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

/* ALU Destination assignment */

switch (zzzz) { /* Dz Operand selection bit (zzzz) */

case 0x5: A1 = DSP_ALU_DST;

A1G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A1G = A1G | 0xFFFFFF00;

break

case 0x7: A0 = DSP_ALU_DSTG;

A0G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A0G = A0G | 0xFFFFFF00;

break;

case 0x8: X0 = DSP_ALU_DST;

break;

case 0x9: X1 = DSP_ALU_DST;

break;

case 0xa: Y0 = DSP_ALU_DST;

285

break;

case 0xb: Y1 = DSP_ALU_DST;

break;

case 0xc: M0 = DSP_ALU_DST;

break;

case 0xe: M1 = DSP_ALU_DST;

break;

default: printf(“\nERROR: Illegal DSP Instruction”); break;

}

}

}

Examples:

PADD X0,Y0,A0 NOPX NOPY ;Before execution: X0=H'22222222, Y0=H'33333333,
A0=H'123456789A

;After execution: X0=H'22222222, Y0=H'33333333,
A0=H'0055555555

In case of unconditional execution, the DC bit is updated
depending on the state of the CS [2:0] bit immediately before the
operation.

286

6.3.3 PADD PMULS (Addition & Multiply Signed by Signed): DSP Arithmetic

Operation Instruction

Applicable
Instructions

Format Abstract Code Cycle DC Bit SH-1 SH-2
SH-
DSP

PADD Sx,Sy,Du Sx + Sy→Du 111110********** 1 Update — —

PMULS Se,Sf,Dg MSW of Se × MSW
of Sf→Dg

0111eeffxxyygguu

Description: Adds the contents of the Sx and Sy operands and stores the result in the Du operand.
The contents of the top word of the Se and Sf operands are multiplied as signed and the result
stored in the Dg operand. These two processes are executed simultaneously in parallel.

The DC bit of the DSR register is updated according to the results of the ALU operation and the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated
according to the results of the ALU operation.

Note: Since the PMULS is fixed decimal point multiplication, the operation result is different
from that of MULS even though the source data is the same.

Operation:

/* PADD Sx,Sy,Du PMULS Se,Sf,Dg */

{

unsigned char carry_bit, negative_bit, zero_bit, overflow_bit;

/* Multiplier Sources assignment */

switch (ee) { /* Se Operand selection bit (ee) */

case 0x0: DSP_M_SRC1 = X0_HW;

break;

case 0x1: DSP_M_SRC1 = X1_HW;

break;

case 0x2: DSP_M_SRC1 = Y0_HW;

break;

case 0x3: DSP_M_SRC1 = A1_HW;

break;

}

switch (ff) { /* Sf Operand selection bit (ff) */

case 0x0: DSP_M_SRC2 = Y0_HW;

287

break;

case 0x1: DSP_M_SRC2 = Y1_HW;

break;

case 0x2: DSP_M_SRC2 = X0_HW;

break;

case 0x3: DSP_M_SRC2 = A1_HW;

break;

}

/* ALU Sources assignment */

switch (xx) { /* Sx Operand selection bit (xx) */

case 0x0: DSP_ALU_SRC1 = X0;

if (DSP_ALU_SRC1_MSB)

DSP_ALU_SRC1G_LSB8 = 0xff;

else DSP_ALU_SRC1G_LSB8 = 0x0;

break;

case 0x1: DSP_ALU_SRC1 = X1;

if (DSP_ALU_SRC1_MSB)

DSP_ALU_SRC1G_LSB8 = 0xff;

else DSP_ALU_SRC1G_LSB8 = 0x0;

break;

case 0x2: DSP_ALU_SRC1 = A0;

DSP_ALU_SRC1G = A0G;

break;

case 0x3: DSP_ALU_SRC1 = A1;

DSP_ALU_SRC1G = A1G;

break;

}

switch (yy) { /* Sy Operand selection bit (yy) */

case 0x0: DSP_ALU_SRC2 = Y0;

break;

case 0x1: DSP_ALU_SRC2 = Y1;

break;

case 0x2: DSP_ALU_SRC2 = M0;

break;

case 0x3: DSP_ALU_SRC2 = M1;

break;

}

288

if (DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G_LSB8 = 0xff;

else DSP_ALU_SRC2G_LSB8 = 0x0;

/* Multiplier Operation */

/* PMULS Se, Sf, Dg */

if ((SBIT==1) && (DSP_M_SRC1==0x8000) && (DSP_M_SRC2==0x8000)) {

 DSP_M_DST=0x7fffffff; /* overflow protection */

}

else {

 DSP_M_DST=((long)(short)DSP_M_SRC1*(long)(short)DSP_M_SRC2)<<1;

}

if (DSP_M_DST_MSB) DSP_M_DSTG_LSB8 = 0xff;

else DSP_M_DSTG_LSB8 = 0x0;

switch (gg) { /* Dg Operand selection bit (gg) */

case 0x0: M0 = DSP_M_DST;

break;

case 0x1: M1 = DSP_M_DST;

break;

case 0x2: A0 = DSP_M_DST;

if(DSP_M_DSTG_LSB8==0x0) A0G=0x0;

else A0G=0xffffffff;

break;

case 0x3: A1 = DSP_M_DST;

if(DSP_M_DSTG_LSB8==0x0) A1G=0x0;

else A1G=0xffffffff;

break;

}

/* ALU operation */

DSP_ALU_DST = DSP_ALU_SRC1 + DSP_ALU_SRC2;

carry_bit=((DSP_ALU_SRC1_MSB | DSP_ALU_SRC2_MSB) & !DSP_ALU_DST_MSB) |

(DSP_ALU_SRC1_MSB & DSP_ALU_SRC2_MSB);

DSP_ALU_DSTG_LSB8=DSP_ALU_SRC1G_LSB8 + DSP_ALU_SRC2G_LSB8 + carry_bit;

overflow_bit= PLUS_OP_G_OV || !(POS_NOT_OV || NEG_NOT_OV);

overflow_protection();

switch (uu) { /* Du Operand selection bit (uu) */

289

case 0x0:

X0 = DSP_ALU_DST;

negative_bit = DSP_ALU_DST_MSB;

zero_bit = (DSP_ALU_DST==0);

break;

case 0x1:

Y0 = DSP_ALU_DST;

negative_bit = DSP_ALU_DST_MSB;

zero_bit = (DSP_ALU_DST==0);

break;

case 0x2:

A0 = DSP_ALU_DST;

A0G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A0G = A0G | 0xFFFFFF00;

negative_bit = DSP_ALU_DSTG_BIT7;

zero_bit = (DSP_ALU_DST==0) & (DSP_ALU_DSTG_LSB8==0);

break;

case 0x3:

A1 = DSP_ALU_DST;

A1G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A1G = A1G | 0xFFFFFF00;

negative_bit = DSP_ALU_DSTG_BIT7;

zero_bit = (DSP_ALU_DST==0) & (DSP_ALU_DSTG_LSB8==0);

break;

}

/* DSR register update */

plus_dc_bit();

}

290

Examples:

PADD A0,M0,A0 PMULS X0,YO,MO NOPX NOPY

;Before execution: X0=H'00020000, Y0=H'00030000,

M0=H'22222222, A0=H'0055555555

;After execution: X0=H'00020000, Y0=H'00030000,

M0=H'0000000C, A0=H'0077777777

The DC bit is updated based on the result of the PADD
operation , depending on the state of CD [2:0].

291

6.3.4 PADDC (Addition with Carry): DSP Arithmetic Operation Instruction

Applicable
Instructions

Format Abstract Code Cycle DC Bit SH-1 SH-2
SH-
DSP

PADDC Sx,
Sy, Dz

Sx + Sy + DC → Dz 111110**********
10110000xxyyzzzz

1 Carry — —

Description: Adds the contents of the Sx and Sy operands to the DC bit and stores the result in the
Dz operand. The DC bit of the DSR register is updated as the carry flag. The N, Z, V, and GT bits
of the DSR register are also updated.

Note: The DC bit is updated as the carry flag after execution of the PADDC instruction
regardless of the CS bits.

Operation:

/* PADD Sx,Sy,Dz */

{

unsigned char carry_bit, negative_bit, zero_bit, overflow_bit;

/* ALU Sources assignment */

switch (xx) { /* Sx Operand selection bit (xx) */

case 0x0: DSP_ALU_SRC1 = X0;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else DSP_ALU_SRC1G = 0x0;

break;

case 0x1: DSP_ALU_SRC1 = X1;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else DSP_ALU_SRC1G = 0x0;

break;

case 0x2: DSP_ALU_SRC1 = A0;

DSP_ALU_SRC1G = A0G;

break;

case 0x3: DSP_ALU_SRC1 = A1;

DSP_ALU_SRC1G = A1G;

break;

}

switch (yy) { /* Sy Operand selection bit (yy) */

292

case 0x0: DSP_ALU_SRC2 = Y0;

break;

case 0x1: DSP_ALU_SRC2 = Y1;

break;

case 0x2: DSP_ALU_SRC2 = M0;

break;

case 0x3: DSP_ALU_SRC2 = M1;

break;

}

if (DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G = 0xff;

else DSP_ALU_SRC2G = 0x0;

/* ALU Operation */

DSP_ALU_DST = DSP_ALU_SRC1 + DSP_ALU_SRC2 + DSPDCBIT;

carry_bit = ((DSP_ALU_SRC1_MSB | DSP_ALU_SRC2_MSB) & !DSP_ALU_DST_MSB) |
 (DSP_ALU_SRC1_MSB & DSP_ALU_SRC2_MSB);

DSP_ALU_DSTG_LSB8 = DSP_ALU_SRC1G_LSB8 + DSP_ALU_SRC2G_LSB8 + carry_bit

overflow_bit= PLUS_OP_G_OV || !(POS_NOT_OV || NEG_NOT_OV);

overflow_protection();

/* ALU Destination assignment */

switch (zzzz) { /* Dz Operand selection bit (zzzz) */

 case 0x5: A1 = DSP_ALU_DST;

A1G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A1G = A1G | 0xFFFFFF00;

break;

 case 0x7: A0 = DSP_ALU_DST;

A0G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A0G = A0G | 0xFFFFFF00;

break;

 case 0x8: X0 = DSP_ALU_DST;

break;

 case 0x9: X1 = DSP_ALU_DST;

break;

 case 0xa: Y0 = DSP_ALU_DST;

break;

293

 case 0xb: Y1 = DSP_ALU_DST;

break;

 case 0xc: M0 = DSP_ALU_DST;

break;

 case 0xe: M1 = DSP_ALU_DST;

break;

 default: printf("\nERROR:Illegal DSP Instruction");
break;

}

negative_bit = DSP_ALU_DSTG_BIT7;

zero_bit = (DSP_ALU_DST==0) & (DSP_ALU_DSTG_LSB8==0);

/* DSR register update */

dc_always_carry();

Example:

CS[2:0]=***: Always operate as Carry or Borrow mode, regardless of the status
of the DC bit.

PADDC X0,Y0,M0 NOPX NOPY ;Before execution: X0=H'B3333333, Y0=H'55555555

M0=H' 12345678, DC=0

;After execution: X0=H'B3333333, Y0=H'55555555

M0=H'08888888, DC=1

PADDC X0,Y0,M0 NOPX NOPY ;Before execution: X0=H'33333333, Y0=H'55555555

M0=H' 12345678, DC=1

;After execution: X0=H'33333333, Y0=H'55555555

M0=H'88888889, DC=0

The DC bit is updated as the carry flag, regardless of
the state of the CS bit.

294

6.3.5 [if cc] PAND (Logical AND): DSP Logical Operation Instruction

Applicable
Instructions

Format Abstract Code Cycle
DC
Bit SH-1 SH-2

SH-
DSP

PAND
Sx,Sy,Dz

Sx & Sy→Dz; clear LSW
of Dz

111110**********

10010101xxyyzzzz

1 — —

DCT PAND
Sx,Sy,Dz

If DC = 1, SX & SY→Dz,
clear LSW of Dz; if 0,
nop

111110**********

10010110xxyyzzzz

1 — — —

DCF PAND
Sx,Sy,Dz

If DC = 0, SX & SY→Dz,
clear LSW of Dz; if 1,
nop

111110**********

10010111xxyyzzzz

1 — — —

Description: Does an AND of the upper word of the Sx operand and the upper word of the Sy
operand, stores the result in the upper word of the Dz operand, and clears the bottom word of the
Dz operand with zeros. When Dz is a register that has guard bits, the guard bits are also zeroed.
When conditions are specified for DCT and DCF, the instruction is executed when those
conditions are TRUE. When they are FALSE, the instruction is not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated. If
conditions are specified, the DC, N, Z, V, and GT bits are not updated even is the conditions were
true and the instruction was executed.

Note: The bottom word of the destination register and the guard bits are ignored when the DC bit
is updated.

Operation:

/* PAND Sx,Sy,Dz */

{

unsigned char carry_bit, negative_bit, zero_bit, overflow_bit;

/* ALU Sources assignment */

switch (xx) { /* Sx Operand selection bit (xx) */

case 0x0: DSP_ALU_SRC1 = X0;

break;

case 0x1: DSP_ALU_SRC1 = X1;

break;

case 0x2: DSP_ALU_SRC1 = A0;

295

break;

case 0x3: DSP_ALU_SRC1 = A1;

break;

}

switch (yy) { /* Sy Operand selection bit (yy) */

case 0x0: DSP_ALU_SRC2 = Y0;

break;

case 0x1: DSP_ALU_SRC2 = Y1;

break;

case 0x2: DSP_ALU_SRC2 = M0;

break;

case 0x3: DSP_ALU_SRC2 = M1;

break;

}

DSP_ALU_DST_HW = DSP_ALU_SRC1_HW & DSP_ALU_SRC2_HW;

 if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

/* ALU Destination assignment */

switch (zzzz) { /* Dz Operand selection bit (zzzz) */

 case 0x5: A1_HW = DSP_ALU_DST_HW;

A1_LW = 0x0; /* clear LSW */

A1G = 0x0; /* clear Guard bits */

break;

 case 0x7: A0_HW = DSP_ALU_DST_HW;

A0_LW = 0x0; /* clear LSW */

A0G = 0x0; /* clear Guard bits */

break;

 case 0x8: X0_HW = DSP_ALU_DST_HW;

X0_LW = 0x0; /* clear LSW */

break;

 case 0x9: X1_HW = DSP_ALU_DST;

X1_LW = 0x0; /* clear LSW */

break;

 case 0xa: Y0_HW = DSP_ALU_DST;

Y0_LW = 0x0; /* clear LSW */

break;

 case 0xb: Y1_HW = DSP_ALU_DST;

296

Y1_LW = 0x0; /* clear LSW */

break;

 case 0xc: M0_HW = DSP_ALU_DST;

M0_LW = 0x0; /* clear LSW */

break;

 case 0xe: M1_HW = DSP_ALU_DST;

M1_LW = 0x0; /* clear LSW */

break;

 default: printf("\nERROR:Illegal DSP Instruction");
break;

}

carry_bit = 0x0;

negative_bit = DSP_ALU_DST_MSB;

zero_bit = (DSP_ALU_DST_HW==0);

overflow_bit = 0x0;

/* DSR register update */

logical_dc_bit();

 }

 else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

/* ALU Destination assignment */

switch (zzzz) { /* Dz Operand selection bit (zzzz) */

 case 0x5: A1_HW = DSP_ALU_DST_HW;

A1_LW = 0x0; /* clear LSW */

A1G = 0x0; /* clear Guard bits */

break;

 case 0x7: A0_HW = DSP_ALU_DST_HW;

A0_LW = 0x0; /* clear LSW */

A0G = 0x0; /* clear Guard bits */

break;

 case 0x8: X0_HW = DSP_ALU_DST_HW;

X0_LW = 0x0; /* clear LSW */

break;

 case 0x9: X1_HW = DSP_ALU_DST;

X1_LW = 0x0; /* clear LSW */

break;

 case 0xa: Y0_HW = DSP_ALU_DST;

297

Y0_LW = 0x0; /* clear LSW */

break;

 case 0xb: Y1_HW = DSP_ALU_DST;

Y1_LW = 0x0; /* clear LSW */

break;

 case 0xc: M0_HW = DSP_ALU_DST;

M0_LW = 0x0; /* clear LSW */

break;

 case 0xe: M1_HW = DSP_ALU_DST;

M1_LW = 0x0; /* clear LSW */

break;

 default: printf("\nERROR:Illegal DSP Instruction");
break;

}

 }

}

Example:

PAND X0,Y0,A0 NOPX NOPY ;Before execution: X0=H'33333333, Y0=H'55555555

A0=H'123456789A

;After execution: X0=H'33333333, Y0=H'55555555

A0=H'0011110000

In case of unconditional execution, the DC bit is updated
depending on the state of the CS [2:0] bit immediately before
the operation.

298

6.3.6 [if cc] PCLR (Clear): DSP Arithmetic Operation Instruction

Applicable
Instructions

Format Abstract Code Cycle DC Bit SH-1 SH-2
SH-
DSP

PCLR Dz H'00000000→Dz 111110**********

100011010000zzzz

1 Update — —

DCT PCLR
Dz

if DC = 1, H'00000000→Dz

if 0, nop

111110**********

100011100000zzzz

1 — — —

DCF PCLR
Dz

if DC = 0, H'00000000→Dz

if 1, nop

111110**********

100011110000zzzz

1 — — —

Description: Clears the Dz operand. When conditions are specified for DCT and DCF, the
instruction is executed when those conditions are TRUE. When they are FALSE, the instruction is
not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The Z bit of the DSR register is set to 1. The N, V, and GT bits are
cleared to 0. If conditions are specified, the DC, N, Z, V, and GT bits are not updated even is the
conditions were true and the instruction was executed.

Operation:

/* PCLR Dz */

{

unsigned char carry_bit, negative_bit, zero_bit, overflow_bit;

 if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

/* ALU Destination assignment */

switch (zzzz) { /* Dz Operand selection bit (zzzz) */

 case 0x5: A1 = 0x0;

A1G = 0x0;

break;

 case 0x7: A0 = 0x0;

A0G = 0x0;

break;

 case 0x8: X0 = 0x0;

break;

 case 0x9: X1 = 0x0;

299

break;

 case 0xa: Y0 = 0x0;

break;

 case 0xb: Y1 = 0x0;

break;

 case 0xc: M0 = 0x0;

break;

 case 0xe: M1 = 0x0;

break;

 default: printf("\nERROR:Illegal DSP Instruction");
break;

}

carry_bit = 0;

negative_bit = 0;

zero_bit = 1;

overflow_bit = 0;

/* DSR register update */

plus_dc_bit();

 }

 else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

/* ALU Destination assignment */

switch (zzzz) { /* Dz Operand selection bit (zzzz) */

 case 0x5: A1 = 0x0;

A1G = 0x0;

break;

 case 0x7: A0 = 0x0;

A0G = 0x0;

break;

 case 0x8: X0 = 0x0;

break;

 case 0x9: X1 = 0x0;

break;

 case 0xa: Y0 = 0x0;

break;

 case 0xb: Y1 = 0x0;

break;

300

 case 0xc: M0 = 0x0;

break;

 case 0xe: M1 = 0x0;

break;

 default: printf("\nERROR:Illegal DSP Instruction");
break;

 }

}

}

Example:

PCLR A0 NOPX NOPY ;Before execution: A0=H'FF87654321

;After execution: A0=H'0000000000

In case of unconditional execution, the DC bit is
updated depending on the state of the CS [2:0].

301

6.3.7 PCMP (Compare Two Data): DSP Arithmetic Operation Instruction

Applicable
Instructions

Format Abstract Code Cycle DC Bit SH-1 SH-2
SH-
DSP

PCMP Sx, Sy Sx–Sy 111110**********

10000100xxyy0000

1 Update — —

Description: Subtracts the contents of the Sy operand from the Sx operand. The DC bit of the
DSR register is updated according to the specifications for the CS bits. The N, Z, V, and GT bits
of the DSR register are also updated.

Operation:

/* PCMP Sx,Sy */

{

unsigned char carry_bit, borrow_bit, negative_bit, zero_bit, overflow_bit;

/* ALU Sources assignment */

switch (xx) { /* Sx Operand selection bit (xx) */

case 0x0: DSP_ALU_SRC1 = X0;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else DSP_ALU_SRC1G = 0x0;

break;

case 0x1: DSP_ALU_SRC1 = X1;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else DSP_ALU_SRC1G = 0x0;

break;

case 0x2: DSP_ALU_SRC1 = A0;

DSP_ALU_SRC1G = A0G;

break;

case 0x3: DSP_ALU_SRC1 = A1;

DSP_ALU_SRC1G = A1G;

break;

}

switch (yy) { /* Sy Operand selection bit (yy) */

case 0x0: DSP_ALU_SRC2 = Y0;

break;

302

case 0x1: DSP_ALU_SRC2 = Y1;

break;

case 0x2: DSP_ALU_SRC2 = M0;

break;

case 0x3: DSP_ALU_SRC2 = M1;

break;

}

if (DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G = 0xff;

else DSP_ALU_SRC2G = 0x0;

DSP_ALU_DST = DSP_ALU_SRC1 - DSP_ALU_SRC2;

carry_bit =((DSP_ALU_SRC1_MSB | !DSP_ALU_SRC2_MSB) && !DSP_ALU_DST_MSB) |

(DSP_ALU_SRC1_MSB & !DSP_ALU_SRC2_MSB);

borrow_bit = !carry_bit;

DSP_ALU_DSTG_LSB8 = DSP_ALU_SRC1G_LSB8 - DSP_ALU_SRC2G_LSB8

 - borrow_bit;

negative_bit = DSP_ALU_DSTG_BIT7;

zero_bit = (DSP_ALU_DST==0) & (DSP_ALU_DSTG_LSB8==0);

overflow_bit= MINUS_OP_G_OV || !(POS_NOT_OV || NEG_NOT_OV);

overflow_protection();

/* DSR register update */

minus_dc_bit();

}

Examples:

PCMP X0, Y0 NOPX NOPY ;Before execution: X0=H'22222222, Y0=H'33333333

;After execution: X0=H'22222222, Y0=H'33333333

N=1, Z=0, V=0, GT=0

DC bit is updated depending on the state of CS [2:0].

303

6.3.8 [if cc] PCOPY (Copy with Condition): DSP Arithmetic Operation Instruction

Applicable
Instructions

Format Abstract Code Cycle DC Bit SH-1 SH-2
SH-
DSP

PCOPY
Sx,Dz

Sx→Dz 111110**********

11011001xx00zzzz

1 Update — —

PCOPY
Sy,Dz

Sy→Dz 111110**********

1111100100yyzzzz

1 Update — —

DCT PCOPY
Sx,Dz

if DC = 1, Sx→Dz
if 0, nop

111110**********

11011010xx00zzzz

1 — — —

DCT PCOPY
Sy,Dz

if DC = 1, Sy→Dz
if 0, nop

111110**********

1111101000yyzzzz

1 — — —

DCF PCOPY
Sx,Dz

if DC = 0, Sx→Dz
if 1, nop

111110**********

11011011xx00zzzz

1 — — —

DCF PCOPY
Sy,Dz

if DC = 0, Sy→Dz
if 1, nop

111110**********

1111101100yyzzzz

1 — — —

Description: Stores the Sx and Sy operands in the Dz operand. When conditions are specified for
DCT and DCF, the instruction is executed when those conditions are TRUE. When they are
FALSE, the instruction is not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits are also updated. If conditions are
specified, the DC, N, Z, V, and GT bits are not updated even is the conditions were true and the
instruction was executed.

Operation:

/* Case1 : PCOPY Sx,Dz */

/* Case2 : PCOPY Sy,Dz */

{

unsigned char carry_bit, negative_bit, zero_bit, overflow_bit;

/* ALU Sources assignment */

if (Case1) { /* PCOPY Sx,Dz */

switch (xx) { /* Sx Operand selection bit (xx) */

 case 0x0: DSP_ALU_SRC1 = X0;

304

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else DSP_ALU_SRC1G = 0x0;

break;

 case 0x1: DSP_ALU_SRC1 = X1;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else DSP_ALU_SRC1G = 0x0;

break;

 case 0x2: DSP_ALU_SRC1 = A0;

DSP_ALU_SRC1G = A0G;

break;

 case 0x3: DSP_ALU_SRC1 = A1;

DSP_ALU_SRC1G = A1G;

break;

}

DSP_ALU_SRC2 = 0;

DSP_ALU_SRC2G= 0;

}

else { /* PCOPY Sy,Dz */

DSP_ALU_SRC1 = 0;

DSP_ALU_SRC1G= 0;

switch (yy) {

 case 0x0: DSP_ALU_SRC2 = Y0;

break;

 case 0x1: DSP_ALU_SRC2 = Y1;

break;

 case 0x2: DSP_ALU_SRC2 = M0;

break;

 case 0x3: DSP_ALU_SRC2 = M1;

break;

}

if (DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G = 0xff;

else DSP_ALU_SRC2G = 0x0;

}

DSP_ALU_DST = DSP_ALU_SRC1 + DSP_ALU_SRC2;

carry_bit = ((DSP_ALU_SRC1_MSB | DSP_ALU_SRC2_MSB) & !DSP_ALU_DST_MSB) |
 (DSP_ALU_SRC1_MSB & DSP_ALU_SRC2_MSB);

305

DSP_ALU_DSTG_LSB8 = DSP_ALU_SRC1G_LSB8 + DSP_ALU_SRC2G_LSB8 + carry_bit

overflow_bit= PLUS_OP_G_OV || !(POS_NOT_OV || NEG_NOT_OV);

overflow_protection();

 if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

/* ALU Destination assignment */

switch (zzzz) { /* Dz Operand selection bit (zzzz) */

 case 0x5: A1 = DSP_ALU_DST;

A1G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A1G = A1G | 0xFFFFFF00;

break;

 case 0x7: A0 = DSP_ALU_DST;

A0G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A0G = A0G | 0xFFFFFF00;

break;

 case 0x8: X0 = DSP_ALU_DST;

break;

 case 0x9: X1 = DSP_ALU_DST;

break;

 case 0xa: Y0 = DSP_ALU_DST;

break;

 case 0xb: Y1 = DSP_ALU_DST;

break;

 case 0xc: M0 = DSP_ALU_DST;

break;

 case 0xe: M1 = DSP_ALU_DST;

break;

 default: printf("\nERROR:Illegal DSP Instruction");
break;

}

negative_bit = DSP_ALU_DSTG_BIT7;

zero_bit = (DSP_ALU_DST==0) & (DSP_ALU_DSTG_LSB8==0);

/* DSR register update */

plus_dc_bit();

 }

 else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

306

/* ALU Destination assignment */

switch (zzzz) { /* Dz Operand selection bit (zzzz) */

 case 0x5: A1 = DSP_ALU_DST;

A1G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A1G = A1G | 0xFFFFFF00;

break;

 case 0x7: A0 = DSP_ALU_DST;

A0G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A0G = A0G | 0xFFFFFF00;

break;

 case 0x8: X0 = DSP_ALU_DST;

break;

 case 0x9: X1 = DSP_ALU_DST;

break;

 case 0xa: Y0 = DSP_ALU_DST;

break;

 case 0xb: Y1 = DSP_ALU_DST;

break;

 case 0xc: M0 = DSP_ALU_DST;

break;

 case 0xe: M1 = DSP_ALU_DST;

break;

 default: printf("\nERROR:Illegal DSP Instruction");
break;

 }

}

}

Examples:

PCOPY X0, A0 NOPX NOPY ;Before execution: X0=H'55555555, A0=H'FFFFFFFF

;After execution: X0=H'55555555, A0=H'0055555555

In case of unconditional execution, the DC bit is updated
depending on the state of CS [2:0].

307

6.3.9 [if cc] PDEC (Decrement by 1): DSP Arithmetic Operation Instruction

Applicable
Instructions

Format Abstract Code Cycle DC Bit SH-1 SH-2
SH-
DSP

PDEC Sx,Dz MSW of Sx–1→MSW of Dz,
clear LSW of Dz

111110**********

10001001xx00zzzz

1 Update — —

PDEC Sy,Dz MSW of Sy–1→MSW of Dz,
clear LSW of Dz

111110**********

1010100100yyzzzz

1 Update — —

DCT PDEC
Sx,Dz

If DC = 1, MSW of Sx–1→
MSW of Dz, clear LSW of
Dz; if 0, nop

111110**********

10001010xx00zzzz

1 — — —

DCT PDEC
Sy,Dz

If DC = 1, MSW of Sy–1→
MSW of Dz, clear LSW of
Dz; if 0, nop

111110**********

1010101000yyzzzz

1 — — —

DCF PDEC
Sx,Dz

If DC = 0, MSW of Sx–1→
MSW of Dz, clear LSW of
Dz; if 1, nop

111110**********

10001011xx00zzzz

1 — — —

DCF PDEC
Sy,Dz

If DC = 0, MSW of Sy–1→
MSW of Dz, clear LSW of
Dz; if 1, nop

111110**********

1010101100yyzzzz

1 — — —

Description: Subtracts 1 from the top word of the Sx and Sy operands, stores the result in the
upper word of the Dz operand, and clears the bottom word of the Dz operand with zeros. When
conditions are specified for DCT and DCF, the instruction is executed when those conditions are
TRUE. When they are FALSE, the instruction is not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated. If
conditions are specified, the DC, N, Z, V, and GT bits are not updated even is the conditions were
true and the instruction was executed.

Note: The bottom word of the destination register is ignored when the DC bit is updated.

308

Operation:

/* Case1 : PDEC Sx,Dz */

/* Case2 : PDEC Sy,Dz */

{

unsigned char carry_bit, borrow_bit, negative_bit, zero_bit, overflow_bit;

/* ALU Sources assignment */

DSP_ALU_SRC2 = 0x1;

DSP_ALU_SRC2G= 0x0;

if (Case1) { /* MSW of Sx -1 → Dz */

 switch (xx) { /* Sx Operand selection bit (xx) */

case 0x0: DSP_ALU_SRC1 = X0;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else DSP_ALU_SRC1G = 0x0;

break;

case 0x1: DSP_ALU_SRC1 = X1;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else DSP_ALU_SRC1G = 0x0;

break;

case 0x2: DSP_ALU_SRC1 = A0;

DSP_ALU_SRC1G = A0G;

break;

case 0x3: DSP_ALU_SRC1 = A1;

DSP_ALU_SRC1G = A1G;

break;

 }

}

else { /* MSW of Sy -1 → Dz */

 switch (yy) { /* Sy Operand selection bit (yy) */

case 0x0: DSP_ALU_SRC1 = Y0;

break;

case 0x1: DSP_ALU_SRC1 = Y1;

break;

case 0x2: DSP_ALU_SRC1 = M0;

break;

case 0x3: DSP_ALU_SRC1 = M1;

309

break;

 }

 if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

 else DSP_ALU_SRC1G = 0x0;

}

 DSP_ALU_DST_HW = DSP_ALU_SRC1_HW - 1;

 carry_bit =((DSP_ALU_SRC1_MSB | !DSP_ALU_SRC2_MSB) && !DSP_ALU_DST_MSB) |

(DSP_ALU_SRC1_MSB & !DSP_ALU_SRC2_MSB);

 borrow_bit = !carry_bit;

 DSP_ALU_DSTG_LSB8 = DSP_ALU_SRC1G_LSB8 - DSP_ALU_SRC2G_LSB8 - borrow_bit;

 overflow_bit= PLUS_OP_G_OV || !(POS_NOT_OV || NEG_NOT_OV);

 overflow_protection();

 if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

/* ALU Destination assignment */

switch (zzzz) { /* Dz Operand selection bit (zzzz) */

 case 0x5: A1_HW = DSP_ALU_DST_HW;

A1_LW = 0x0; /* clear LSW */

A1G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A1G = A1G | 0xFFFFFF00;

break;

 case 0x7: A0_HW = DSP_ALU_DST_HW;

A0_LW = 0x0; /* clear LSW */

A0G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A0G = A0G | 0xFFFFFF00;

break;

 case 0x8: X0_HW = DSP_ALU_DST_HW;

X0_LW = 0x0; /* clear LSW */

break;

 case 0x9: X1_HW = DSP_ALU_DST_HW;

X1_LW = 0x0; /* clear LSW */

break;

 case 0xa: Y0_HW = DSP_ALU_DST_HW;

Y0_LW = 0x0; /* clear LSW */

break;

 case 0xb: Y1_HW = DSP_ALU_DST_HW;

310

Y1_LW = 0x0; /* clear LSW */

break;

 case 0xc: M0_HW = DSP_ALU_DST_HW;

M0_LW = 0x0; /* clear LSW */

break;

 case 0xe: M1_HW = DSP_ALU_DST_HW;

M1_LW = 0x0; /* clear LSW */

break;

 default: printf("\nERROR:Illegal DSP Instruction");
break;

}

negative_bit = DSP_ALU_DSTG_BIT7;

zero_bit = (DSP_ALU_DST_HW==0) & (DSP_ALU_DSTG_LSB8==0);

/* DSR register update */

minus_dc_bit.c"

 }

 else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

/* ALU Destination assignment */

switch (zzzz) { /* Dz Operand selection bit (zzzz) */

 case 0x5: A1_HW = DSP_ALU_DST_HW;

A1_LW = 0x0; /* clear LSW */

A1G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A1G = A1G | 0xFFFFFF00;

break;

 case 0x7: A0_HW = DSP_ALU_DST_HW;

A0_LW = 0x0; /* clear LSW */

A0G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A0G = A0G | 0xFFFFFF00;

break;

 case 0x8: X0_HW = DSP_ALU_DST_HW;

X0_LW = 0x0; /* clear LSW */

break;

 case 0x9: X1_HW = DSP_ALU_DST_HW;

X1_LW = 0x0; /* clear LSW */

break;

 case 0xa: Y0_HW = DSP_ALU_DST_HW;

Y0_LW = 0x0; /* clear LSW */

311

break;

 case 0xb: Y1_HW = DSP_ALU_DST_HW;

Y1_LW = 0x0; /* clear LSW */

break;

 case 0xc: M0_HW = DSP_ALU_DST_HW;

M0_LW = 0x0; /* clear LSW */

break;

 case 0xe: M1_HW = DSP_ALU_DST_HW;

M1_LW = 0x0; /* clear LSW */

break;

 default: printf("\nERROR:Illegal DSP Instruction");
break;

 }

}

}

Example:

PDEC X0,M0 NOPX NOPY ;Before execution: X0=H'0052330F, M0=H'12345678

;After execution: X0=H'0052330F, M0=H'00510000

PDEC X1,X1 NOPX NOPY ;Before execution: X1=H'FC342855

;After execution: X1=H'FC330000

In case of unconditional execution, the DC bit is updated
depending on the state of CS [2:0].

312

6.3.10 [if cc] PDMSB (Detect MSB with Condition): DSP Arithmetic Operation

Instruction

Applicable
Instructions

Format Abstract Code Cycle DC Bit SH-1 SH-2
SH-
DSP

PDMSB
Sx,Dz

Sx data MSB position →
MSW of Dz, clear LSW of
Dz

111110**********

10011101xx00zzzz

1 Update — —

PDMSB
Sy,Dz

Sy data MSB position →
MSW of Dz, clear LSW of
Dz

111110**********

1011110100yyzzzz

1 Update — —

DCT PDMSB
Sx,Dz

If DC = 1, Sx data MSB
position → MSW of Dz,
clear LSW of Dz; if 0, nop

111110**********

10011110xx00zzzz

1 — — —

DCT PDMSB
Sy,Dz

If DC = 1, Sy data MSB
position → MSW of Dz,
clear LSW of Dz; if 0, nop

111110**********

1011111000yyzzzz

1 — — —

DCF PDMSB
Sx,Dz

If DC = 0, Sx data MSB
position → MSW of Dz,
clear LSW of Dz; if 1, nop

111110**********

10011111xx00zzzz

1 — — —

DCF PDMSB
Sy,Dz

If DC = 0, Sy data MSB
position → MSW of Dz,
clear LSW of Dz; if 1, nop

111110**********

1011111100yyzzzz

1 — — —

Description: Finds the first position to change in the lineup of Sx and Sy operand bits and stores
the bit position in the Dz operand. When conditions are specified for DCT and DCF, the
instruction is executed when those conditions are TRUE. When they are FALSE, the instruction is
not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated. If
conditions are specified, the DC, N, Z, V, and GT bits are not updated even is the conditions were
true and the instruction was executed.

313

Operation:

/* Case1 : PDMSB Sx,Dz */

/* Case2 : PDMSB Sy,Dz */

{

unsigned char carry_bit, borrow_bit, negative_bit, zero_bit, overflow_bit;

/* ALU Sources assignment */

DSP_ALU_SRC2 = 0x0;

DSP_ALU_SRC2G= 0x0;

if (Case1) { /* msb(Sx) → Dz */

 switch (xx) { /* Sx Operand selection bit (xx) */

case 0x0: DSP_ALU_SRC1 = X0;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else DSP_ALU_SRC1G = 0x0;

break;

case 0x1: DSP_ALU_SRC1 = X1;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else DSP_ALU_SRC1G = 0x0;

break;

case 0x2: DSP_ALU_SRC1 = A0;

DSP_ALU_SRC1G = A0G;

break;

case 0x3: DSP_ALU_SRC1 = A1;

DSP_ALU_SRC1G = A1G;

break;

 }

}

else { /* msb(Sy) → Dz */

 switch (yy) { /* Sy Operand selection bit (yy) */

case 0x0: DSP_ALU_SRC1 = Y0;

break;

case 0x1: DSP_ALU_SRC1 = Y1;

break;

case 0x2: DSP_ALU_SRC1 = M0;

break;

case 0x3: DSP_ALU_SRC1 = M1;

314

break;

 }

 if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

 else DSP_ALU_SRC1G = 0x0;

}

{

 short int i;

 unsigned char msb, src1g;

 unsigned long src1=DSP_ALU_SRC1;

 msb= DSP_ALU_SRC1G_BIT7;

 src1g=(DSP_ALU_SRC1G_LSB8 << 1);

 for(i=38;((msb==(src1g>>7))&&(i>=32));i--) { src1g <<= 1; }

 if(i==31) {

 for(i;((msb==(src1>>31))&&(i>=0));i--) { src1 <<= 1; }

 }

 DSP_ALU_DST = 0x0;

 DSP_ALU_DST_HW = (short int) (30-i);

 if (DSP_ALU_DST_MSB) DSP_ALU_DSTG_LSB8 = 0xff;

 else DSP_ALU_DSTG_LSB8 = 0x0;

}

carry_bit = 0;

 if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

overflow_bit= 0;

/* ALU Destination assignment */

switch (zzzz) { /* Dz Operand selection bit (zzzz) */

 case 0x5: A1_HW = DSP_ALU_DST_HW;

A1_LW = 0x0; /* clear LSW */

A1G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A1G = A1G | 0xFFFFFF00;

break;

 case 0x7: A0_HW = DSP_ALU_DST_HW;

A0_LW = 0x0; /* clear LSW */

A0G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A0G = A0G | 0xFFFFFF00;

break;

 case 0x8: X0_HW = DSP_ALU_DST_HW;

315

X0_LW = 0x0; /* clear LSW */

break;

 case 0x9: X1_HW = DSP_ALU_DST_HW;

X1_LW = 0x0; /* clear LSW */

break;

 case 0xa: Y0_HW = DSP_ALU_DST_HW;

Y0_LW = 0x0; /* clear LSW */

break;

 case 0xb: Y1_HW = DSP_ALU_DST_HW;

Y1_LW = 0x0; /* clear LSW */

break;

 case 0xc: M0_HW = DSP_ALU_DST_HW;

M0_LW = 0x0; /* clear LSW */

break;

 case 0xe: M1_HW = DSP_ALU_DST_HW;

M1_LW = 0x0; /* clear LSW */

break;

 default: printf("\nERROR:Illegal DSP Instruction");
break;

}

negative_bit = DSP_ALU_DSTG_BIT7;

zero_bit = (DSP_ALU_DST_HW==0) & (DSP_ALU_DSTG_LSB8==0);

/* DSR register update */

plus_dc_bit();

 }

 else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

/* ALU Destination assignment */

switch (zzzz) { /* Dz Operand selection bit (zzzz) */

 case 0x5: A1_HW = DSP_ALU_DST_HW;

A1_LW = 0x0; /* clear LSW */

A1G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A1G = A1G | 0xFFFFFF00;

break;

 case 0x7: A0_HW = DSP_ALU_DST_HW;

A0_LW = 0x0; /* clear LSW */

A0G = DSP_ALU_DSTG & 0x000000FF;

316

if(DSP_ALU_DSTG_BIT7) A0G = A0G | 0xFFFFFF00;

break;

 case 0x8: X0_HW = DSP_ALU_DST_HW;

X0_LW = 0x0; /* clear LSW */

break;

 case 0x9: X1_HW = DSP_ALU_DST_HW;

X1_LW = 0x0; /* clear LSW */

break;

 case 0xa: Y0_HW = DSP_ALU_DST_HW;

Y0_LW = 0x0; /* clear LSW */

break;

 case 0xb: Y1_HW = DSP_ALU_DST_HW;

Y1_LW = 0x0; /* clear LSW */

break;

 case 0xc: M0_HW = DSP_ALU_DST_HW;

M0_LW = 0x0; /* clear LSW */

break;

 case 0xe: M1_HW = DSP_ALU_DST_HW;

M1_LW = 0x0; /* clear LSW */

break;

 default: printf("\nERROR:Illegal DSP Instruction");
break;

 }

}

}

Example:

PDMSB X0,M0 NOPX NOPY ;Before execution: X0=H'0052330F, M0=H'12345678

;After execution: X0=H'0052330F, M0=H'00080000

PDMSB X1,X1 NOPX NOPY ;Before execution: X1=H'FC342855

;After execution: X1=H'00050000

In case of unconditional execution, the DC bit is updated
depending on the state of CS [2:0].

317

6.3.11 [if cc] PINC (Increment by 1 with Condition): DSP Arithmetic Operation

Instruction

Applicable
Instructions

Format Abstract Code Cycle DC Bit SH-1 SH-2
SH-
DSP

PINC Sx,Dz MSW of Sx + 1→ MSW of
Dz, clear LSW of Dz

111110**********

10011001xx00zzzz

1 Update — —

PINC Sy,Dz MSW of Sy + 1→ MSW of
Dz, clear LSW of Dz

111110**********

1011100100yyzzzz

1 Update — —

DCT PINC
Sx,Dz

If DC = 1, MSW of Sx + 1→
MSW of Dz, clear LSW of
Dz; if 0, nop

111110**********

10011010xx00zzzz

1 — — —

DCT PINC
Sy,Dz

If DC = 1, MSW of Sy + 1→
MSW of Dz, clear LSW of
Dz; if 0, nop

111110**********

1011101000yyzzzz

1 — — —

DCF PINC
Sx,Dz

If DC = 0, MSW of Sx + 1→
MSW of Dz, clear LSW of
Dz; if 1, nop

111110**********

10011011xx00zzzz

1 — — —

DCF PINC
Sy,Dz

If DC = 0, MSW of Sy + 1→
MSW of Dz, clear LSW of
Dz; if 1, nop

111110**********

1011101100yyzzzz

1 — — —

Description: Adds 1 to the top word of the Sx and Sy operands, stores the result in the upper word
of the Dz operand, and clears the bottom word of the Dz operand with zeros. When conditions are
specified for DCT and DCF, the instruction is executed when those conditions are TRUE. When
they are FALSE, the instruction is not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated. If
conditions are specified, the DC, N, Z, V, and GT bits are not updated even is the conditions were
true and the instruction was executed.

318

Note: The bottom word of the destination register is ignored when the DC bit is updated.

Operation:

/* Case1 : PINC Sx,Dz */

/* Case2 : PINC Sy,Dz */

{

unsigned char carry_bit, borrow_bit, negative_bit, zero_bit, overflow_bit;

/* ALU Sources assignment */

DSP_ALU_SRC2 = 0x1;

DSP_ALU_SRC2G= 0x0;

if (Case1) { /* MSW of Sx +1 → Dz */

 switch (xx) { /* Sx Operand selection bit (xx) */

case 0x0: DSP_ALU_SRC1 = X0;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else DSP_ALU_SRC1G = 0x0;

break;

case 0x1: DSP_ALU_SRC1 = X1;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else DSP_ALU_SRC1G = 0x0;

break;

case 0x2: DSP_ALU_SRC1 = A0;

DSP_ALU_SRC1G = A0G;

break;

case 0x3: DSP_ALU_SRC1 = A1;

DSP_ALU_SRC1G = A1G;

break;

 }

}

else { /* MSW of Sy +1 → Dz */

 switch (yy) { /* Sy Operand selection bit (yy) */

case 0x0: DSP_ALU_SRC1 = Y0;

break;

case 0x1: DSP_ALU_SRC1 = Y1;

break;

case 0x2: DSP_ALU_SRC1 = M0;

break;

319

case 0x3: DSP_ALU_SRC1 = M1;

break;

 }

 if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

 else DSP_ALU_SRC1G = 0x0;

}

 DSP_ALU_DST_HW = DSP_ALU_SRC1_HW + 1;

 carry_bit = ((DSP_ALU_SRC1_MSB | DSP_ALU_SRC2_MSB) & !DSP_ALU_DST_MSB) |

(DSP_ALU_SRC1_MSB & DSP_ALU_SRC2_MSB);

 DSP_ALU_DSTG_LSB8 = DSP_ALU_SRC1G_LSB8 + DSP_ALU_SRC2G_LSB8 + carry_bit;

 overflow_bit= PLUS_OP_G_OV || !(POS_NOT_OV || NEG_NOT_OV);

 overflow_protection();

 if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

/* ALU Destination assignment */

switch (zzzz) { /* Dz Operand selection bit (zzzz) */

 case 0x5: A1_HW = DSP_ALU_DST_HW;

A1_LW = 0x0; /* clear LSW */

A1G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A1G = A1G | 0xFFFFFF00;

break;

 case 0x7: A0_HW = DSP_ALU_DST_HW;

A0_LW = 0x0; /* clear LSW */

A0G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A0G = A0G | 0xFFFFFF00;

break;

 case 0x8: X0_HW = DSP_ALU_DST_HW;

X0_LW = 0x0; /* clear LSW */

break;

 case 0x9: X1_HW = DSP_ALU_DST_HW;

X1_LW = 0x0; /* clear LSW */

break;

 case 0xa: Y0_HW = DSP_ALU_DST_HW;

Y0_LW = 0x0; /* clear LSW */

break;

 case 0xb: Y1_HW = DSP_ALU_DST_HW;

Y1_LW = 0x0; /* clear LSW */

320

break;

 case 0xc: M0_HW = DSP_ALU_DST_HW;

M0_LW = 0x0; /* clear LSW */

break;

 case 0xe: M1_HW = DSP_ALU_DST_HW;

M1_LW = 0x0; /* clear LSW */

break;

 default: printf("\nERROR:Illegal DSP Instruction");
break;

}

negative_bit = DSP_ALU_DSTG_BIT7;

zero_bit = (DSP_ALU_DST_HW==0) & (DSP_ALU_DSTG_LSB8==0);

/* DSR register update */

plus_dc_bit();

 }

 else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

/* ALU Destination assignment */

switch (zzzz) { /* Dz Operand selection bit (zzzz) */

 case 0x5: A1_HW = DSP_ALU_DST_HW;

A1_LW = 0x0; /* clear LSW */

A1G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A1G = A1G | 0xFFFFFF00;

break;

 case 0x7: A0_HW = DSP_ALU_DST_HW;

A0_LW = 0x0; /* clear LSW */

A0G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A0G = A0G | 0xFFFFFF00;

break;

 case 0x8: X0_HW = DSP_ALU_DST_HW;

X0_LW = 0x0; /* clear LSW */

break;

 case 0x9: X1_HW = DSP_ALU_DST_HW;

X1_LW = 0x0; /* clear LSW */

break;

 case 0xa: Y0_HW = DSP_ALU_DST_HW;

321

Y0_LW = 0x0; /* clear LSW */

break;

 case 0xb: Y1_HW = DSP_ALU_DST_HW;

Y1_LW = 0x0; /* clear LSW */

break;

 case 0xc: M0_HW = DSP_ALU_DST_HW;

M0_LW = 0x0; /* clear LSW */

break;

 case 0xe: M1_HW = DSP_ALU_DST_HW;

M1_LW = 0x0; /* clear LSW */

break;

 default: printf("\nERROR:Illegal DSP Instruction");
break;

 }

}

}

Example:

PINC X0,M0 NOPX NOPY ;Before execution: X0=H'0052330F, M0=H'12345678

;After execution: X0=H'0052330F, M0=H'00530000

PINC X1,X1 NOPX NOPY ;Before execution: X1=H'FC342855

;After execution: X1=H'FC350000

In case of unconditional execution, the DC bit is updated
depending on the state of CS [2:0].

322

6.3.12 [if cc] PLDS (Load System Register): DSP System Control Instruction

Applicable
Instructions

Format Abstract Code Cycle
DC
Bit SH-1 SH-2

SH-
DSP

PLDS
Dz,MACH

Dz→MACH 111110**********

111011010000zzzz

1 — — —

PLDS
Dz,MACL

Dz→MACL 111110**********

111111010000zzzz

1 — — —

DCT PLDS
Dz,MACH

if DC = 1, Dz→MACH

if 0, nop

111110**********

111011100000zzzz

1 — — —

DCT PLDS
Dz,MACL

if DC = 1, Dz→MACL

if 0, nop

111110**********

111111100000zzzz

1 — — —

DCF PLDS
Dz,MACH

if DC = 0, Dz→MACH

if 1, nop

111110**********

111011110000zzzz

1 — — —

DCF PLDS
Dz,MACL

if DC = 0, Dz→MACL

if 1, nop

111110**********

111111110000zzzz

1 — — —

Description: Stores the Dz operand in the MACH and MACL registers. When conditions are
specified for DCT and DCF, the instruction is executed when those conditions are TRUE. When
they are FALSE, the instruction is not executed.

The DC, N, Z, V, and GT bits of the DSR register are not updated.

Note: Though PSTS, MOVX, and MOVY can be designated in parallel, their execution may
take two cycles.

323

Operation:

/* Case1 : PLDS Dz,MACH */

/* Case2 : PLDS Dz,MACL */

{

 if(CASE1){ /* Dz → MACH */

 if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

/* ALU Destination assignment */

switch (zzzz) { /* Dz Operand selection bit (zzzz) */

 case 0x5: MACH = A1;

break;

 case 0x7: MACH = A0;

break;

 case 0x8: MACH = X0;

break;

 case 0x9: MACH = X1;

break;

 case 0xa: MACH = Y0;

break;

 case 0xb: MACH = Y1;

break;

 case 0xc: MACH = M0;

break;

 case 0xe: MACH = M1;

break;

 default: printf("\nERROR:Illegal DSPInstruction");
break;

}

}

 else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

/* ALU Destination assignment */

switch (zzzz) { /* Dz Operand selection bit (zzzz) */

 case 0x5: MACH = A1;

break;

 case 0x7: MACH = A0;

break;

 case 0x8: MACH = X0;

324

break;

 case 0x9: MACH = X1;

break;

 case 0xa: MACH = Y0;

break;

 case 0xb: MACH = Y1;

break;

 case 0xc: MACH = M0;

break;

 case 0xe: MACH = M1;

break;

 default: printf("\nERROR:Illegal DSP Instruction");
break;

}

}

 else{ /* Dz → MACL */

 if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

/* ALU Destination assignment */

switch (zzzz) { /* Dz Operand selection bit (zzzz) */

 case 0x5: MACL = A1;

break;

 case 0x7: MACL = A0;

break;

 case 0x8: MACL = X0;

break;

 case 0x9: MACL = X1;

break;

 case 0xa: MACL = Y0;

break;

 case 0xb: MACL = Y1;

break;

 case 0xc: MACL = M0;

break;

 case 0xe: MACL = M1;

break;

 default: printf("\nERROR:Illegal DSP Instruction");
break;

325

}

}

 else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

/* ALU Destination assignment */

switch (zzzz) { /* Dz Operand selection bit (zzzz) */

 case 0x5: MACL = A1;

break;

 case 0x7: MACL = A0;

break;

 case 0x8: MACL = X0;

break;

 case 0x9: MACL = X1;

break;

 case 0xa: MACL = Y0;

break;

 case 0xb: MACL = Y1;

break;

 case 0xc: MACL = M0;

break;

 case 0xe: MACL = M1;

break;

 default: printf("\nERROR:Illegal DSP Instruction");
break;

 }

}

 }

}

Example:

PLDS A0,MACH NOPX NOPY ;Before execution: A0=H'123456789A,
MACH=H'66666666

;After execution: A0=H'123456789A,
MACH=H'3456789A

326

6.3.13 PMULS (Multiply Signed by Signed): DSP Arithmetic Operation Instruction

Applicable
Instructions

Format Abstract Code Cycle
DC
Bit SH-1 SH-2

SH-
DSP

PMULS
Se,Sf,Dg

MSW of Se × MSW of
Sf→Dg

111110**********

0100eeff0000gg00

1 — — —

Description: The contents of the top word of the Se and Sf operands are multiplied as signed and
the result stored in the Dg operand. The DC, N, Z, V, and GT bits of the DSR register are not
updated.

Note: Since PMULS performs fixed decimal point multiplication, the operation result will be
different from that of MULS, which performs integer multiplication, even though the
source data may be the same.

Operation:

/* PMULS Se,Sf,Dg */

{

/* Multiplier Sources assignment */

switch (ee) { /* Se Operand selection bit (ee) */

case 0x0: DSP_M_SRC1 = X0_HW;

break;

case 0x1: DSP_M_SRC1 = X1_HW;

break;

case 0x2: DSP_M_SRC1 = Y0_HW;

break;

case 0x3: DSP_M_SRC1 = A1_HW;

break;

}

switch (ff) { /* Sf Operand selection bit (ff) */

case 0x0: DSP_M_SRC2 = Y0_HW;

break;

case 0x1: DSP_M_SRC2 = Y1_HW;

break;

case 0x2: DSP_M_SRC2 = X0_HW;

break;

327

case 0x3: DSP_M_SRC2 = A1_HW;

break;

}

/* Multiplier Operation */

if ((SBIT==1) && (DSP_M_SRC1==0x8000) && (DSP_M_SRC2==0x8000)) {

DSP_M_DST=0x7fffffff; /* overflow protection */

}

else {

 DSP_M_DST=((long)(short)DSP_M_SRC1*(long)(short)DSP_M_SRC2)<<1;

}

if (DSP_M_DST_MSB) DSP_M_DSTG_LSB8 = 0xff;

else DSP_M_DSTG_LSB8 = 0x0;

/* Multiplier Destination assignment */

switch (gg) { /* Dg Operand selection bit (gg) */

case 0x0: M0 = DSP_M_DST;

break;

case 0x1: M1 = DSP_M_DST;

break;

case 0x2: A0 = DSP_M_DST;

if(DSP_M_DSTG_LSB8==0x0) A0G=0x0;

else A0G=0xffffffff;

break;

case 0x3: A1 = DSP_M_DST;

if(DSP_M_DSTG_LSB8==0x0) A1G=0x0;

else A1G=0xffffffff;

break;

}

}

328

Examples:

PMULS X0,Y0,M0 NOPX NOPY ; Before execution: X0=H'00010000, Y0=H'00020000,
(2–15) (2–14)

M0=H'33333333

; After execution: X0=H'00010000, Y0=H'00020000,
M0=H'00000004

 (2–24)

The value is doubled when viewed as integer data.

PMULS X1,Y1,A0 NOPX NOPY ; Before execution: X1=H'FFFE2222, Y1=H'0001AAAA,
A0=H'4444444444

; After execution: X1=H'FFFE2222, Y1=H'0001AAAA,
A0=H'FFFFFFFFFC

 () : Fixed-point value

329

6.3.14 [if cc] PNEG (Negate): DSP Arithmetic Operation Instruction

Applicable
Instructions

Format Abstract Code Cycle DC Bit SH-1 SH-2
SH-
DSP

PNEG Sx,Dz 0 – Sx→Dz 111110**********

11001001xx00zzzz

1 Update — —

PNEG Sy,Dz 0 – Sy→Dz 111110**********

1110100100yyzzzz

1 Update — —

DCT PNEG Sx,Dz if DC = 1, 0 – Sx→Dz

if 0, nop

111110**********

11001010xx00zzzz

1 — — —

DCT PNEG Sy,Dz if DC = 1, 0 – Sy→Dz

if 0, nop

111110**********

1110101000yyzzzz

1 — — —

DCF PNEG Sx,Dz if DC = 0, 0 – Sx→Dz

if 1, nop

111110**********

11001011xx00zzzz

1 — — —

DCF PNEG Sy,Dz if DC = 0, 0 – Sy→Dz

if 1, nop

111110**********

1110101100yyzzzz

1 — — —

Description: Reverses the sign. Subtracts the Sx and Sy operands from 0 and stores the result in
the Dz operand. When conditions are specified for DCT and DCF, the instruction is executed
when those conditions are TRUE. When they are FALSE, the instruction is not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated. If
conditions are specified, the DC, N, Z, V, and GT bits are not updated even is the conditions were
true and the instruction was executed.

Operation:

/* Case1 : PNEG Sx,Dz */

/* Case2 : PNEG Sy,Dz */

{

unsigned char carry_bit, borrow_bit, negative_bit, zero_bit, overflow_bit;

DSP_ALU_SRC1 = 0;

DSP_ALU_SRC1G= 0;

/* ALU Sources assignment */

if (Case1) { /* 0 - Sx → Dz */

switch (xx) { /* Sx Operand selection bit (xx) */

330

 case 0x0: DSP_ALU_SRC2 = X0;

if (DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G = 0xff;

else DSP_ALU_SRC2G = 0x0;

break;

 case 0x1: DSP_ALU_SRC2 = X1;

if (DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G = 0xff;

else DSP_ALU_SRC2G = 0x0;

break;

 case 0x2: DSP_ALU_SRC2 = A0;

DSP_ALU_SRC2G = A0G;

break;

 case 0x3: DSP_ALU_SRC2 = A1;

DSP_ALU_SRC2G = A1G;

break;

}

}

else { /* 0 - Sy → Dz */

switch (yy) { /* Sy Operand selection bit (yy) */

 case 0x0: DSP_ALU_SRC2 = Y0;

break;

 case 0x1: DSP_ALU_SRC2 = Y1;

break;

 case 0x2: DSP_ALU_SRC2 = M0;

break;

 case 0x3: DSP_ALU_SRC2 = M1;

break;

}

if (DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G = 0xff;

else DSP_ALU_SRC2G = 0x0;

}

 DSP_ALU_DST = DSP_ALU_SRC1 - DSP_ALU_SRC2;

 carry_bit =((DSP_ALU_SRC1_MSB | !DSP_ALU_SRC2_MSB) && !DSP_ALU_DST_MSB) |

 (DSP_ALU_SRC1_MSB & !DSP_ALU_SRC2_MSB);

 borrow_bit = !carry_bit;

 DSP_ALU_DSTG_LSB8 = DSP_ALU_SRC1G_LSB8 - DSP_ALU_SRC2G_LSB8 - borrow_bit;

 overflow_bit= MINUS_OP_G_OV || !(POS_NOT_OV || NEG_NOT_OV);

331

 overflow_protection();

 if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

/* ALU Destination assignment */

switch (zzzz) { /* Dz Operand selection bit (zzzz) */

 case 0x5: A1 = DSP_ALU_DST;

A1G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A1G = A1G | 0xFFFFFF00;

break;

 case 0x7: A0 = DSP_ALU_DST;

A0G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A0G = A0G | 0xFFFFFF00;

break;

 case 0x8: X0 = DSP_ALU_DST;

break;

 case 0x9: X1 = DSP_ALU_DST;

break;

 case 0xa: Y0 = DSP_ALU_DST;

break;

 case 0xb: Y1 = DSP_ALU_DST;

break;

 case 0xc: M0 = DSP_ALU_DST;

break;

 case 0xe: M1 = DSP_ALU_DST;

break;

 default: printf("\nERROR:Illegal DSP Instruction");
break;

}

negative_bit = DSP_ALU_DSTG_BIT7;

zero_bit = (DSP_ALU_DST==0) & (DSP_ALU_DSTG_LSB8==0);

/* DSR register update */

minus_dc_bit();

 }

 else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

332

/* ALU Destination assignment */

switch (zzzz) { /* Dz Operand selection bit (zzzz) */

 case 0x5: A1 = DSP_ALU_DST;

A1G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A1G = A1G | 0xFFFFFF00;

break;

 case 0x7: A0 = DSP_ALU_DST;

A0G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A0G = A0G | 0xFFFFFF00;

break;

 case 0x8: X0 = DSP_ALU_DST;

break;

 case 0x9: X1 = DSP_ALU_DST;

break;

 case 0xa: Y0 = DSP_ALU_DST;

break;

 case 0xb: Y1 = DSP_ALU_DST;

break;

 case 0xc: M0 = DSP_ALU_DST;

break;

 case 0xe: M1 = DSP_ALU_DST;

break;

 default: printf("\nERROR:Illegal DSP Instruction");
break;

 }

}

}

333

Examples:

PNEG X0,A0 NOPX NOPY ;Before execution: X0=H'55555555, A0=H'A987654321

;After execution: X0=H'55555555, A0=H'FFAAAAAAAB

PNEG X1,Y1 NOPX NOPY ;Before execution: Y1=H'99999999

;After execution: Y1=H'66666667

In case of unconditional execution, the DC bit is updated
depending on the state of CS [2:0].

334

6.3.15 [if cc] POR (Logical OR): DSP Logical Operation Instruction

Applicable
Instructions

Format Abstract Code Cycle DC Bit SH-1 SH-2
SH-
DSP

POR
Sx,Sy,Dz

Sx | Sy→Dz, clear LSW of
Dz

111110**********

10110101xxyyzzzz

1 Update — —

DCT POR
Sx,Sy,Dz

If DC = 1, Sx | Sy→Dz,
clear LSW of Dz; if 0, nop

111110**********

10110110xxyyzzzz

1 — — —

DCF POR
Sx,Sy,Dz

If DC = 0, Sx | Sy→Dz,
clear LSW of Dz; if 1, nop

111110**********

10110111xxyyzzzz

1 — — —

Description: Takes the OR of the top word of the Sx operand and the top word of the Sy operand,
stores the result in the top word of the Dz operand, and clears the bottom word of Dz with zeros.
When Dz is a register that has guard bits, the guard bits are also zeroed. When conditions are
specified for DCT and DCF, the instruction is executed when those conditions are TRUE. When
they are FALSE, the instruction is not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated. If
conditions are specified, the DC, N, Z, V, and GT bits are not updated even is the conditions were
true and the instruction was executed.

Note: The bottom word of the destination register and the guard bits are ignored when the DC bit
is updated.

335

Operation:

/* POR Sx,Sy,Dz */

{

unsigned char carry_bit, negative_bit, zero_bit, overflow_bit;

/* ALU Sources assignment */

switch (xx) { /* Sx Operand selection bit (xx) */

case 0x0: DSP_ALU_SRC1 = X0;

break;

case 0x1: DSP_ALU_SRC1 = X1;

break;

case 0x2: DSP_ALU_SRC1 = A0;

break;

case 0x3: DSP_ALU_SRC1 = A1;

break;

}

switch (yy) { /* Sy Operand selection bit (yy) */

case 0x0: DSP_ALU_SRC2 = Y0;

break;

case 0x1: DSP_ALU_SRC2 = Y1;

break;

case 0x2: DSP_ALU_SRC2 = M0;

break;

case 0x3: DSP_ALU_SRC2 = M1;

break;

}

DSP_ALU_DST_HW = DSP_ALU_SRC1_HW | DSP_ALU_SRC2_HW;

 if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

/* ALU Destination assignment */

switch (zzzz) { /* Dz Operand selection bit (zzzz) */

 case 0x5: A1_HW = DSP_ALU_DST_HW;

A1_LW = 0x0; /* clear LSW */

A1G = 0x0; /* clear Guard bits */

break;

 case 0x7: A0_HW = DSP_ALU_DST_HW;

336

A0_LW = 0x0; /* clear LSW */

A0G = 0x0; /* clear Guard bits */

break;

 case 0x8: X0_HW = DSP_ALU_DST_HW;

X0_LW = 0x0; /* clear LSW */

break;

 case 0x9: X1_HW = DSP_ALU_DST;

X1_LW = 0x0; /* clear LSW */

break;

 case 0xa: Y0_HW = DSP_ALU_DST;

Y0_LW = 0x0; /* clear LSW */

break;

 case 0xb: Y1_HW = DSP_ALU_DST;

Y1_LW = 0x0; /* clear LSW */

break;

 case 0xc: M0_HW = DSP_ALU_DST;

M0_LW = 0x0; /* clear LSW */

break;

 case 0xe: M1_HW = DSP_ALU_DST;

M1_LW = 0x0; /* clear LSW */

break;

 default: printf("\nERROR:Illegal DSP Instruction");
break;

}

carry_bit = 0x0;

negative_bit = DSP_ALU_DST_MSB;

zero_bit = (DSP_ALU_DST_HW==0);

overflow_bit = 0x0;

/* DSR register update */

logical_dc_bit();

 }

 else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

/* ALU Destination assignment */

switch (zzzz) { /* Dz Operand selection bit (zzzz) */

 case 0x5: A1_HW = DSP_ALU_DST_HW;

A1_LW = 0x0; /* clear LSW */

337

A1G = 0x0; /* clear Guard bits */

break;

 case 0x7: A0_HW = DSP_ALU_DST_HW;

A0_LW = 0x0; /* clear LSW */

A0G = 0x0; /* clear Guard bits */

break;

 case 0x8: X0_HW = DSP_ALU_DST_HW;

X0_LW = 0x0; /* clear LSW */

break;

 case 0x9: X1_HW = DSP_ALU_DST;

X1_LW = 0x0; /* clear LSW */

break;

 case 0xa: Y0_HW = DSP_ALU_DST;

Y0_LW = 0x0; /* clear LSW */

break;

 case 0xb: Y1_HW = DSP_ALU_DST;

Y1_LW = 0x0; /* clear LSW */

break;

 case 0xc: M0_HW = DSP_ALU_DST;

M0_LW = 0x0; /* clear LSW */

break;

 case 0xe: M1_HW = DSP_ALU_DST;

M1_LW = 0x0; /* clear LSW */

break;

 default: printf("\nERROR:Illegal DSP Instruction");
break;

 }

}

}

Example:

POR X0,Y0,A0 NOPX NOPY ;Before execution: X0=H'33333333, Y0=H'55555555

A0=H'123456789A

;After execution: X0=H'33333333, Y0=H'55555555

A0=H'127777789A

In case of unconditional execution, the DC bit is updated
depending on the state of CS [2:0].

338

6.3.16 PRND (Rounding): DSP Arithmetic Operation Instruction

Applicable
Instructions

Format Abstract Code Cycle DC Bit SH-1 SH-2
SH-
DSP

PRND
Sx,Dz

Sx + H'00008000→Dz

clear LSW of Dz

111110**********

10011000xx00zzzz

1 Update — —

PRND
Sy,Dz

Sy + H'00008000→Dz

clear LSW of Dz

111110**********

1011100000yyzzzz

1 Update — —

Description: Does rounding. Adds the immediate data H'00008000 to the contents of the Sx and
Sy operands, stores the result in the upper word of the Dz operand, and clears the bottom word of
Dz with zeros.

The DC bit of the DSR register is updated according to the specifications for the CS bits. The N,
Z, V, and GT bits of the DSR register are also updated.

Operation:

/* Case1 : PRND Sx,Dz */

/* Case2 : PRND Sy,Dz */

{

unsigned char carry_bit, borrow_bit, negative_bit, zero_bit, overflow_bit;

/* ALU Sources assignment */

DSP_ALU_SRC2 = 0x00008000;

DSP_ALU_SRC2G= 0x0;

if (Case1) { /* Sx + H'00008000 → Dz; clr Dz LW */

 switch (xx) { /* Sx Operand selection bit (xx) */

 case 0x0: DSP_ALU_SRC1 = X0;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else DSP_ALU_SRC1G = 0x0;

break;

 case 0x1: DSP_ALU_SRC1 = X1;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else DSP_ALU_SRC1G = 0x0;

break;

 case 0x2: DSP_ALU_SRC1 = A0;

339

DSP_ALU_SRC1G = A0G;

break;

 case 0x3: DSP_ALU_SRC1 = A1;

DSP_ALU_SRC1G = A1G;

break;

 }

}

else { /* Sy + H'00008000 → Dz; clr Dz LW */

 switch (yy) { /* Sy Operand selection bit (yy) */

 case 0x0: DSP_ALU_SRC1 = Y0;

break;

 case 0x1: DSP_ALU_SRC1 = Y1;

break;

 case 0x2: DSP_ALU_SRC1 = M0;

break;

 case 0x3: DSP_ALU_SRC1 = M1;

break;

 }

 if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

 else DSP_ALU_SRC1G = 0x0;

}

DSP_ALU_DST = (DSP_ALU_SRC1 + DSP_ALU_SRC2) & 0xFFFF0000;

carry_bit = ((DSP_ALU_SRC1_MSB | DSP_ALU_SRC2_MSB) & !DSP_ALU_DST_MSB)
 |(DSP_ALU_SRC1_MSB & DSP_ALU_SRC2_MSB);

DSP_ALU_DSTG_LSB8 = DSP_ALU_SRC1G_LSB8 + DSP_ALU_SRC2G_LSB8 + carry_bit;

 overflow_bit= PLUS_OP_G_OV || !(POS_NOT_OV || NEG_NOT_OV);

overflow_protection();

/* ALU Destination assignment */

switch (zzzz) { /* Dz Operand selection bit (zzzz) */

 case 0x5: A1_HW = DSP_ALU_DST_HW;

A1_LW = 0x0; /* clear LSW */

A1G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A1G = A1G | 0xFFFFFF00;

break;

 case 0x7: A0_HW = DSP_ALU_DST_HW;

A0_LW = 0x0; /* clear LSW */

340

A0G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A0G = A0G | 0xFFFFFF00;

break;

 case 0x8: X0_HW = DSP_ALU_DST_HW;

X0_LW = 0x0; /* clear LSW */

break;

 case 0x9: X1_HW = DSP_ALU_DST_HW;

X1_LW = 0x0; /* clear LSW */

break;

 case 0xa: Y0_HW = DSP_ALU_DST_HW;

Y0_LW = 0x0; /* clear LSW */

break;

 case 0xb: Y1_HW = DSP_ALU_DST_HW;

Y1_LW = 0x0; /* clear LSW */

break;

 case 0xc: M0_HW = DSP_ALU_DST_HW;

M0_LW = 0x0; /* clear LSW */

break;

 case 0xe: M1_HW = DSP_ALU_DST_HW;

M1_LW = 0x0; /* clear LSW */

break;

 default: printf("\nERROR:Illegal DSP Instruction");
break;

}

negative_bit = DSP_ALU_DSTG_BIT7;

zero_bit = (DSP_ALU_DST_HW==0) & (DSP_ALU_DSTG_LSB8==0);

/* DSR register update */

plus_dc_bit();

}

341

Example:

PRND X0,M0 NOPX NOPY ;Before execution: X0=H'0052330F, M0=H'12345678

; After execution: X0=H'0052330F, M0=H'00520000

PRND X1,X1 NOPX NOPY ;Before execution: X1=H'FC34C087

;After execution: X1=H'FC350000

DC bit is updated depending on the state of CS [2:0].

342

6.3.17 [if cc] PSHA (Shift Arithmetically with Condition): DSP Arithmetic Shift

Instruction

Applicable
Instructions

Format Abstract Code Cycle DC Bit SH-1 SH-2
SH-
DSP

PSHA
Sx,Sy,Dz

if Sy> = 0, Sx<<Sy→Dz

if Sy<0, Sx>>Sy–>Dz

111110**********

10010001xxyyzzzz

1 Update — —

DCT PSHA
Sx,Sy,Dz

if DC = 1 & Sy> = 0,

Sx<<Sy→Dz

if DC = 1 & Sy<0,

Sx>>Sy→Dz

if DC = 0, nop

111110**********

10010010xxyyzzzz

1 Update — —

DCF PSHA
Sx,Sy,Dz

if DC = 0 & Sy> = 0,

Sx<<Sy–>Dz

if DC = 0 & Sy<0,

Sx>>Sy→Dz

if DC = 1, nop

111110**********

10010011xxyyzzzz

1 — — —

PSHA
#imm,Dz

if imm> = 0,

Dz<<imm→Dz

if imm<0, Dz>>imm→Dz

111110**********

00010iiiiiiizzzz

1 — — —

Description: Arithmetically shifts the contents of the Sx or Dz operand and stores the result in the
Dz operand. The amount of the shift is specified by the Sy operand or the immediate value imm
operand. When the shift amount is positive, it shifts left. When the shift amount is negative, it
shifts right. When conditions are specified for DCT and DCF, the instruction is executed when
those conditions are TRUE. When they are FALSE, the instruction is not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated. If
conditions are specified, the DC, N, Z, V, and GT bits are not updated even is the conditions were
true and the instruction was executed.

343

Operation:

/* PSHA Sx,Sy,Dz */

<When register operand is used>

{

unsigned char carry_bit, negative_bit, zero_bit, overflow_bit;

/* ALU Sources assignment */

switch (xx) { /* Sx Operand selection bit (xx) */

case 0x0: DSP_ALU_SRC1 = X0;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else DSP_ALU_SRC1G = 0x0;

break;

case 0x1: DSP_ALU_SRC1 = X1;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else DSP_ALU_SRC1G = 0x0;

break;

case 0x2: DSP_ALU_SRC1 = A0;

DSP_ALU_SRC1G = A0G;

break;

case 0x3: DSP_ALU_SRC1 = A1;

DSP_ALU_SRC1G = A1G;

break;

}

switch (yy) { /* Sy Operand selection bit (yy) */

case 0x0: DSP_ALU_SRC2 = Y0 & 0x007F0000;

break;

case 0x1: DSP_ALU_SRC2 = Y1 & 0x007F0000;

break;

case 0x2: DSP_ALU_SRC2 = M0 & 0x007F0000;

break;

case 0x3: DSP_ALU_SRC2 = M1 & 0x007F0000;

break;

}

if (DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G = 0xff;

else DSP_ALU_SRC2G = 0x0;

if((DSP_ALU_SRC2_HW & 0x0040)==0) { /* Left Shift 0<=cnt<=32 */

344

 char cnt = (DSP_ALU_SRC2_HW & 0x003F);

 if(cnt > 32) {

 printf("\nPSHA Sz,Sy,Dz \nError! Shift %2X exceed range.\n",cnt);

 exit();

 }

 DSP_ALU_DST = DSP_ALU_SRC1 << cnt;

 DSP_ALU_DSTG = ((DSP_ALU_SRC1G << cnt) |

 (DSP_ALU_SRC1 >> (32-cnt))) & 0x000000FF;

 carry_bit = ((DSP_ALU_DSTG & 0x00000001)==0x1);

}

else { /* Right Shift 0< cnt <=32 */

 char cnt = ((~DSP_ALU_SRC2_HW & 0x003F)+1);

 if(cnt > 32) {

 printf("\nPSHA Sz,Sy,Dz \nError! shift -%2X exceed range.\n",cnt);

 exit();

 }

 if((cnt>8) && DSP_ALU_SRC1G_BIT7) { /* MSB copy */

 DSP_ALU_DST=((DSP_ALU_SRC1>>8) | (DSP_ALU_SRC1G<<(32-8)));

 DSP_ALU_DST=(long) DSP_ALU_DST >> (cnt-8);

 }

 else {

 DSP_ALU_DST=((DSP_ALU_SRC1>>cnt)|(DSP_ALU_SRC1G<<(32-cnt)));

 }

 DSP_ALU_DSTG_LSB8 = (char) DSP_ALU_SRC1G_LSB8 >> cnt-- ;

 carry_bit = (((DSP_ALU_SRC1 >> cnt) & 0x00000001)==0x1);

}

overflow_bit = !(POS_NOT_OV || NEG_NOT_OV);

overflow_protection();

if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

/* ALU Destination assignment */

 switch (zzzz) { /* Dz Operand selection bit (zzzz) */

 case 0x5: A1 = DSP_ALU_DST;

A1G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A1G = A1G | 0xFFFFFF00;

break;

 case 0x7: A0 = DSP_ALU_DST;

345

A0G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A0G = A0G | 0xFFFFFF00;

break;

 case 0x8: X0 = DSP_ALU_DST;

break;

 case 0x9: X1 = DSP_ALU_DST;

break;

 case 0xa: Y0 = DSP_ALU_DST;

break;

 case 0xb: Y1 = DSP_ALU_DST;

break;

 case 0xc: M0 = DSP_ALU_DST;

break;

 case 0xe: M1 = DSP_ALU_DST;

break;

 default: printf("\nERROR:Illegal DSP Instruction");
break;

 }

negative_bit = DSP_ALU_DSTG_BIT7;

zero_bit = (DSP_ALU_DST==0) & (DSP_ALU_DSTG_LSB8==0);

/* DSR register update */

shift_dc_bit();

}

else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

/* ALU Destination assignment */

 switch (zzzz) { /* Dz Operand selection bit (zzzz) */

 case 0x5: A1 = DSP_ALU_DST;

A1G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A1G = A1G | 0xFFFFFF00;

break;

 case 0x7: A0 = DSP_ALU_DST;

A0G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A0G = A0G | 0xFFFFFF00;

break;

 case 0x8: X0 = DSP_ALU_DST;

break;

346

 case 0x9: X1 = DSP_ALU_DST;

break;

 case 0xa: Y0 = DSP_ALU_DST;

break;

 case 0xb: Y1 = DSP_ALU_DST;

break;

 case 0xc: M0 = DSP_ALU_DST;

break;

 case 0xe: M1 = DSP_ALU_DST;

break;

 default: printf("\nERROR:Illegal DSPInstruction");
break;

 }

}

}

/* PSHA #Imm,Dz */

<When register operand is used>

{

unsigned char carry_bit, negative_bit, zero_bit, overflow_bit;

unsigned short tmp_imm;

/* ALU Sources assignment */

 switch (zzzz) { /* Dz Operand selection bit (zzzz) */

 case 0x5: DSP_ALU_SRC1 = A1;

DSP_ALU_SRC1G = A1G;

break;

 case 0x7: DSP_ALU_SRC1 = A0;

DSP_ALU_SRC1G = A1G;

break;

 case 0x8: DSP_ALU_SRC1 = X0;

break;

 case 0x9: DSP_ALU_SRC1 = X1;

break;

 case 0xa: DSP_ALU_SRC1 = Y0;

break;

 case 0xb: DSP_ALU_SRC1 = Y1;

break;

 case 0xc: DSP_ALU_SRC1 = M0;

347

break;

 case 0xe: DSP_ALU_SRC1 = M1;

break;

 default: printf("\nERROR:Illegal DSP Instruction");
break;

 }

 if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

 else DSP_ALU_SRC1G = 0x0;

tmp_imm = (#Imm) & 0x0000007F); /* Extract 7bit Immidiate Data */

if((tmp_imm & 0x0040)==0) { /* Left Shift 0<= cnt <=32 */

 char cnt = (tmp_imm & 0x003F);

 if(cnt > 32) {

 printf("\nPSHA Dz,#Imm,Dz \nError! #Imm=%7X exceed range\n",tmp_imm);

 exit();

 }

 DSP_ALU_DST = DSP_ALU_SRC1 << cnt;

 DSP_ALU_DSTG = ((DSP_ALU_SRC1G << cnt)

 |(DSP_ALU_SRC1 >> (32-cnt))) & 0x000000FF;

 carry_bit = ((DSP_ALU_DSTG & 0x00000001)==0x1);

}

else { /* Right Shift 0< cnt <=32 */

 char cnt = ((~tmp_imm & 0x003F)+1);

 if(cnt > 32) {

 printf("\nPSHL Dz,#Imm,Dz \nError! #Imm=%7X exceed range\n",tmp_imm);

 exit();

 }

 if((cnt>8) && DSP_ALU_SRC1G_BIT7) { /* MSB copy */

 DSP_ALU_DST=((DSP_ALU_SRC1>>8) | (DSP_ALU_SRC1G<<(32-8)));

 DSP_ALU_DST=(long) DSP_ALU_DST >> (cnt-8);

 }

 else {

 DSP_ALU_DST=((DSP_ALU_SRC1>>cnt)|(DSP_ALU_SRC1G<<(32-cnt)));

 }

 DSP_ALU_DSTG_LSB8 = (char) DSP_ALU_SRC1G_LSB8 >> cnt--;

 carry_bit = (((DSP_ALU_SRC1 >> cnt) & 0x00000001)==0x1);

}

348

 overflow_bit = !(POS_NOT_OV || NEG_NOT_OV);

overflow_protection();

{ /* unconditional operation */

/* ALU Destination assignment */

 switch (zzzz) { /* Dz Operand selection bit (zzzz) */

 case 0x5: A1 = DSP_ALU_DST;

A1G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A1G = A1G | 0xFFFFFF00;

break;

 case 0x7: A0 = DSP_ALU_DST;

A0G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A0G = A0G | 0xFFFFFF00;

break;

 case 0x8: X0 = DSP_ALU_DST;

break;

 case 0x9: X1 = DSP_ALU_DST;

break;

 case 0xa: Y0 = DSP_ALU_DST;

break;

 case 0xb: Y1 = DSP_ALU_DST;

break;

 case 0xc: M0 = DSP_ALU_DST;

break;

 case 0xe: M1 = DSP_ALU_DST;

break;

 default: printf("\nERROR:Illegal DSP Instruction");
break;

 }

negative_bit = DSP_ALU_DSTG_BIT7;

zero_bit = (DSP_ALU_DST==0) & (DSP_ALU_DSTG_LSB8==0);

/* DSR register update */

shift_dc_bit();

}

}

349

Examples:

PSHA X0,Y0,A0 NOPX NOPY ;Before execution: X0=H'88888888, Y0=H'00020000,
A0=H'123456789A

;After execution: X0=H'88888888, Y0=H'00020000,
A0=H'FE22222222

PSHA X0,Y0,X0 NOPX NOPY ;Before execution: X0=H'33333333, Y0=H'FFFF0000

;After execution: X0=H'19999999, Y0=H'FFFE0000

PSHA #-5,A1 NOPX NOPY ;Before execution: A1=H'AAAAAAAAAA

;After execution: A1=H'FD55555555

In case of unconditional execution, the DC bit is updated
depending on the state of CS [2:0].

350

6.3.18 [if cc] PSHL (Shift Logically with Condition): DSP Logical Shift Instruction

Applicable
Instructions

Format Abstract Code Cycle DC Bit SH-1 SH-2
SH-
DSP

PSHL
Sx,Sy,Dz

If Sy≥0, Sx<<Sy → Dz,
clear LSW of Dz; if Sy<0,
Sx>>Sy → Dz,
clear LSW of Dz

111110**********

10000001xxyyzzzz

1 Update — —

DCT PSHL
Sx,Sy,Dz

If DC=1 & Sy≥0, Sx<<Sy →
Dz, clear LSW of Dz;
 if DC=1 & Sy<0, Sx>>Sy →
Dz, clear LSW of Dz;
if DC=0, nop

111110**********

10000010xxyyzzzz

1 — — —

DCF PSHL
Sx,Sy,Dz

If DC=0 & Sy≥0, Sx<<Sy →
Dz, clear LSW of Dz; if DC=0
& Sy<0, Sx>>Sy → Dz, clear
LSW of Dz; if DC=1, nop

111110**********

10000011xxyyzzzz

1 — — —

PSHL
#imm,Dz

If imm≥0, Dz<<imm → Dz,
clear LSW of Dz; if imm<0,
Dz>>imm → Dz,
clear LSW of Dz

111110**********

00000iiiiiiizzzz

1 Update — —

Description: Logically shifts the top word contents of the Sx or Dz operand, stores the result in
the top word of the Dz operand, and clears the bottom word of the Dx operand with zeros. When
Dz is a register that has guard bits, the guard bits are also zeroed. The amount of the shift is
specified by the Sy operand or the immediate value imm operand. When the shift amount is
positive, it shifts left. When the shift amount is negative, it shifts right. When conditions are
specified for DCT and DCF, the instruction is executed when those conditions are TRUE. When
they are FALSE, the instruction is not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated. If
conditions are specified, the DC, N, Z, V, and GT bits are not updated even is the conditions were
true and the instruction was executed.

351

Operation:

<When register operand is used>

/* PSHL Sx,Sy,Dz */

unsigned char carry_bit, negative_bit, zero_bit, overflow_bit;

/* ALU Sources assignment */

switch (xx) { /* Sx Operand selection bit (xx) */

case 0x0: DSP_ALU_SRC1 = X0;

break;

case 0x1: DSP_ALU_SRC1 = X1;

break;

case 0x2: DSP_ALU_SRC1 = A0;

break;

case 0x3: DSP_ALU_SRC1 = A1;

break;

}

switch (yy) { /* Sy Operand selection bit (yy) */

case 0x0: DSP_ALU_SRC2 = Y0 & 0x003F0000;

break;

case 0x1: DSP_ALU_SRC2 = Y1 & 0x003F0000;

break;

case 0x2: DSP_ALU_SRC2 = M0 & 0x003F0000;

break;

case 0x3: DSP_ALU_SRC2 = M1 & 0x003F0000;

break;

}

if((DSP_ALU_SRC2_HW & 0x0020)==0) { /* Left Shift 0<=cnt<=16 */

 char cnt = (DSP_ALU_SRC2_HW & 0x001F);

 if(cnt > 16) {

 printf("PSHL Sx,Sy,Dz \nError! Shift %2X exceed range\n",cnt);

 exit();

 }

 DSP_ALU_DST_HW = DSP_ALU_SRC1_HW << cnt--;

 carry_bit = (((DSP_ALU_SRC1_HW << cnt) & 0x8000)==0x8000);

}

else { /* Right Shift 0<cnt<=16 */

 char cnt = ((~DSP_ALU_SRC2_HW & 0x000F)+1);

352

 if(cnt > 16) {

 printf("PSHL Sx,Sy,Dz \nError! Shift -%2X exceed range\n",cnt);

 exit();

 }

 DSP_ALU_DST_HW = DSP_ALU_SRC1_HW >> cnt--;

 carry_bit = (((DSP_ALU_SRC1_HW >> cnt) & 0x0001)==0x1);

}

if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

/* ALU Destination assignment */

switch (zzzz) { /* Dz Operand selection bit (zzzz) */

 case 0x5: A1_HW = DSP_ALU_DST_HW;

A1_LW = 0x0; /* clear LSW */

A1G = 0x0; /* clear Guard bits */

break;

 case 0x7: A0_HW = DSP_ALU_DST_HW;

A0_LW = 0x0; /* clear LSW */

A0G = 0x0; /* clear Guard bits */

break;

 case 0x8: X0_HW = DSP_ALU_DST_HW;

X0_LW = 0x0; /* clear LSW */

break;

 case 0x9: X1_HW = DSP_ALU_DST;

X1_LW = 0x0; /* clear LSW */

break;

 case 0xa: Y0_HW = DSP_ALU_DST;

Y0_LW = 0x0; /* clear LSW */

break;

 case 0xb: Y1_HW = DSP_ALU_DST;

Y1_LW = 0x0; /* clear LSW */

break;

 case 0xc: M0_HW = DSP_ALU_DST;

M0_LW = 0x0; /* clear LSW */

break;

 case 0xe: M1_HW = DSP_ALU_DST;

M1_LW = 0x0; /* clear LSW */

break;

353

 default: printf("\nERROR:Illegal DSP Instruction");
break;

}

carry_bit = 0x0;

negative_bit = DSP_ALU_DST_MSB;

zero_bit = (DSP_ALU_DST_HW==0);

overflow_bit = 0x0;

/* DSR register update */

shift_dc_bit();

}

else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

/* ALU Destination assignment */

 switch (zzzz) { /* Dz Operand selection bit (zzzz) */

 case 0x5: A1_HW = DSP_ALU_DST_HW;

A1_LW = 0x0; /* clear LSW */

A1G = 0x0; /* clear Guard bits */

break;

 case 0x7: A0_HW = DSP_ALU_DST_HW;

A0_LW = 0x0; /* clear LSW */

A0G = 0x0; /* clear Guard bits */

break;

 case 0x8: X0_HW = DSP_ALU_DST_HW;

X0_LW = 0x0; /* clear LSW */

break;

 case 0x9: X1_HW = DSP_ALU_DST;

X1_LW = 0x0; /* clear LSW */

break;

 case 0xa: Y0_HW = DSP_ALU_DST;

Y0_LW = 0x0; /* clear LSW */

break;

 case 0xb: Y1_HW = DSP_ALU_DST;

Y1_LW = 0x0; /* clear LSW */

break;

 case 0xc: M0_HW = DSP_ALU_DST;

M0_LW = 0x0; /* clear LSW */

354

break;

 case 0xe: M1_HW = DSP_ALU_DST;

M1_LW = 0x0; /* clear LSW */

break;

 default: printf("\nERROR:Illegal DSP Instruction");
break;

 }

}

}

/* PSHL #Imm,Dz */

<When immediate operand is used>

{

unsigned char carry_bit, negative_bit, zero_bit, overflow_bit;

unsigned short tmp_imm;

/* ALU Sources assignment */

switch (xx) { /* Sx Operand selection bit (xx) */

case 0x0: DSP_ALU_SRC1 = X0;

break;

case 0x1: DSP_ALU_SRC1 = X1;

break;

case 0x2: DSP_ALU_SRC1 = A0;

break;

case 0x3: DSP_ALU_SRC1 = A1;

break;

}

switch (yy) { /* Sy Operand selection bit (yy) */

case 0x0: DSP_ALU_SRC2 = Y0 & 0x003F0000;

break;

case 0x1: DSP_ALU_SRC2 = Y1 & 0x003F0000;

break;

case 0x2: DSP_ALU_SRC2 = M0 & 0x003F0000;

break;

case 0x3: DSP_ALU_SRC2 = M1 & 0x003F0000;

break;

}

tmp_imm = (#Imm) & 0x0000007F); /* Extract 7bit Immediate Data */

355

if((tmp_imm & 0x0020)==0) { /* Left Shift 0<= cnt <16 */

 char cnt = (tmp_imm & 0x001F);

 if(cnt > 16) {

 printf("PSHL Dz,#Imm,Dz \nError! #Imm=%6X exceed range\n",tmp_imm);

 exit();

 }

 DSP_ALU_DST_HW = DSP_ALU_SRC1_HW << cnt--;

 carry_bit = (((DSP_ALU_SRC1_HW << cnt) & 0x8000)==0x8000);

}

else { /* Right Shift 0< cnt <=16 */

 char cnt = ((~tmp_imm & 0x001F)+1);

 if(cnt > 16) {

 printf("PSHL Dz,#Imm,Dz \nError! #Imm=%6X exceed range\n",tmp_imm);

 exit();

 }

 DSP_ALU_DST_HW = DSP_ALU_SRC1_HW >> cnt--;

 carry_bit = (((DSP_ALU_SRC1_HW >> cnt) & 0x0001)==0x1);

}

{ /* unconditional operation */

/* ALU Destination assignment */

 switch (zzzz) { /* Dz Operand selection bit (zzzz) */

 case 0x5: A1_HW = DSP_ALU_DST_HW;

A1_LW = 0x0; /* clear LSW */

A1G = 0x0; /* clear Guard bits */

break;

 case 0x7: A0_HW = DSP_ALU_DST_HW;

A0_LW = 0x0; /* clear LSW */

A0G = 0x0; /* clear Guard bits */

break;

 case 0x8: X0_HW = DSP_ALU_DST_HW;

X0_LW = 0x0; /* clear LSW */

break;

 case 0x9: X1_HW = DSP_ALU_DST;

X1_LW = 0x0; /* clear LSW */

break;

 case 0xa: Y0_HW = DSP_ALU_DST;

356

Y0_LW = 0x0; /* clear LSW */

break;

 case 0xb: Y1_HW = DSP_ALU_DST;

Y1_LW = 0x0; /* clear LSW */

break;

 case 0xc: M0_HW = DSP_ALU_DST;

M0_LW = 0x0; /* clear LSW */

break;

 case 0xe: M1_HW = DSP_ALU_DST;

M1_LW = 0x0; /* clear LSW */

break;

 default: printf("\nERROR:Illegal DSPInstruction");
break;

 }

carry_bit = 0x0;

negative_bit = DSP_ALU_DST_MSB;

zero_bit = (DSP_ALU_DST_HW==0);

overflow_bit = 0x0;

/* DSR register update */

shift_dc_bit();

}

}

Examples:

PSHL X0,Y0,A0 NOPX NOPY ;Before execution: X0=H'22222222, Y0=H'00030000,
A0=H'123456789A

;After execution: X0=H'22222222, Y0=H'00030000,
A0=H'0011100000

PSHL X1,Y1,X1 NOPX NOPY ;Before execution: X1=H'CCCCCCCC, Y1=H'FFFE0000

;After execution: X1=H'33330000, Y1=H'FFFE0000

PSHL #7,A1 NOPX NOPY ;Before execution: A1=H'55555555

;After execution: A1=H'AA800000

In case of unconditional execution, the DC bit is updated
depending on the state of CS [2:0].

357

6.3.19 [if cc] PSTS (Store System Register): DSP System Control Instruction

Applicable
Instructions

Format Abstract Code Cycle
DC
Bit SH-1 SH-2

SH-
DSP

PSTS
MACH,Dz

MACH→Dz 111110**********

110011010000zzzz

1 — — —

PSTS
MACL,Dz

MACL→Dz 111110**********

110111010000zzzz

1 — — —

DCT PSTS
MACH,Dz

if DC = 1, MACH→Dz

if 0, nop

111110**********

110011100000zzzz

1 — — —

DCT PSTS
MACL,Dz

if DC = 1, MACL→Dz

if 0, nop

111110**********

110111100000zzzz

1 — — —

DCF PSTS
MACH,Dz

if DC = 0, MACH→Dz

if 1, nop

111110**********

110011110000zzzz

1 — — —

DCF PSTS
MACL,Dz

if DC = 0, MACL→Dz

if 1, nop

111110**********

110111110000zzzz

1 — — —

Description: Stores the contents of the MACH and MACL registers in the Dz operand. When
conditions are specified for DCT and DCF, the instruction is executed when those conditions are
TRUE. When they are FALSE, the instruction is not executed. The DC, N, Z, V, and GT bits of
the DSR register are not updated.

358

Note: Though PSTS, MOVX and MOVY can be designated in parallel, their execution may take
2 cycles.

Operation:

/* Case1 : PSTS MACH,Dz */

/* Case2 : PSTS MACL,Dz */

{

 if(CASE1){ /* MACH → Dz */

 if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

/* ALU Destination assignment */

switch (zzzz) { /* Dz Operand selection bit (zzzz) */

 case 0x5: A1 = MACH;

A1G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A1G = A1G | 0xFFFFFF00;

break;

 case 0x7: A0 = MACH;

A0G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A0G = A0G | 0xFFFFFF00;

break;

 case 0x8: X0 = MACH;

break;

 case 0x9: X1 = MACH;

break;

 case 0xa: Y0 = MACH;

break;

 case 0xb: Y1 = MACH;

break;

 case 0xc: M0 = MACH;

break;

 case 0xe: M1 = MACH;

break;

 default: printf("\nERROR:Illegal DSP Instruction");
break;

}

 }

 else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

359

/* ALU Destination assignment */

switch (zzzz) { /* Dz Operand selection bit (zzzz) */

 case 0x5: A1 = MACH;

A1G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A1G = A1G | 0xFFFFFF00;

break;

 case 0x7: A0 = MACH;

A0G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A0G = A0G | 0xFFFFFF00;

break;

 case 0x8: X0 = MACH;

break;

 case 0x9: X1 = MACH;

break;

 case 0xa: Y0 = MACH;

break;

 case 0xb: Y1 = MACH;

break;

 case 0xc: M0 = MACH;

break;

 case 0xe: M1 = MACH;

break;

 default: printf("\nERROR:Illegal DSP Instruction");
break;

}

 }

 else{ /* MACL → Dz */

 if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

/* ALU Destination assignment */

switch (zzzz) { /* Dz Operand selection bit (zzzz) */

 case 0x5: A1 = MACL;

A1G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A1G = A1G | 0xFFFFFF00;

break;

 case 0x7: A0 = MACL;

A0G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A0G = A0G | 0xFFFFFF00;

360

break;

 case 0x8: X0 = MACL;

break;

 case 0x9: X1 = MACL;

break;

 case 0xa: Y0 = MACL;

break;

 case 0xb: Y1 = MACL;

break;

 case 0xc: M0 = MACL;

break;

 case 0xe: M1 = MACL;

break;

 default: printf("\nERROR:Illegal DSP Instruction");
break;

}

}

 else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

/* ALU Destination assignment */

switch (zzzz) { /* Dz Operand selection bit (zzzz) */

 case 0x5: A1 = MACL;

A1G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A1G = A1G | 0xFFFFFF00;

break;

 case 0x7: A0 = MACL;

A0G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A0G = A0G | 0xFFFFFF00;

break;

 case 0x8: X0 = MACL;

break;

 case 0x9: X1 = MACL;

break;

 case 0xa: Y0 = MACL;

break;

 case 0xb: Y1 = MACL;

break;

 case 0xc: M0 = MACL;

361

break;

 case 0xe: M1 = MACL;

break;

 default: printf("\nERROR:Illegal DSP Instruction");
break;

 }

}

 }

}

Examples:

PSTS MACH,A0 NOPX NOPY ;Before execution: A0=H'123456789A, MACH=H'88888888

;After execution: A0=H'FF88888888, MACH=H'88888888

362

6.3.20 [if cc]PSUB (Subtract with Condition): DSP Arithmetic Operation Instruction

Applicable
Instructions

Format Abstract Code Cycle DC Bit SH-1 SH-2
SH-
DSP

PSUB Sx,Sy,Dz Sx – Sy→Dz 111110**********

10100001xxyyzzzz

1 Update — —

DCT PSUB
Sx,Sy,Dz

if DC = 1,

Sx – Sy→Dz if 0, nop

111110**********

10100010xxyyzzzz

1 — — —

DCF PSUB
Sx,Sy,Dz

if DC = 0,

Sx – Sy→Dz if 1, nop

111110**********

10100011xxyyzzzz

1 — — —

Description: Subtracts the contents of the Sy operand from the Sx operand and stores the result in
the Dz operand. When conditions are specified for DCT and DCF, the instruction is executed
when those conditions are TRUE. When they are FALSE, the instruction is not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are updated. If
conditions are specified, the DC, N, Z, V, and GT bits are not updated even is the conditions were
true and the instruction was executed.

363

Operation:

/* PSUB Sx,Sy,Dz */

{

unsigned char carry_bit, borrow_bit, negative_bit, zero_bit, overflow_bit;

/* ALU Sources assignment */

switch (xx) { /* Sx Operand selection bit (xx) */

case 0x0: DSP_ALU_SRC1 = X0;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else DSP_ALU_SRC1G = 0x0;

break;

case 0x1: DSP_ALU_SRC1 = X1;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else DSP_ALU_SRC1G = 0x0;

break;

case 0x2: DSP_ALU_SRC1 = A0;

DSP_ALU_SRC1G = A0G;

break;

case 0x3: DSP_ALU_SRC1 = A1;

DSP_ALU_SRC1G = A1G;

break;

}

switch (yy) { /* Sy Operand selection bit (yy) */

case 0x0: DSP_ALU_SRC2 = Y0;

break;

case 0x1: DSP_ALU_SRC2 = Y1;

break;

case 0x2: DSP_ALU_SRC2 = M0;

break;

case 0x3: DSP_ALU_SRC2 = M1;

break;

}

if (DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G = 0xff;

else DSP_ALU_SRC2G = 0x0;

DSP_ALU_DST = DSP_ALU_SRC1 - DSP_ALU_SRC2;

carry_bit =((DSP_ALU_SRC1_MSB | !DSP_ALU_SRC2_MSB) && !DSP_ALU_DST_MSB) |

364

(DSP_ALU_SRC1_MSB & !DSP_ALU_SRC2_MSB);

borrow_bit = !carry_bit;

DSP_ALU_DSTG_LSB8 = DSP_ALU_SRC1G_LSB8 - DSP_ALU_SRC2G_LSB8 - borrow_bit;

overflow_bit= MINUS_OP_G_OV || !(POS_NOT_OV || NEG_NOT_OV);

overflow_protection();

 if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

/* ALU Destination assignment */

switch (zzzz) { /* Dz Operand selection bit (zzzz) */

 case 0x5: A1 = DSP_ALU_DST;

A1G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A1G = A1G | 0xFFFFFF00;

break;

 case 0x7: A0 = DSP_ALU_DST;

A0G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A0G = A0G | 0xFFFFFF00;

break;

 case 0x8: X0 = DSP_ALU_DST;

break;

 case 0x9: X1 = DSP_ALU_DST;

break;

 case 0xa: Y0 = DSP_ALU_DST;

break;

 case 0xb: Y1 = DSP_ALU_DST;

break;

 case 0xc: M0 = DSP_ALU_DST;

break;

 case 0xe: M1 = DSP_ALU_DST;

break;

 default: printf("\nERROR:Illegal DSP Instruction");
break;

}

negative_bit = DSP_ALU_DSTG_BIT7;

zero_bit = (DSP_ALU_DST==0) & (DSP_ALU_DSTG_LSB8==0);

/* DSR register update */

minus_dc_bit();

365

 }

 else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

/* ALU Destination assignment */

switch (zzzz) { /* Dz Operand selection bit (zzzz) */

 case 0x5: A1 = DSP_ALU_DST;

A1G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A1G = A1G | 0xFFFFFF00;

break;

 case 0x7: A0 = DSP_ALU_DST;

A0G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A0G = A0G | 0xFFFFFF00;

break;

 case 0x8: X0 = DSP_ALU_DST;

break;

 case 0x9: X1 = DSP_ALU_DST;

break;

 case 0xa: Y0 = DSP_ALU_DST;

break;

 case 0xb: Y1 = DSP_ALU_DST;

break;

 case 0xc: M0 = DSP_ALU_DST;

break;

 case 0xe: M1 = DSP_ALU_DST;

break;

 default: printf("\nERROR:Illegal DSPInstruction");
break;

 }

}

}

366

Examples:

PSUB X0,Y0,A0 NOPX NOPY ;Before execution: X0=H'55555555, Y0=H'33333333,
A0=H'123456789A

;After execution: X0=H'55555555, Y0=H'33333333,
A0=H'0022222222

In case of unconditional execution, the DC bit is updated
depending on the state of CS [2:0].

367

6.3.21 PSUB PMULS (Subtraction & Multiply Signed by Signed): DSP Arithmetic

Operation Instruction

Applicable
Instructions

Format Abstract Code Cycle DC Bit SH-1 SH-2
SH-
DSP

PSUB
Sx,Sy,Du

Sx – Sy→Du 111110********** 1 Update — —

PMULS
Se,Sf,Dg

MSW of Se ×
MSW of Sf→Dg

0110eeffxxyygguu — —

Description: Subtracts the contents of the Sy operand from the Sx operand and stores the result in
the Du operand. The contents of the top word of the Se and Sf operands are multiplied as signed
and the result stored in the Dg operand. These two processes are executed simultaneously in
parallel.

The DC bit of the DSR register is updated according to the results of the ALU operation and the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated
according to the results of the ALU operation.

Operation:

/* PSUB Sx,Sy,Du PMULS Se,Sf,Dg */

{

unsigned char carry_bit, borrow_bit, negative_bit, zero_bit, overflow_bit;

/* Multiplier Sources assignment */

switch (ee) { /* Se Operand selection bit (ee) */

case 0x0: DSP_M_SRC1 = X0_HW;

break;

case 0x1: DSP_M_SRC1 = X1_HW;

break;

case 0x2: DSP_M_SRC1 = Y0_HW;

break;

case 0x3: DSP_M_SRC1 = A1_HW;

break;

}

switch (ff) { /* Sf Operand selection bit (ff) */

case 0x0: DSP_M_SRC2 = Y0_HW;

368

break;

case 0x1: DSP_M_SRC2 = Y1_HW;

break;

case 0x2: DSP_M_SRC2 = X0_HW;

break;

case 0x3: DSP_M_SRC2 = A1_HW;

break;

}

/* ALU Sources assignment */

switch (xx) { /* Sx Operand selection bit (xx) */

case 0x0: DSP_ALU_SRC1 = X0;

if (DSP_ALU_SRC1_MSB)

DSP_ALU_SRC1G_LSB8 = 0xff;

else DSP_ALU_SRC1G_LSB8 = 0x0;

break;

case 0x1: DSP_ALU_SRC1 = X1;

if (DSP_ALU_SRC1_MSB)

DSP_ALU_SRC1G_LSB8 = 0xff;

else DSP_ALU_SRC1G_LSB8 = 0x0;

break;

case 0x2: DSP_ALU_SRC1 = A0;

DSP_ALU_SRC1G = A0G;

break;

case 0x3: DSP_ALU_SRC1 = A1;

DSP_ALU_SRC1G = A1G;

break;

}

switch (yy) { /* Sy Operand selection bit (yy) */

case 0x0: DSP_ALU_SRC2 = Y0;

break;

case 0x1: DSP_ALU_SRC2 = Y1;

break;

case 0x2: DSP_ALU_SRC2 = M0;

break;

case 0x3: DSP_ALU_SRC2 = M1;

break;

}

369

if (DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G_LSB8 = 0xff;

else DSP_ALU_SRC2G_LSB8 = 0x0;

/* Multiplier Operation */

/* PMULS Se, Sf, Dg */

if ((SBIT==1) && (DSP_M_SRC1==0x8000) && (DSP_M_SRC2==0x8000)) {

 DSP_M_DST=0x7fffffff; /* overflow protection */

}

else {

 DSP_M_DST=((long)(short)DSP_M_SRC1*(long)(short)DSP_M_SRC2)<<1;

}

if (DSP_M_DST_MSB) DSP_M_DSTG_LSB8 = 0xff;

else DSP_M_DSTG_LSB8 = 0x0;

switch (gg) { /* Dg Operand selection bit (gg) */

case 0x0: M0 = DSP_M_DST;

break;

case 0x1: M1 = DSP_M_DST;

break;

case 0x2: A0 = DSP_M_DST;

if(DSP_M_DSTG_LSB8==0x0) A0G=0x0;

else A0G=0xffffffff;

break;

case 0x3: A1 = DSP_M_DST;

if(DSP_M_DSTG_LSB8==0x0) A1G=0x0;

else A1G=0xffffffff;

break;

}

/* ALU operation */

DSP_ALU_DST = DSP_ALU_SRC1 - DSP_ALU_SRC2;

carry_bit=((DSP_ALU_SRC1_MSB | !DSP_ALU_SRC2_MSB)&& !DSP_ALU_DST_MSB)|

(DSP_ALU_SRC1_MSB & !DSP_ALU_SRC2_MSB);

borrow_bit = !carry_bit;

DSP_ALU_DSTG_LSB8=DSP_ALU_SRC1G_LSB8 - DSP_ALU_SRC2G_LSB8 - borrow_bit;

overflow_bit= MINUS_OP_G_OV || !(POS_NOT_OV || NEG_NOT_OV);

overflow_protection();

370

switch (uu) { /* Du Operand selection bit (uu) */

case 0x0:

X0 = DSP_ALU_DST;

negative_bit = DSP_ALU_DST_MSB;

zero_bit = (DSP_ALU_DST==0);

break;

case 0x1:

Y0 = DSP_ALU_DST;

negative_bit = DSP_ALU_DST_MSB;

zero_bit = (DSP_ALU_DST==0);

break;

case 0x2:

A0 = DSP_ALU_DST;

A0G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A0G = A0G | 0xFFFFFF00;

negative_bit = DSP_ALU_DSTG_BIT7;

zero_bit = (DSP_ALU_DST==0) & (DSP_ALU_DSTG_LSB8==0);

break;

case 0x3:

A1 = DSP_ALU_DST;

A1G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A1G = A1G | 0xFFFFFF00;

negative_bit = DSP_ALU_DSTG_BIT7;

zero_bit = (DSP_ALU_DST==0) & (DSP_ALU_DSTG_LSB8==0);

break;

}

/* DSR register update */

minus_dc_bit();

}

371

Examples:

PSUB A0,M0,A0 PMULS X0,Y0,
M0 NOPX NOPY ;Before execution: X0=H'00020000, Y0=H'FFFE0000,

M0=H'33333333, A0=H'0022222222

;After execution: X0=H'00020000, Y0=H'FFFE0000,
M0=H'FFFFFFF8, A0=H'55555555

372

6.3.22 PSUBC (Subtraction with Carry): DSP Arithmetic Operation Instruction

Applicable
Instructions

Format Abstract Code Cycle DC Bit SH-1 SH-2
SH-
DSP

PSUBC
Sx,Sy,Dz

Sx – Sy – DC→Dz 111110**********

10100000xxyyzzzz

1 Borrow — —

Description: Subtracts the contents of the Sy operand and the DC bit from the Sx operand and
stores the result in the Dz operand. The DC bit of the DSR register is updated as the borrow flag.
The N, Z, V, and GT bits of the DSR register are also updated.

Note: After the PSUBC instruction is executed, the DC bit is updated as the borrow flag without
regard to the CS bit.

Operation:

/* PSUBC Sx,Sy,Dz */

{

unsigned char carry_bit, borrow_bit, negative_bit, zero_bit, overflow_bit;

/* ALU Sources assignment */

switch (xx) { /* Sx Operand selection bit (xx) */

case 0x0: DSP_ALU_SRC1 = X0;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else DSP_ALU_SRC1G = 0x0;

break;

case 0x1: DSP_ALU_SRC1 = X1;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else DSP_ALU_SRC1G = 0x0;

break;

case 0x2: DSP_ALU_SRC1 = A0;

DSP_ALU_SRC1G = A0G;

break;

case 0x3: DSP_ALU_SRC1 = A1;

DSP_ALU_SRC1G = A1G;

break;

}

373

switch (yy) { /* Sy Operand selection bit (yy) */

case 0x0: DSP_ALU_SRC2 = Y0;

break;

case 0x1: DSP_ALU_SRC2 = Y1;

break;

case 0x2: DSP_ALU_SRC2 = M0;

break;

case 0x3: DSP_ALU_SRC2 = M1;

break;

}

if (DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G = 0xff;

else DSP_ALU_SRC2G = 0x0;

DSP_ALU_DST = DSP_ALU_SRC1 - DSP_ALU_SRC2 - DSPDCBIT;

carry_bit =((DSP_ALU_SRC1_MSB | !DSP_ALU_SRC2_MSB) && !DSP_ALU_DST_MSB)
 | (DSP_ALU_SRC1_MSB & !DSP_ALU_SRC2_MSB);

borrow_bit = !carry_bit;

DSP_ALU_DSTG_LSB8 = DSP_ALU_SRC1G_LSB8 - DSP_ALU_SRC2G_LSB8 - borrow_bit;

overflow_bit= MINUS_OP_G_OV || !(POS_NOT_OV || NEG_NOT_OV);

overflow_protection();

/* ALU Destination assignment */

switch (zzzz) { /* Dz Operand selection bit (zzzz) */

 case 0x5: A1 = DSP_ALU_DST;

A1G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A1G = A1G | 0xFFFFFF00;

break;

 case 0x7: A0 = DSP_ALU_DST;

A0G = DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A0G = A0G | 0xFFFFFF00;

break;

 case 0x8: X0 = DSP_ALU_DST;

break;

 case 0x9: X1 = DSP_ALU_DST;

break;

 case 0xa: Y0 = DSP_ALU_DST;

break;

 case 0xb: Y1 = DSP_ALU_DST;

374

break;

 case 0xc: M0 = DSP_ALU_DST;

break;

 case 0xe: M1 = DSP_ALU_DST;

break;

 default: printf("\nERROR:Illegal DSPInstruction");
break;

}

negative_bit = DSP_ALU_DSTG_BIT7;

zero_bit = (DSP_ALU_DST==0) & (DSP_ALU_DSTG_LSB8==0);

/* DSR register update */

dc_always_borrow();

}

Example:

CS[2:0]=***: Always Carry or Borrow Mode

PSUBC X0,Y0,M0 NOPX NOPY ;Before execution: X0=H'33333333, Y0=H'55555555

M0=H'00 12345678, DC=0

;After execution: X0=H'33333333, Y0=H'55555555

M0=H'FFDDDDDDDE, DC=1

PSUBC X0,Y0,M0 NOPX NOPY ;Before execution: X0=H'33333333, Y0=H'55555555

M0=H'00 12345678, DC=1

;After execution: X0=H'33333333, Y0=H'55555555

M0=H'FFDDDDDDDD, DC=1

375

6.3.23 [if cc] PXOR (Logical Exclusive OR): DSP Logical Operation Instruction

Applicable
Instructions

Format Abstract Code Cycle DC Bit SH-1 SH-2
SH-
DSP

PXOR
Sx,Sy,Dz

Sx ^ Sy→Dz, clear LSW of
Dz

111110**********

10100101xxyyzzzz

1 Update — —

DCT PXOR
Sx,Sy,Dz

if DC = 1, Sx^Sy→Dz, clear
LSW of Dz; if 0, nop

111110**********

10100110xxyyzzzz

1 — — —

DCF PXOR
Sx,Sy,Dz

if DC = 0, Sx^Sy→Dz clear
LSW of Dz; if 1, nop

111110**********

10100111xxyyzzzz

1 — — —

Description: Takes the exclusive OR of the top word of the Sx operand and the top word of the
Sy operand, stores the result in the top word of the Dz operand, and clears the bottom word of Dz
with zeros. When Dz is a register that has guard bits, the guard bits are also zeroed. When
conditions are specified for DCT and DCF, the instruction is executed when those conditions are
TRUE. When they are FALSE, the instruction is not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated. If
conditions are specified, the DC, N, Z, V, and GT bits are not updated even is the conditions were
true and the instruction was executed.

Note: The bottom word of the destination register and the guard bits are ignored when the DC bit
is updated.

376

Operation:

/* PXOR Sx,Sy,Dz */

{

unsigned char carry_bit, negative_bit, zero_bit, overflow_bit;

/* ALU Sources assignment */

switch (xx) { /* Sx Operand selection bit (xx) */

case 0x0: DSP_ALU_SRC1 = X0;

break;

case 0x1: DSP_ALU_SRC1 = X1;

break;

case 0x2: DSP_ALU_SRC1 = A0;

break;

case 0x3: DSP_ALU_SRC1 = A1;

break;

}

switch (yy) { /* Sy Operand selection bit (yy) */

case 0x0: DSP_ALU_SRC2 = Y0;

break;

case 0x1: DSP_ALU_SRC2 = Y1;

break;

case 0x2: DSP_ALU_SRC2 = M0;

break;

case 0x3: DSP_ALU_SRC2 = M1;

break;

}

DSP_ALU_DST_HW = DSP_ALU_SRC1_HW ̂ DSP_ALU_SRC2_HW;

 if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

/* ALU Destination assignment */

switch (zzzz) { /* Dz Operand selection bit (zzzz) */

 case 0x5: A1_HW = DSP_ALU_DST_HW;

A1_LW = 0x0; /* clear LSW */

A1G = 0x0; /* clear Guard bits */

break;

 case 0x7: A0_HW = DSP_ALU_DST_HW;

377

A0_LW = 0x0; /* clear LSW */

A0G = 0x0; /* clear Guard bits */

break;

 case 0x8: X0_HW = DSP_ALU_DST_HW;

X0_LW = 0x0; /* clear LSW */

break;

 case 0x9: X1_HW = DSP_ALU_DST;

X1_LW = 0x0; /* clear LSW */

break;

 case 0xa: Y0_HW = DSP_ALU_DST;

Y0_LW = 0x0; /* clear LSW */

break;

 case 0xb: Y1_HW = DSP_ALU_DST;

Y1_LW = 0x0; /* clear LSW */

break;

 case 0xc: M0_HW = DSP_ALU_DST;

M0_LW = 0x0; /* clear LSW */

break;

 case 0xe: M1_HW = DSP_ALU_DST;

M1_LW = 0x0; /* clear LSW */

break;

 default: printf("\nERROR:Illegal DSP Instruction");
break;

}

carry_bit = 0x0;

negative_bit = DSP_ALU_DST_MSB;

zero_bit = (DSP_ALU_DST_HW==0);

overflow_bit = 0x0;

/* DSR register update */

logical_dc_bit();

 }

 else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

/* ALU Destination assignment */

switch (zzzz) { /* Dz Operand selection bit (zzzz) */

 case 0x5: A1_HW = DSP_ALU_DST_HW;

378

A1_LW = 0x0; /* clear LSW */

A1G = 0x0; /* clear Guard bits */

break;

 case 0x7: A0_HW = DSP_ALU_DST_HW;

A0_LW = 0x0; /* clear LSW */

A0G = 0x0; /* clear Guard bits */

break;

 case 0x8: X0_HW = DSP_ALU_DST_HW;

X0_LW = 0x0; /* clear LSW */

break;

 case 0x9: X1_HW = DSP_ALU_DST;

X1_LW = 0x0; /* clear LSW */

break;

 case 0xa: Y0_HW = DSP_ALU_DST;

Y0_LW = 0x0; /* clear LSW */

break;

 case 0xb: Y1_HW = DSP_ALU_DST;

Y1_LW = 0x0; /* clear LSW */

break;

 case 0xc: M0_HW = DSP_ALU_DST;

M0_LW = 0x0; /* clear LSW */

break;

 case 0xe: M1_HW = DSP_ALU_DST;

M1_LW = 0x0; /* clear LSW */

break;

 default: printf("\nERROR:Illegal DSP Instruction");
break;

 }

}

}

379

Example:

PXOR X0,Y0,A0 NOPX NOPY ;Before execution: X0=H'33333333, Y0=H'55555555

A0=H'123456789A

;After execution: X0=H'33333333, Y0=H'55555555

A0=H'0066660000

In case of unconditional execution, the DC bit is updated
depending on the state of CS [2:0].

381

Section 7 Pipeline Operation

This section describes the operation of the pipelines for each instruction. This information is
provided to allow calculation of the required number of CPU instruction execution states (system
clock cycles).

7.1 Basic Configuration of Pipelines

7.1.1 The Five-Stage Pipeline

Pipelines are composed of the following five stages:

1. IF (Instruction fetch)

Fetches instruction from the memory where the program is stored.

2. ID (Instruction decode)

Decodes the instruction fetched.

3. EX (Instruction execution)

Does data operations and address calculations according to the results of decoding.

4. MA (Memory access)

Accesses data in memory. Generated by instructions that involve memory access, with some
exceptions.

5. WB/DSP (W/D) (Write back (CPU core) or DSP (DSP unit))

Write Back: Returns the results of the memory access (data) to a register. Generated by
instructions that involve memory loads, with some exceptions.

DSP: Does operations using the DSP unit’s ALU and MAC. Also, the results of memory
accesses (data) are returned to registers; not generated during writes to memory or no operation
(NOP).

These stages flow with the execution of the instructions and thereby constitute a pipeline. At a
given instant, five instructions are being executed simultaneously. The basic pipeline flow is as
shown in figure 7.1. The period in which a single stage is operating is called a slot and is indicated
by two-way arrows (←→).

All instructions have at least the 3 stages IF, ID and EX, but not all have stages MA and WB/DSP.
The way the pipeline flows also varies with the type of instruction. Some pipelines differ,
however, because of contention between IF and MA.

382

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

IF ID

IF

EX

ID

IF

MA

EX

ID

IF

WB/DSP

MA

EX

ID

IF

WB/DSP

MA

EX

ID

WB/DSP

MA

EX

WB/DSP

MA WB/DSP

Time

: Slot

Instruction
stream

Figure 7.1 Basic Structure of Pipeline Flow

7.1.2 Slot and Pipeline Flow

The time period in which a single stage operates called a slot. Slots must follow the rules
described below.

All stages (IF, ID, EX, MA, WB/DSP) of an instruction must be executed in 1 slot. Two or more
stages cannot be executed within 1 slot. Since WB/DSP is executed immediately after MA,
however, some instructions may execute MA and WB/DSP within the same slot. Figures 7.2 and
7.3 show impossible pipeline flows.

Instruction Execution: Each stage (IF, ID, EX, MA, WB/DSP) of an instruction must be
executed in one slot. Two or more stages cannot be executed within one slot (figure 7.2), with
exception of WB and MA. Since WB is executed immediately after MA, however, some
instructions may execute MA and WB within the same slot.

Instruction 1

Instruction 2

IF ID

IF

EX

ID EX MA W/D

: Slot

Note: ID and EX of instruction 1 are executed in the same slot.

Figure 7.2 Impossible Pipeline Flow 1

Slot Sharing: A maximum of one stage from another instruction may be set per slot, and that
stage must be different from the stage of the first instruction. Identical stages from two different
instructions may never be executed within the same slot (figure 7.3).

383

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

IF ID

IF

EX

ID

IF

MA

EX

ID

IF

W/D

MA

EX

ID

IF

W/D

MA

EX

ID

W/D

MA

EX

W/D

MA W/D

: Slot

Note: Same stage of another instruction is being executed in same slot.

Figure 7.3 Impossible Pipeline Flow 2

7.1.3 Slot Length

The number of states (system clock cycles) S for the execution of one slot is calculated with the
following conditions:

• S = (the cycles of the stage with the highest number of cycles of all instruction stages
contained in the slot). This means that the instruction with the longest stage stalls others with
shorter stages.

• The number of execution cycles for each stage:

 IF The number of memory access cycles for instruction fetch

 ID Always one cycle

 EX Always one cycle

 MA The number of memory access cycles for data access

 WB/DSP Always one cycle

As an example, figure 7.4 shows the flow of a pipeline in which the IF (memory access for
instruction fetch) of instructions 1 and 2 are two cycles, the MA (memory access for data access)
of instruction 1 is three cycles and all others are one cycle. The dashes indicate the instruction is
being stalled.

Instruction 1

Instruction 2

(2)

IF

(2)

ID

IF

—

IF

(1)

EX

ID

MA

EX —

: Slot

(3)

MA

—

(1)

W/D

MA

(1)

W/D

MAIF

Number of
cycles

Figure 7.4 Slots Requiring Multiple Cycles

384

7.1.4 Number of Instruction Execution Cycles

The number of instruction execution cycles is counted as the interval between execution of EX
stages. The number of cycles between the start of the EX stage for instruction 1 and the start of the
EX stage for the following instruction (instruction 2) is the execution time for instruction 1.

For example, in a pipeline flow like that shown in figure 7.5, the EX stage interval between
instructions 1 and 2 is five cycles, so the execution time for instruction 1 is five cycles. Since the
interval between EX stages for instructions 2 and 3 is one cycle, the execution time of instruction
2 is one cycle.

If a program ends with instruction 3, the execution time for instruction 3 should be calculated as
the interval between the EX stage of instruction 3 and the EX stage of a hypothetical instruction 4,
using a MOV Rm, Rn that follows instruction 3. (In figure 7.5, the execution time of instruction 3
would thus be one cycle.) In this example, the MA of instruction 1 and the IF of instruction 4 are
in contention. For operation during the contention between the MA and IF, see section 7.2.1,
Contention between Instruction Fetch (IF) and Memory Access (MA).

Instruction 1

Instruction 2

Instruction 3

(Instruction 4

(2)

IF

(2)

ID

IF

—

IF

(2)

EX

ID

IF

—

—

IF

—

— —

: Slot

IF MA MA MA W/D

— — EX

— ID

IF

(1)

EX

ID

(1)

MA

EX

(4)

: MOV Rm, Rn)

Figure 7.5 Method for Counting Instruction Execution Cycles

385

7.2 Contention

Contention occurs in four cases. When it occurs, the slot splits and requires at least two cycles.

1. Contention between instruction fetch (IF) and memory access (MA)

2. Contention when the previous instruction’s destination register is used

3. Multiplier access contention

4. Contention between memory stores (MA) and either DSP operations or memory loads
(WB/DSP)

7.2.1 Contention between Instruction Fetch (IF) and Memory Access (MA)

Basic Operation when IF and MA Are in Contention (Common): The IF and MA stages both
access memory, so they cannot operate simultaneously. When the IF and MA stages both try to
access memory within the same slot, the slot splits as shown in figure 7.6. When there is a WB, it
is executed immediately after the MA ends.

Instruction 2

Instruction 3

Instruction 4

Instruction 5

IF

IF

EX

ID

IF

EX

ID

W/D

MA

EX

ID

W/D

EX

: Slot

Instruction 1 ID MA

IF

ID EXIF

B C D E FA G

MA of instruction 1 and IF of
instruction 4 contend at D

MA of instruction 2 and IF of
instruction 5 contend at E

Instruction 2

Instruction 3

Instruction 4

Instruction 5

IF

IF

EX

ID

IF

EX

—

W/D

MA

ID

ID

W/D

EX

: Slot

Instruction 1 ID MA

IF

ID EXIF

B C D E FA G

Split at D

Split at E

When MA and IF are in contention, the following occurs:

—

EX

—

—

Figure 7.6 Operation when IF and MA Are in Contention

The slots in which MA and IF contend are split into two cycles. MA is given priority to execute in
the first half (when there is a WB, it immediately follows the MA), and the EX, ID, and IF are
executed simultaneously in the latter half. For example, in figure 7.6 the MA of instruction 1 is

386

executed in slot D while the EX of instruction 2, the ID of instruction 3 and IF of instruction 4 are
executed simultaneously thereafter. In slot E, the MA of instruction 2 is given priority and the EX
of instruction 3, the ID of instruction 4 and the IF of instruction 5 executed thereafter.

The number of cycles for a slot in which MA and IF are in contention is the sum of the number of
memory access cycles for the MA and the number of memory access cycles for the IF.

The Relationship Between IF and the Location of Instructions in On-Chip ROM/RAM or
On-Chip Memory (SH1 and SH2): When the instruction is located in the on-chip memory
(ROM or RAM) or on-chip cache of the SuperH microcomputer, the SuperH microcomputer
accesses the on-chip memory in 32-bit units. The SuperH microcomputer instructions are all fixed
at 16 bits, so basically 2 instructions can be fetched in a single IF stage access.

If an instruction is located on a longword boundary, an IF can get two instructions at each
instruction fetch. The IF of the next instruction does not generate a bus cycle to fetch an
instruction from memory. Since the next instruction IF also fetches two instructions, the
instruction IFs after that do not generate a bus cycle either.

This means that IFs of instructions that are located so they start from the longword boundaries
within instructions located in on-chip memory (the position when the bottom two bits of the
instruction address are 00 is A1 = 0 and A0 = 0) also fetch two instructions. The IF of the next
instruction does not generate a bus cycle. IFs that do not generate bus cycles are written in lower
case as ‘if’. These ‘if’s always take one state.

When branching results in a fetch from an instruction located so it starts from the word boundaries
(the position when the bottom two bits of the instruction address are 10 is A1 = 1, A0 = 0), the bus
cycle of the IF fetches only the specified instruction more than one of said instructions. The IF of
the next instruction thus generates a bus cycle, and fetches two instructions. Figure 7.7 illustrates
these operations.

387

Instruction 2
... Instruction 3

Instruction 4
... Instruction 5

IF

if

EX

ID

IF

EX

ID EX

ID EX

... Instruction 1 ID

if

ID EXIF

: Slot

Instruction 6

Instruc-
tion 1

Instruc-
tion 2

Instruc-
tion 3

Instruc-
tion 4

Instruc-
tion 5

Instruc-
tion 6 ID EXif

32 bits

(On-chip memory
 or on-chip cache)

... Instruction 2

... Instruction 3

Instruction 4
... Instruction 5

IF EX

IF ID EX

ID EX

ID

if

ID EXIF

: Slot

Instruction 6 ID EXif

Instruc-
tion 2

Instruc-
tion 3

Instruc-
tion 4

Instruc-
tion 5

Instruc-
tion 6

Fetching from an instruction (instruction 1) located on a longword boundary

Fetching from an instruction (instruction 2) located on a word boundary

IF

if

: Bus cycle generated
: No bus cycle

IF

if

: Bus cycle generated
: No bus cycle

Figure 7.7 Relationship Between IF and Location of Instructions in On-Chip Memory

Relationship Between Position of Instructions Located in On-Chip ROM/RAM or On-Chip
Memory and Contention Between IF and MA (SH-1 and SH-2): When an instruction is located
in on-chip memory (ROM/RAM) or on-chip cache, there are instruction fetch stages (‘if’ written
in lower case) that do not generate bus cycles as explained in section 7.4.2 above. When an if is in
contention with an MA, the slot will not split, as it does when an IF and an MA are in contention,
because ifs and MAs can be executed simultaneously. Such slots execute in the number of states
the MA requires for memory access, as illustrated in figure 7.8.

When programming, avoid contention of MA and IF whenever possible and pair MAs with ifs to
increase the instruction execution speed. Instructions that have 4 (5)-stage pipelines of IF, ID, EX,
MA, (WB) prevent stalls when they start from the longword boundaries in on-chip memory (the
position when the bottom 2 bits of instruction address are 00 is A1 = 0 and A0 = 0) because the
MA of the instruction falls in the same slot as ifs that follow.

388

Instruction 2
... Instruction 3

Instruction 4
... Instruction 5

IF

if

EX

ID

IF

EX

ID —

— ID

... Instruction 1 ID

if

IF ID

: Slot

Instruction 6

Instruc-
tion 1

Instruc-
tion 2

Instruc-
tion 3

Instruc-
tion 4

Instruc-
tion 5

Instruc-
tion 6 ID EXif

IF

if

: Splits

: Does not split

32 bits

(On-chip memory
 or on-chip cache)

MA WB

MA WB

EX

EX

EX

A B

MA in slot A is in contention with an if, so no split occurs.
MA in slot B is in contention with an IF, so it splits.

Figure 7.8 Relationship Between the Location of Instructions in On-Chip Memory and
Contention Between IF and MA

Relationship between Position of Instructions Located in On-Chip Memory and Contention
between IF and MA: When an instruction is located in on-chip memory, there are instruction
fetch stages (“if”, written in lower case) that do not generate bus cycles. When an if is in
contention with an MA, the slot will not split, as it does when an IF and an MA are in contention,
because ifs and MAs can be executed simultaneously. Such slots execute in the number of cycles
the MA requires for memory access.

When programming, avoid contention of MA and IF whenever possible and pair MAs with ifs to
increase the instruction execution speed.

389

7.2.2 Contention when the Previous Instruction’s Destination Register Is Used

Relationship between Load Instructions and the Instructions that Follow: Instructions that
involve loading from memory return data to the destination register during the WB/DSP stage,
which comes at the end of the pipeline. The WB/DSP stage of such a load instruction (load
instruction 1) will thus not have ended before after the EX stage of the instruction that
immediately follows it (instruction 2) begins.

When instruction 2 uses the same destination register as load instruction 1, the contents of that
register will not be ready, so any slot containing the MA of instruction 1 and EX of instruction 2
will split. When the destination register of load instruction 1 is the same as the destination, not the
source, of instruction 2 it will still split.

When the destination of load instruction 1 is the status register (SR) and the flag in it is fetched by
instruction 2 (as ADDC does), a split occurs. No split occurs, however, in the following cases:

• When instruction 2 is a load instruction and its destination is the same as that of load
instruction 1

• When instruction 2 is MAC @Rm+,@Rn+ and the destinations of Rm and load instruction 1
were the same

The number of cycles in the slot generated by the split is the number of MA cycles plus the
number of IF (or if) cycles, as shown in figure 7.9. This means the execution speed will be
lowered if the instruction that will use the results of the load instruction is placed immediately
after the load instruction. The instruction that uses the result of the load instruction will not slow
down the program if placed one or more instructions after the load instruction.

Instruction 2 (ADD Rb,Rc)

Instruction 3

Instruction 4

IF

IF

EX

ID

IF

—

—

W/D

EX

ID

IF ID

: Slot

Load instruction 1 (MOV @Ra,Rb) ID MA

EX MA W/D

EX MA W/D

Figure 7.9 Effects of Memory Load Instructions on the Pipeline (1)

When data is loaded to a register in the previous instruction and the following memory access
instruction uses that register as an address pointer, the memory access is extended until the data
load of the MA stage of the previous instruction ends.

390

Instruction 2 (MOV @Rb,Rc)

Instruction 3

Instruction 4

IF

IF

EX

ID MA W/D

IF

—

—

W/D

EX

ID

IF ID

: Slot

Load instruction 1 (MOV @Ra,Rb) ID MA

EX MA W/D

EX MA W/D

Figure 7.10 Effects of Memory Load Instructions on the Pipeline (2)

In the DSP unit, all operation instructions are executed in the WB/DSP stage, so transfers and
operations do not contend. When the destination of the previous MOV instruction is used as the
address pointer for the following instruction, however, contention can occur.

Instruction 2 (PADD X0,Y0,A0)

Instruction 3

Instruction 4

IF

IF

EX

ID MA W/D

IF

W/D

ID

IF ID

: Slot

Load instruction 1 (MOVX @Ra,X0) ID MA

EX MA W/D

EX MA W/D

EX

Figure 7.11 Effects of Memory Load Instructions in the DSP Unit on the Pipeline

Relationship between Data Operation Instructions and Store Instructions: When DSP
operations are executed by the DSP unit and the results are stored in memory by the next
instruction, contention occurs just as with memory load instructions. In such cases, the data store
of the MA stage of the following instruction is extended until the data operation of the WB/DSP
stage of the previous instruction ends.

Since the operation is executed in the EX stage by the CPU core, however, no stall cycle is
produced.

Figure 7.12 shows the relationship between DSP unit data operation instructions and store
instructions; figure 7.13 shows the relationship to the CPU core.

Instruction 1 (PADD X0,Y0,A0)

Instruction 3

Instruction 4

IF

IF

EX

ID MA W/D

IF

W/D

ID

IF ID

: Slot

Instruction 2 (MOVX A0,@Ra)

ID MA

EX MA W/D

EX MA W/D

EX —

—

—

Figure 7.12 Relationship between DSP Engine Operation Instructions and Store
Instructions

391

Instruction 2 (MOV Rb,@Rc)

Instruction 3

Instruction 4

IF

IF

EX

ID

IF

W/D

EX

ID

IF ID

: Slot

Instruction 1 (ADD Ra,Rb) ID MA

EX MA W/D

MA W/D

EX MA W/D

Figure 7.13 Relationship between CPU Core Operation Instructions and Store Instructions

Relationship between Load and Store Instructions: When data is loaded from memory to the
destination register and the register is then specified as the source operand for a following store
instruction, the preceding instruction’s load is executed in the WB/DSP stage and the following
instruction’s store is executed in the MA stage. These stages are executed in exactly the same
cycle. Nevertheless, they do not contend. The CPU core and DSP unit use the same data transfer
method. In this case, when the data input to the internal bus is stored to the destination register, the
same data is simultaneously output again to the internal bus.

Instruction 2 (MOV.L Rn,@Rb)

Instruction 3

Instruction 4

IF

IF

EX

ID

IF

W/D

EX

ID

IF ID

: Slot

Instruction 1 (MOV.L @Ra,Rn) ID MA

EX MA W/D

MA W/D

EX MA W/D

Figure 7.14 Relationship between Load and Store Instructions in the CPU Core

Instruction 2 (MOVS.L Ds,@R5)

Instruction 3

Instruction 4

IF

IF

EX

ID

IF

W/D

EX

ID

IF ID

: Slot

Instruction 1 (MOVS.L @R4,Ds) ID MA

EX MA W/D

MA W/D

EX MA W/D

Figure 7.15 Relationship between Load and Store Instructions in the DSP Unit

Relationship between MAC and STS Instructions: The MAC.W instruction has two MA stages
and two mm (multiplier access) stages. When an STS instruction that stores a MACL or MACH
register in the Rn register comes after a MAC.W instruction, the MA stage of the STS instruction
is executed after the mm stage of the MAC.W instruction ends. Likewise, when an STS instruction
that stores a MACL or MACH register in memory comes after a MAC.W instruction, the MA
stage of the STS instruction is executed after the mm stage of the MAC.W instruction ends.

392

Instruction 2 (STS MACL,Rc)

Instruction 3

if

IF

EX

ID

if

EX

ID

: Slot

Instruction 1 (MAC.W @Ra+,@Rb+) ID MA MA mm mm

EX MA W/D

MA W/D— — —

— —

Figure 7.16 Relationship between MAC.W and STS Instructions

STS.L MAC.L memory

Next instruction

IF

IF

EX

— ID

IF ID

MAC.L

Slot

ID

EX MAM A

— —— — EX

MA mmMA mm mmmm

Figure 7.17 Example of Multiplier Access Contention—MAC.L and STS.L Instructions

7.2.3 Multiplier Access Contention

Instructions that access multiplier type instructions (Multiply/Accumulate instructions and
multiplication instructions) or the multiply and accumulate calculation registers (MACH and
MACL) contend with multiplier accesses.

In multiplier type instructions, the multiplier operates for either four cycles (for double-length 64
bits instructions) or two cycles (single-length 32 bit instructions) after the MA ends, regardless of
the slot. When the MA (or the second MA, if there are two) of a multiplier type instruction
(Multiply/Accumulate instructions and multiplication instructions) contends with the multiplier
access (mm) of the previous multiplier type instruction, the bus cycle of the MA is extended until
the mm ends. The extended MA becomes a single slot.

The ID of the instruction following a double-length instruction also stalls until one slot later.

Multiplier type instructions and instructions that access the multiply and accumulate calculation
registers have MA stages, so they also contend with IFs. Figure 7.18 shows an example of
multiplier access contention, but it does not address MA and IF contention.

MAC.L

Next instruction

IF

IF

EX

— ID

IF —

MAC.L

Slot

ID

EX M AMA mmmm mm mm

— —ID EX MA ...

MA mmMA mm mmmm

Figure 7.18 Example of Multiplier Access Contention—MAC.L and MAC.L Instructions

393

7.2.4 Contention between Memory Stores and DSP Operations

When an instruction that will store the result of a DSP operation instruction is written immediately
after the DSP operation instruction is executed, the execution will be too late. To prevent this, a
stall cycle is inserted. For more information, see section 4.17.2, Single Data Transfers.

7.3 Programming Guide

7.3.1 Types of Contention and Affected Instructions

Types of contention and the instructions they affect are summarized below.

• Instructions without contention

• Instructions with memory accesses (MA) that contend with instruction fetches (IF)

• Instructions that store the result of the immediately preceding DSP operation in memory using
the X bus or Y bus

• Instructions with memory accesses (MA) that contend with instruction fetches (IF), also have
write backs (WB/DSP), and may cause contention with memory loads

• Instructions with memory accesses (MA) that contend with instruction fetches (IF), also access
the multiplier (mm), and may cause contention with the multiplier

• Instructions that store DSP operation results in memory, because the memory access (MA)
contends with an instruction fetch (IF)

• Instructions with memory accesses (MA) that contend with instruction fetches (IF), access the
multiplier (mm), and may cause contention with the multiplier, and also have write backs
(WB/DSP) and may cause contention with memory loads

• Instructions that cause contention with MOV.X, MOV.Y, or MOVS.L instructions

394

Table 7.1 shows the correspondence between types of contention and instructions.

Table 7.1 Types of Contention and Instructions

Contention Cycles Stages Instructions

None 1 3 Inter-register transfer instructions
Inter-register operations (except
multiplier type instructions)
Inter-register logic operation
instructions
Shift instructions
System control ALU instructions

2 3 Unconditional branch instructions

3/1 3 Conditional branch instructions

2/1 3 Delayed conditional branch instruction

3 3 SLEEP instruction

4 5 RTE instruction

8 9 TRAP instruction

1 5 DSP operation instructions MOVX.W
(load) and MOVY.W (load) instructions

MA contends with IF 1 4 Memory store instructions
STS.L instruction (PR)

2 4 STC.L instruction

3 6 Memory logic operations

4 6 TAS instruction

1 5 MOVS.W (load) and MOVS.L (load)
instructions

Causes DSP operation contention 1 4 MOVX.W (store) and MOVY.W (store)
instructions

MA contends with IF
Causes memory load contention

1 5 Memory load instructions
LDS.L instruction (PR)

3 5 LDC.L instruction

MA contends with IF
Causes multiplier contention

1 4 Register to MAC transfer instructions
(MACH/MACL)
Memory to MAC transfer instructions
(MACH/MACL)
MAC to memory transfer instructions
(MACH/MACL)

1 (to 3)* 6 Multiplication instructions

395

Table 7.1 Types of Contention and Instructions (cont)

Contention Cycles Stages Instructions

MA contends with IF
Causes multiplier contention (cont)

2 (to 3)* 7 Multiply and accumulate calculation
instructions

2 (to 4)* 9 Double-length multiplication
instructions

2 (to 4)* 9 Double-length multiply and accumulate
calculation instructions

MA contends with IF
Causes DSP operation contention

1 4 MOVS.W (store) and MOVS.L (store)
instructions

MA contends with IF
Causes multiplier contention
Causes DSP operation contention
Causes memory load contention

1 5 STS instruction (except PR)

Causes MOVX.W, MOVY.W,
MOVS.W or MOVS.L instruction
contention

1 5 PLDS and PSTS instructions

Note: Indicates the normal number of cycles. The figures in parentheses are the cycles when
contention also occurs with the previous instruction.

7.3.2 Increasing Instruction Execution Speed

Instruction execution speed can be increased by trying, at the programming stage, to keep
contention from occurring. Follow these rules when writing programs to minimize contention:

1. A 32-bit DSP instruction can require up to three memory accesses per cycle: one instruction
(I-bus), one X-data (X-bus), and one Y-data (Y-bus). The SH-DSP has four independently
accessible on-chip memory areas: X-ROM, X-RAM, Y-ROM, and Y-RAM. If more than one
access is performed in the same memory area in a cycle, a stall occurs. Locate the program
(instructions) and the data arrays that the program accesses in different on-chip memory areas.
This prevents memory bank contention in DSP instructions.

2. Follow instructions that compute a value in the DSP unit and write it to a DSP register with
instructions that do not store the same register to memory. This prevents DSP register
contention because storing a DSP register that was the destination of a DSP calculation in the
previous cycle will cause a stall.

3. Instruction fetch (IF) can conflict with an SH data memory access (MA) because both use the
same bus. Whether the instruction fetch occurs in a specific cycle depends on the locations and
size (16 bit or 32 bit) of the preceding instructions. Try to locate the SH instructions that
perform memory access at longword boundries in on-chip memory and use a 16-bit instruction
as the next instruction. This prevents contention between memory accesses and instruction
fetches.

396

4. Follow instructions that load an SH register (R0 to R15) from memory with instructions that do
not use the same register as the load instruction’s destination register. This prevents memory
load contention caused by write backs (WB/DSP).

Note: The DSP registers (A0 to Y1) loaded in the previous cycle can be used in this cycle
without causing any stalls.

5. Do not place two instructions that use the multiplier consecutively (the PMULS instruction is
excepted from this rule). Also try to keep accesses of MACH and MACL registers for getting
the results from the multiplier away from instructions that use the multiplier. This prevents
multiplier contention caused by multiplier accesses (mm).

6. Avoid data transfers to memory or CPU core registers immediately after DSP unit data
operations from those registers storing the operation results. Avoid contention by placing
another instruction before the transfer.

7.3.3 Cycles

Basic instructions are designed to execute in one cycle. One-cycle instructions include both
instructions that cause contention and instructions that do not. Operations and transfers that occur
between registers do not create contention.

There are instructions that require two or more cycles even when there is no contention.
Instructions that change the branch destination addresses, such as branch instructions or the like,
memory logic operation instructions, instructions that execute memory accesses twice or more,
such as some system control instructions, and instructions that have memory accesses and
multiplier accesses such as multiplication instructions and multiply and accumulate instructions,
(excluding PMULS) all take two or more cycles.

Instructions that require two or more cycles also include both instructions that cause contention
and instructions that do not.

To write efficient programs, it is essential to avoid contention, keep instruction execution speed
up, and use instructions with fewer stages.

7.4 Operation of Instruction Pipelines

This section describes the operation of the instruction pipelines. By combining these with the rules
described so far, the way pipelines flow in a program and the number of instruction execution
cycles can be calculated.

In the following figures, “Instruction A” refers to the instruction being discussed. When “IF” is
written in the instruction fetch stage, it may refer to either “IF” or “if”. When there is contention
between IF and MA, the slot will split, but the manner of the split is not discussed in the tables,
with a few exceptions. When a slot has split, see section 7.2.1, Contention between Instruction

397

Fetch (IF) and Memory Access (MA). Base your response on the rules for pipeline operation given
there.

Table 7.2 shows the number of instruction stages and number of execution cycles as follows:

• Type: Given by function

• Category: Categorized by differences in instruction operation

• Stages: The number of stages in the instruction

• Cycles: The number of execution cycles when there is no contention

• Contention: Indicates the contention that occurs

• Instructions: Gives a mnemonic for the instruction concerned

398

Table 7.2 Number of Instruction Stages and Execution Cycles

Type Category Instruction Stages Cycles Contention

Data
transfer
instructions

Register-
register
transfer
instructions

MOV #imm,Rn

MOV Rm,Rn

MOVA @(disp,PC),R0

MOVT Rn

SWAP.B Rm,Rn

SWAP.W Rm,Rn

XTRCT Rm,Rn

3 1 —

Memory
load
instructions

MOV.W @(disp,PC),Rn

MOV.L @(disp,PC),Rn

MOV.B Rm,@Rn

MOV.W Rm,@Rn

MOV.L Rm,@Rn

MOV.B @Rm+,Rn

MOV.W @Rm+,Rn

MOV.L @Rm+,Rn

MOV.B @(disp,Rm),R0

MOV.W @(disp,Rm),R0

MOV.L @(disp,Rm),Rn

MOV.B @(R0,Rm),Rn

MOV.W @(R0,Rm),Rn

MOV.L @(R0,Rm),Rn

MOV.B @(disp,GBR),R0

MOV.W @(disp,GBR),R0

MOV.L @(disp,GBR),R0

5 1 • Contention
occurs if the
instruction
placed
immediately after
this CPU
instruction uses
the same
destination
register

• MA contends
with IF

399

Table 7.2 Number of Instruction Stages and Execution Cycles (cont)

Type Category Instruction Stages Cycles Contention

Data
transfer
instructions
(cont)

Memory
store
instructions

MOV.B @Rm,Rn

MOV.W @Rm,Rn

MOV.L @Rm,Rn

MOV.B Rm,@–Rn

MOV.W Rm,@–Rn

MOV.L Rm,@–Rn

MOV.B R0,@(disp,Rn)

MOV.W R0,@(disp,Rn)

MOV.L Rm,@(disp,Rn)

MOV.B Rm,@(R0,Rn)

MOV.W Rm,@(R0,Rn)

MOV.L Rm,@(R0,Rn)

MOV.B R0,@(disp,GBR)

MOV.W R0,@(disp,GBR)

MOV.L R0,@(disp,GBR)

4 1 MA contends with IF

400

Table 7.2 Number of Instruction Stages and Execution Cycles (cont)

Type Category Instruction Stages Cycles Contention

Arithmetic
instructions

Arithmetic
instructions
between
registers
(except
multiplic-
ation
instruc-
tions)

ADD Rm,Rn

ADD #imm,Rn

ADDC Rm,Rn

ADDV Rm,Rn

CMP/EQ #imm,R0

CMP/EQ Rm,Rn

CMP/HS Rm,Rn

CMP/GE Rm,Rn

CMP/HI Rm,Rn

CMP/GT Rm,Rn

CMP/PZ Rn

CMP/PL Rn

CMP/STR Rm,Rn

DIV1 Rm,Rn

DIV0S Rm,Rn

DIV0U

DT Rn

EXTS.B Rm,Rn

EXTS.W Rm,Rn

EXTU.B Rm,Rn

EXTU.W Rm,Rn

NEG Rm,Rn

NEGC Rm,Rn

SUB Rm,Rn

SUBC Rm,Rn

SUBV Rm,Rn

3 1 —

Multiply/
add
instructions

MAC.W @Rm+,@Rn+7/8*3 2 (to
3)*1

• Multiplier contention
occurs when an
instruction that uses
the multiplier follows a
MAC instruction

• MA contends with IF

401

Table 7.2 Number of Instruction Stages and Execution Cycles (cont)

Type Category Instruction Stages Cycles Contention

Arithmetic
instructions
(cont)

Double-
length
multiply/
accumulate
instruction

MAC.L @Rm+,@Rn+ 9 2
(to 4)*1

• Multiplier
contention occurs
when an
instruction that
uses the multiplier
follows a MAC
instruction

• MA contends with
IF

Multiplic-
ation
instructions

MULS.W Rm,Rn

MULU.W Rm,Rn

6/7*3 1
(to 3)*1

• Multiplier
contention occurs
when an instruc-
tion that uses the
multiplier follows a
MUL instruction

• MA contends with
IF

Double-
length
multiply/
accumulate
instruction

DMULS.L Rm,Rn

DMULU.L Rm,Rn

MUL.L Rm,Rn

9 2
(to 4)*1

• Multiplier
contention occurs
when an
instruction that
uses the multiplier
follows a MAC
instruction

• MA contends with
IF

Logic
operation
instructions

Register-
register
logic
operation
instructions

AND Rm,Rn

AND #imm,R0

NOT Rm,Rn

OR Rm,Rn

OR #imm,R0

TST Rm,Rn

TST #imm,R0

XOR Rm,Rn

XOR #imm,R0

3 1 —

402

Table 7.2 Number of Instruction Stages and Execution Cycles (cont)

Type Category Instruction Stages Cycles Contention

Logic
operation
instructions
(cont)

Memory logic
operations
instructions

AND.B #imm,@(R0,GBR)

OR.B #imm,@(R0,GBR)

TST.B #imm,@(R0,GBR)

XOR.B #imm,@(R0,GBR)

6 3 MA contends with
IF

TAS
instruction

TAS.B @Rn 6 4 MA contends with
IF

Shift
instructions

Shift
instructions

ROTL Rn

ROTR Rn

ROTCL Rn

ROTCR Rn

SHAL Rn

SHAR Rn

SHLL Rn

SHLR Rn

SHLL2 Rn

SHLR2 Rn

SHLL8 Rn

SHLR8 Rn

SHLL16 Rn

SHLR16 Rn

3 1 —

Branch
instructions

Conditional
branch
instructions

BF label

BT label

3 3/1*2 —

Delayed
conditional
branch
instructions

BF/S label

BT/S label

3 2/1*2 —

Unconditional
branch
instructions

BRA label

BRAF Rm

BSR label

BSRF Rm

JMP @Rm

JSR @Rm

RTS

3 2 —

403

Table 7.2 Number of Instruction Stages and Execution Cycles (cont)

Type Category Instruction Stages Cycles Contention

System
control
instructions

System
control
ALU
instructions

CLRT

LDC Rm,SR

LDC Rm,GBR

LDC Rm,VBR

LDC Rm,MOD

LDC Rm,RE

LDC Rm,RS

LDRE @(disp,PC)

LDRS @(disp,PC)

LDS Rm,PR

NOP

SETRC Rm

SETRC #imm

SETT

STC SR,Rn

STC GBR,Rn

STC VBR,Rn

STC MOD,Rn

STC RE,Rn

STC RS,Rn

STS PR,Rn

3 1 —

404

Table 7.2 Number of Instruction Stages and Execution Cycles (cont)

Type Category Instruction Stages Cycles Contention

System
control
instructions
(cont)

LDS.L
instructions
(PR)

LDS.L @Rm+,PR 5 1 • Contention
occurs when an
instruction that
uses the same
destination
register is
placed
immediately
after this
instruction

• MA contends
with IF

STS.L
instruction
(PR)

STS.L PR,@–Rn 4 1 MA contends with IF

LDC.L
instructions

LDC.L @Rm+,SR

LDC.L @Rm+,GBR

LDC.L @Rm+,VBR

LDC.L @Rm+,MOD

LDC.L @Rm+,RE

LDC.L @Rm+,RS

5 3 • Contention
occurs when an
instruction that
uses the same
destination
register is
placed
immediately
after this
instruction

• MA contends
with IF

STC.L
instructions

STC.L SR,@–Rn

STC.L GBR,@–Rn

STC.L VBR,@–Rn

STC.L MOD,@–Rn

STC.L RE,@–Rn

STC.L RS,@–Rn

4 2 MA contends with IF

405

Table 7.2 Number of Instruction Stages and Execution Cycles (cont)

Type Category Instruction Stages Cycles Contention

System
control
instructions
(cont)

Register →
MAC transfer
instruction

CLRMAC

LDS Rm,MACH

LDS Rm,MACL

4 1 • Contention
occurs with
multiplier

• MA contends
with IF

Register →
DSP transfer
instruction

LDS Rm,DSR

LDS Rm,A0

LDS Rm,X0

LDS Rm,X1

LDS Rm,Y0

LDS Rm,Y1

4 1 —

Memory →
MAC transfer
instructions

LDS.L @Rm+,MACH

LDS.L @Rm+,MACL

4 1 • Contention
occurs with
multiplier

• MA contends
with IF

Memory →
DSP transfer
instructions

LDS.L @Rm+,DSR

LDS.L @Rm+,A0

LDS.L @Rm+,X0

LDS.L @Rm+,X1

LDS.L @Rm+,Y0

LDS.L@Rm+,Y1

4 1 —

406

Table 7.2 Number of Instruction Stages and Execution Cycles (cont)

Type Category Instruction Stages Cycles Contention

System
control
instructions

MAC → register
transfer
instruction

STS MACH,Rn

STS MACL,Rn

5 1 • Contention
occurs with
multiplier

(cont) DSP → register
transfer
instruction

STS DSR,Rn

STS A0,Rn

STS X0,Rn

STS X1,Rn

STS Y0,Rn

STS Y1,Rn

• Contention
occurs when an
instruction that
uses the same
destination
register is
placed
immediately
after this
instruction

• MA contends
with IF

MAC →
memory
transfer
instruction

STS.L MACH,@–Rn

STS.L MACL,@–Rn

4 1 • Contention
occurs with
multiplier

• MA contends
with IF

DSP →
memory
transfer
instruction

STS.L DSR,@–Rn

STS.L A0,@–Rn

STS.L X0,@–Rn

STS.L X1,@–Rn

STS.L Y0,@–Rn

STS.LY1,@–Rn

4 1 —

RTE instruction RTE 5 4 —

TRAP
instruction

TRAPA#imm 9 8 —

SLEEP
instruction

SLEEP 3 3 —

Notes: 1. The normal minimum number of execution cycles. (The number in parentheses is the
number of cycles when there is contention with following instructions.

2. One state when there is no branch.
3. Number of stages of the SH-1 CPU.

407

7.4.1 Data Transfer Instructions

Register-Register Transfer Instructions (Common): Includes the following instruction types:

• MOV #imm, Rn

• MOV Rm, Rn

• MOVA @(disp, PC), R0

• MOVT Rn

• SWAP.B Rm, Rn

• SWAP.W Rm, Rn

• XTRCT Rm, Rn

Next instruction

Third instruction in series

IF

IF

EX

ID

IF

EX

ID EX

: Slot

Instruction A ID

......

......

......

Figure 7.19 Register-Register Transfer Instruction Pipeline

Operation: The pipeline ends after three stages: IF, ID, and EX. Data is transferred in the EX
stage via the ALU.

408

Memory Load Instructions (Common): Include the following instruction types:

• MOV.W @(disp, PC), Rn

• MOV.L @(disp, PC), Rn

• MOV.B @Rm, Rn

• MOV.W @Rm, Rn

• MOV.L @Rm, Rn

• MOV.B @Rm+, Rn

• MOV.W @Rm+, Rn

• MOV.L @Rm+, Rn

• MOV.B @(disp, Rm), R0

• MOV.W @(disp, Rm), R0

• MOV.L @(disp, Rm), Rn

• MOV.B @(R0, Rm), Rn

• MOV.W @(R0, Rm), Rn

• MOV.L @(R0, Rm), Rn

• MOV.B @(disp, GBR), R0

• MOV.W @(disp, GBR), R0

• MOV.L @(disp, GBR), R0

Next instruction

Third instruction in series

IF

IF

EX

ID

IF

EX

ID EX

: Slot

Instruction A ID MA
.....

.....

WB

......

Figure 7.20 Memory Load Instruction Pipeline

The pipeline has five stages: IF, ID, EX, MA, and WB (figure 7.20). If an instruction that uses the
same destination register as this instruction is placed immediately after it, contention will occur.
(See section 7.2.2, Contention when the Previous Instruction’s Destination Register Is Used.)

409

Memory Store Instructions (Common): Include the following instruction types:

• MOV.B Rm, @Rn

• MOV.W Rm, @Rn

• MOV.L Rm, @Rn

• MOV.B Rm, @–Rn

• MOV.W Rm, @–Rn

• MOV.L Rm, @–Rn

• MOV.B R0, @(disp, Rn)

• MOV.W R0, @(disp, Rn)

• MOV.L Rm, @(disp, Rn)

• MOV.B Rm, @(R0, Rn)

• MOV.W Rm, @(R0, Rn)

• MOV.L Rm, @(R0, Rn)

• MOV.B R0, @(disp, GBR)

• MOV.W R0, @(disp, GBR)

• MOV.L R0, @(disp, GBR)

Next instruction

Third instruction in series

IF

IF

EX

ID

IF

EX

ID EX

: Slot

Instruction A ID MA
.....

.....

......

Figure 7.21 Memory Store Instructions Pipeline

The pipeline has four stages: IF, ID, EX, and MA (figure 7.21). Data is not returned to the register
so there is no WB stage.

410

7.4.2 Arithmetic Instructions

Arithmetic Instructions between Registers (Except Multiplication Instructions) (Common,
or SH-2 CPU, SH-DSP): Include the following instruction types:

• ADD Rm, Rn

• ADD #imm, Rn

• ADDC Rm, Rn

• ADDV Rm, Rn

• CMP/EQ #imm, R0

• CMP/EQ Rm, Rn

• CMP/HS Rm, Rn

• CMP/GE Rm, Rn

• CMP/HI Rm, Rn

• CMP/GT Rm, Rn

• CMP/PZ Rn

• CMP/PL Rn

• CMP/STR Rm, Rn

• DIV1 Rm, Rn

• DIV0S Rm, Rn

• DIV0U

• DT Rn (SH-2 CPU, SH-DSP)

• EXTS.B Rm, Rn

• EXTS.W Rm, Rn

• EXTU.B Rm, Rn

• EXTU.W Rm, Rn

• NEG Rm, Rn

• NEGC Rm, Rn

• SUB Rm, Rn

• SUBC Rm, Rn

• SUBV Rm, Rn

Next instruction

Third instruction in series

IF

IF

EX

ID

IF

EX

ID EX

: Slot

Instruction A ID MA
.....

.....

......

Figure 7.22 Pipeline for Arithmetic Instructions between Registers Except Multiplication
Instructions

The pipeline has three stages: IF, ID, and EX (figure 7.22). The data operation is completed in the
EX stage via the ALU.

411

Multiply/Accumulate Instruction (SH-1 CPU): Includes the following instruction type:

• MAC.W @Rm+, @Rn+

Next instruction

Third instruction in series

IF

IF

EX

— ID

IF ID

Instruction A ID

EX

EX

MA

MA

: Slot

WB

WB

MA mmMA mm

......

Figure 7.23 Multiply/Accumulate Instruction Pipeline

The pipeline has seven stages: IF, ID, EX, MA, MA, mm, and mm. The second MA reads the
memory and accesses the multiplier. mm indicates that the multiplier is operating. mm operates for
two cycles after the final MA ends, regardless of slot. The ID of the instruction after the MAC.W
instruction is stalled for 1 slot. The two MAs of the MAC.W instruction, when they contend with
IF, split the slots as described in Section 7.2.1, Contention between Instruction Fetch (IF) and
Memory Access (MA).

When an instruction that does not use the multiplier comes after the MAC.W instruction, the
MAC.W instruction may be considered to be a five-stage pipeline instruction of IF, ID, EX, MA,
MA. In such cases, the ID of the next instruction simply stalls one slot and thereafter operates like
a normal pipeline. When an instruction that uses the multiplier comes after the MAC.W
instruction, however, contention occurs with the multiplier, so operation is different from normal.

This occurs in the following cases:

1. When a MAC.W instruction is located immediately after another MAC.W instruction

2. When a MULS.W instruction is located immediately after a MAC.W instruction

3. When an STS (register) instruction is located immediately after a MAC.W instruction

4. When an STS.L (memory) instruction is located immediately after a MAC.W instruction

5. When an LDS (register) instruction is located immediately after a MAC.W instruction

6. When an LDS.L (memory) instruction is located immediately after a MAC.W instruction

412

1. When a MAC.W instruction is located immediately after another MAC.W instruction

When the second MA of a MAC.W instruction contends with an mm generated by a
preceding multiplier-type instruction, the bus cycle of that MA is extended until the mm ends
(the M—A shown in the dotted line box below) and that extended MA occupies one slot.

If one or more instruction not related to the multiplier is located between the MAC.W
instructions, multiplier contention between MAC instructions does not cause stalls (figure
7.24).

IF

IF

EX

— ID

IF ID

MAC.W ID

EX

EX

MA

MA MA

MA mmMA mmmm

MAC.W

Other instruction

mm mm

IF

IF

EX

— ID

IF —

MAC.W ID

EX

ID

MA

EX

: Slot

M——A

—

MA mmMA mmmm

Third instruction

MAC.W mm mmmm

MA

WB

mm

: Slot

......

......

.....

Figure 7.24 Unrelated Instructions between MAC.W Instructions

Sometimes consecutive MAC.Ws may not have multiplier contention even when MA and IF
contention causes misalignment of instruction execution. Figure 7.25 illustrates a case of this
type. This figure assumes MA and IF contention.

MAC.W

MAC.W

MAC.W
.....

if

IF

EX

— ID

if —

MAC.W ID

ID EX

MA mmMA mmmm

MA

IF ID EX

: Slot

EX

—

M——A

mm mmmm

MA mm mmmm

— MA M——A mm

—

MA —

Figure 7.25 Consecutive MAC.Ws without Misalignment

413

When the second MA of the MAC.W instruction is extended until the mm ends, contention
between MA and IF will split the slot, as usual. Figure 7.26 illustrates a case of this type. This
figure assumes MA and IF contention.

IF

if

EX

— — ID

IF —

MAC.W ID

EX

ID

MA

— —

MA MA mm— mmmm

Other instruction

MAC.W

EX

Other instruction

mm mm mm

: Slot

— — ID EX

M——A

MA

if

Other instruction IF
......

Figure 7.26 MA and IF Contention

414

2. When a MULS.W instructions is located immediately after a MAC.W instruction

A MULS.W instruction has an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with an operating MAC instruction multiplier (mm), the MA is
extended until the mm ends (the M—A shown in the dotted line box in figure 7.27) to create a
single slot. When two or more instructions not related to the multiplier come between the
MAC.W and MULS.W instructions, MAC.W and MULS.W contention does not cause
stalling. When the MULS.W MA and IF contend, the slot is split.

IF

IF

EX

— ID

IF ID

MAC.W ID

EX

EX — —

MA mmMA mmmm

Other instruction

MULS.W

MA
......

mm mm mm

: Slot

M————A
.....

IF

IF

EX

— ID

IF ID

MAC.W ID

EX

EX

MA mmMA mmmm

MULS.W

Other instruction

mm

Other instruction

: Slot

mm mmM——A

IF ID EX — MA

IF

IF

EX

— ID

IF ID

MAC.W ID

EX

EX

MA mmMA mmmm

Other instruction

Other instruction

MULS.W

: Slot

IF ID

MA WB

mm mm

Other instruction IF ID EX MA

MA WB

EX MA mm

......

......

Figure 7.27 MULS.W Instruction Immediately After a MAC.W Instruction

415

3. When an STS (register) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 7.28) to create a single slot. The MA of the STS contends with the IF. Figure 7.28
illustrates how this occurs, assuming MA and IF contention.

IF

if

EX

— ID

IF ID

MAC.W ID

EX

— — —

MA mm mmmm

Other instruction

STS

EX

WB

: Slot

M————A

MA

Other instruction if — — — ID EX

IF ID EX

IF

EX

— ID

if —

MAC.W ID

—

ID EX

MA mmMA mmmm

Other instruction

STS WB

: Slot

M——A

Other instruction IF ID — EX

ID EX

EX

if —

.....

if

.....

Other instruction

Other instruction

......

......

—

— MA

Figure 7.28 STS (Register) Instruction Immediately After a MAC.W Instruction

416

4. When an STS.L (memory) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are stored in memory using an STS instruction, an MA
stage for accessing the multiplier and writing to memory is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until one state after the mm ends (the M—A shown in the dotted
line box in figure 7.29) to create a single slot. The MA of the STS contends with the IF.
Figure 7.29 illustrates how this occurs, assuming MA and IF contention.

IF

if

EX

— ID

IF ID

MAC.W ID

EX

—

— —

MA mmMA mmmm

Other instruction

STS.L

—

Other instruction

M——————A

EX MA

Other instruction

if — — — ID EX

IF ID EX

: Slot

if

IF

EX

— ID

if —

MAC.W ID

—

ID EX

MA mmMA mmmm

Other instruction

STS.L

Other instruction

M————A

Other instruction

IF ID — — EX

— ID EX

: Slot

EX

.....if —

......

......

......

— WB

—

—

Figure 7.29 STS.L (Memory) Instruction Immediately After a MAC.W Instruction

417

5. When an LDS (register) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 7.30) to create a single slot. The MA of this LDS contends with IF. Figure 7.30
illustrates how this occurs, assuming MA and IF contention.

IF

if

EX

— ID

IF ID

MAC.W ID

EX

— — —

MA mmMA mmmm

Other instruction

LDS

EX

Other instruction

M————A

MA

Other instruction

if — — — ID EX

IF ID EX

: Slot

if

IF

EX

— ID

if —

MAC.W ID

—

ID EX

MA mmMA mmmm

Other instruction

LDS

Other instruction

M——A

Other instruction

IF ID — EX

ID EX

: Slot

EX

if —

.....

......

......

—

—

Figure 7.30 LDS (Register) Instruction Immediately After a MAC.W Instruction

418

6. When an LDS.L (memory) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the memory and the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 7.31) to create a single slot. The MA of the LDS contends with IF. Figure 7.31
illustrates how this occurs, assuming MA and IF contention.

IF

if

EX

— ID

IF ID

MAC.W ID

EX

— — —

MA mmMA mmmm

Other instruction

LDS.L

EX MA

Other instruction

M————A

if — — — ID EX

IF ID EX

: Slot

if

if

EX

— ID

if —

MAC.W ID

—

ID EX

MA mmMA mmmm

Other instruction

LDS.L

Other instruction

M——A

Other instruction

IF ID — EX MA

ID EX

: Slot

EX

if —

.....Other instruction
......

......

—

—

Figure 7.31 LDS.L (Memory) Instruction Immediately After a MAC.W Instruction

419

Double-Length Multiply/Accumulate Instruction (SH-2 CPU, SH-DSP): Includes the
following instruction type:

• MAC.L @Rm+, @Rn+

Next instruction

Third instruction

IF

IF

EX

— ID

IF ID

Instruction A ID

EX

EX

MA

MA

: Slot

WB

WB

MA mmMA mmmmmm

......

Figure 7.32 Multiply/Accumulate Instruction Pipeline

The pipeline has nine stages: IF, ID, EX, MA, MA, mm, mm, mm, and mm (figure 7.32). The
second MA reads the memory and accesses the multiplier. The mm indicates that the multiplier is
operating. The mm operates for four cycles after the final MA ends, regardless of slot. The ID of
the instruction after the MAC.L instruction is stalled for one slot. The two MAs of the MAC.L
instruction, when they contend with IF, split the slots as described in section 7.2.1, Contention
between Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier follows the MAC.L instruction, the MAC.L
instruction may be considered to be a five-stage pipeline instruction of IF, ID, EX, MA, MA. In
such cases, the ID of the next instruction simply stalls one slot and thereafter the pipeline operates
normally. When an instruction that uses the multiplier comes after the MAC.L instruction,
contention occurs with the multiplier, so operation is different from normal.

This occurs in the following cases:

1. When a MAC.W instruction is located immediately after another MAC.W instruction

2. When a MAC.L instruction is located immediately after a MAC.W instruction

3. When a MULS.W instruction is located immediately after a MAC.W instruction

4. When a DMULS.L instruction is located immediately after a MAC.W instruction

5. When an STS (register) instruction is located immediately after a MAC.W instruction

6. When an STS.L (memory) instruction is located immediately after a MAC.W instruction

7. When an LDS (register) instruction is located immediately after a MAC.W instruction

8. When an LDS.L (memory) instruction is located immediately after a MAC.W instruction

420

1. When a MAC.W instruction is located immediately after another MAC.W instruction

The second MA of a MAC.W instruction does not contend with an mm generated by a
preceding multiplication instruction.

IF

IF

EX

— ID

IF —

ID

EX

ID

MA

EX

MA mmMA mm

Third instruction

MAC.W

MA

: Slot

......

MAC.W

MA mm mm

Figure 7.33 MAC.W Instruction That Immediately Follows Another MAC.W instruction

Sometimes consecutive MAC.Ws may have misalignment of instruction execution caused by
MA and IF contention. Figure 7.34 illustrates a case of this type. This figure assumes MA and
IF contention.

if

IF

EX

— ID

if —

MAC.W ID

EX

— ID EX

MA mmMA mm

MAC.W

MAC.W

MA

MAC.W

—MA

mmMA mm

IF — ID EX MA MA mm

: Slot

......

MA mm mm

Figure 7.34 Consecutive MAC.Ws with Misalignment

421

When the second MA of the MAC.W instruction contends with IF, the slot will split as usual.
Figure 7.35 illustrates a case of this type. This figure assumes MA and IF contention.

IF

if

EX

— —

IF

IF

MAC.W ID

ID

— ID —

MA mm— MA mm

Other instruction

MAC.W

EX MA

Other instruction

MAEX
....

if — ID EX

: Slot

Other instruction
......

MA mm mm

Figure 7.35 MA and IF Contention

2. When a MAC.L instruction is located immediately after a MAC.W instruction

The second MA of a MAC.W instruction does not contend with an mm generated by a
preceding multiplication instruction (figure 7.36).

IF

IF

EX

— ID

IF —

ID

EX

ID

MA

EX

MA mmMA mm

Third instruction

MAC.L

MA

: Slot

......

MAC.W

MA mm mm mm mm

Figure 7.36 MAC.L Instructions Immediately After a MAC.W Instruction

422

3. When a MULS.W instruction is located immediately after a MAC.W instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with an operating MAC.W instruction multiplier (mm), the
MA is extended until the mm ends (the M—A shown in the dotted line box in figure 7.37) to
create a single slot. When one or more instructions not related to the multiplier come between
the MAC.W and MULS.W instructions, MAC.W and MULS.W contention does not cause
stalling. There is no MULS.W MA contention while the MAC.W instruction multiplier is
operating (mm). When the MULS.W MA and IF contend, the slot is split.

IF

IF

EX

— ID

IF ID

MAC.W ID

EX

EX — MA

MA mmMA mm

Other instruction

MULS.W
....

......

M——A

: Slot

mm mm

IF EX

ID

IF ID

MAC.W ID

EXIF —

EX MA mm

MA mmMA mm

MULS.W

Other instruction

mm

: Slot

IF ID EX MAOther instruction
......

Figure 7.37 MULS.W Instruction Immediately After a MAC.W Instruction

4. When a DMULS.L instruction is located immediately after a MAC.W instruction

DMULS.L instructions have an MA stage for accessing the multiplier, but there is no
DMULS.L MA contention while the MAC.W instruction multiplier is operating (mm). When
the DMULS.L MA and IF contend, the slot is split (figure 7.38).

IF EX

ID

MAC.W ID

EXIF —

MA mmMA mm

Other instruction

DMULS.L

: Slot

—IF ID EX MA

......

MA MA mm mm mm mm

Figure 7.38 DMULS.L Instructions Immediately After a MAC.W Instruction

423

5. When an STS (register) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 7.39) to create a single slot. The MA of the STS contends with the IF. Figure 7.39
illustrates how this occurs, assuming MA and IF contention.

IF

if

EX

— —

IF

MAC.W ID

EXID

ID — —

MA — mmMA mm

Other instruction

STS

EX MA

Other instruction

Other instruction
......

M——A

: Slot

WB

if — — ID EX

IF ID EX

if

IF

EX

— ID

if —

MAC.W ID

EX—

ID EX

MA mmMA mm

Other instruction

STS

Other instruction

Other instruction
......

MA

: Slot

WB

IF ID EX MA

if ID EX

Figure 7.39 STS (Register) Instruction Immediately After a MAC.W Instruction

424

6. When an STS.L (memory) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are stored in memory using an STS instruction, an MA
stage for accessing the memory and the multiplier and writing to memory is added to the STS
instruction, as described later. Figure 7.40 illustrates how this occurs, assuming MA and IF
contention.

IF

if

EX

— —

IF

MAC.W ID

EXID

ID — —

MA — mmMA mm

Other instruction

STS.L

EX MA

Other instruction

Other instruction
......

: Slot

if — — ID EX

IF ID EX

if

IF

EX

— ID

if —

MAC.W ID

EX—

ID EX

MA mmMA mm

Other instruction

STS.L

Other instruction

Other instruction
......

M——A

: Slot

IF ID EX

if ID EX

MA

Figure 7.40 STS.L (Memory) Instruction Immediately After a MAC.W Instruction

425

7. When an LDS (register) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 7.41) to create a single slot. The MA of this LDS contends with IF. Figure 7.41
illustrates how this occurs, assuming MA and IF contention.

IF

if

EX

— —

IF

MAC.W ID

EXID

ID — —

MA — mmMA mm

Other instruction

LDS

EX MA

Other instruction

Other instruction
......

M——A

: Slot

if — — ID EX

IF ID EX

if

IF

EX

— ID

if —

MAC.W ID

EX—

ID EX

MA mmMA mm

Other instruction

LDS

Other instruction

Other instruction
......

MA

: Slot

IF ID EX

if ID EX

Figure 7.41 LDS (Register) Instruction Immediately After a MAC.W Instruction

426

8. When an LDS.L (memory) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the multiplier is added to the LDS instruction, as described later.
When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is
extended until the mm ends (the M—A shown in the dotted line box in figure 7.42) to create a
single slot. The MA of the LDS contends with IF. Figure 7.42 illustrates how this occurs,
assuming MA and IF contention.

IF

if

EX

—

IDIF

MAC.W ID

EXID

— — EX

MA MA mm mm

Other instruction

LDS.L

Other instruction

Other instruction
......

M——A

: Slot

—if — ID EX

IF ID EX

if

IF

EX

— ID

if —

MAC.W ID

EX—

ID EX

MA mmMA mm

Other instruction

LDS.L

Other instruction

Other instruction
......

MA

: Slot

IF ID EX

if ID EX

—

—

Figure 7.42 LDS.L (Memory) Instruction Immediately After a MAC.W Instruction

427

Double-Length Multiply/Accumulate Instruction (SH-2 CPU, SH-DSP): Includes the
following instruction type:

• MAC.L @Rm+, @Rn+ (SH-2 CPU only)

IF

IF

EX

— ID

ID EX

MAC.L ID

MA WB

MA mmmm

Third instruction

Next instruction

......

: Slot

mm

IF

MA mm

EX MA WB

Figure 7.43 Multiply/Accumulate Instruction Pipeline

Operation: The pipeline has nine stages: IF, ID, EX, MA, MA, mm, mm, mm, and mm (figure
7.43). The second MA reads the memory and accesses the multiplier. The mm indicates that the
multiplier is operating. The mm operates for four cycles after the final MA ends, regardless of a
slot. The ID of the instruction after the MAC.L instruction is stalled for one slot. The two MAs of
the MAC.L instruction, when they contend with IF, split the slots as described in Section 7.4,
Contention Between Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier follows the MAC.L instruction, the MAC.L
instruction may be considered to be five-stage pipeline instructions of IF, ID, EX, MA, and MA.
In such cases, the ID of the next instruction simply stalls one slot and thereafter the pipeline
operates normally. When an instruction that uses the multiplier comes after the MAC.L
instruction, contention occurs with the multiplier, so operation is not as normal. This occurs in the
following cases:

1. When a MAC.L instruction is located immediately after another MAC.L instruction

2. When a MAC.W instruction is located immediately after a MAC.L instruction

3. When a DMULS.L instruction is located immediately after a MAC.L instruction

4. When a MULS.W instruction is located immediately after a MAC.L instruction

5. When an STS (register) instruction is located immediately after a MAC.L instruction

6. When an STS.L (memory) instruction is located immediately after a MAC.L instruction

7. When an LDS (register) instruction is located immediately after a MAC.L instruction

8. When an LDS.L (memory) instruction is located immediately after a MAC.L instruction

428

1. When a MAC.L instruction is located immediately after another MAC.L instruction

When the second MA of the MAC.L instruction contends with the mm produced by the
previous multiplication instruction, the MA bus cycle is extended until the mm ends (the M—
A shown in the dotted line box in figure 7.44) to create a single slot. When two or more
instructions that do not use the multiplier occur between two MAC.L instructions, the stall
caused by multiplier contention between MAC.L instructions is eliminated.

IF

IF

EX

— ID

IF —

MAC.L ID

EX

ID EX —

MA mmMA mmmm

Third instruction

MAC.L

—
......

MA

MA

: Slot

IF

IF

EX

— ID

IF ID

MAC.L ID

EX MA WB

MA mmMA mmmm

Other instruction

Other instruction

MAC.L
......

ID EX MA MA mm mm

EX

mm

M————A mm mm

mm

MA WB

IF

mm mm

: Slot

mm mm

Figure 7.44 MAC.L Instruction Immediately After Another MAC.L Instruction

Sometimes consecutive MAC.Ls may have less multiplier contention even when there is
misalignment of instruction execution caused by MA and IF contention. Figure 7.45
illustrates a case of this type, assuming MA and IF contention.

if

IF

EX

— ID

if —

MAC.L ID

EX

— ID EX

MA mmMA mmmm

MAC.L

MAC.L

—

MA

MA

: Slot

mm

M——A mm mm mm

MAC.L
......

— mm

M————A mm mm mm

IF — — ID MAEX — —
mm

Figure 7.45 Consecutive MAC.Ls with Misalignment

429

When the second MA of the MAC.L instruction is extended to the end of the mm, contention
between the MA and IF will split the slot in the usual way. Figure 7.46 illustrates a case of
this type, assuming MA and IF contention.

IF

if

EX

— —

IF —

MAC.L ID

ID

ID — —

MA MA— mmmm

Other intruction

MAC.L

—

EX

EX

: Slot

mm

M————A mm mm

Other intruction

Other intruction

MA mm

if — — — ID

......

mm

mm

IF

Figure 7.46 MA and IF Contention

430

2. When a MAC.W instruction is located immediately after a MAC.L instruction

When the second MA of the MAC.W instruction contends with the mm produced by the
previous multiplication instruction, the MA bus cycle is extended until the mm ends (the M—
A shown in the dotted line box in figure 7.47) to create a single slot. When two or more
instructions that do not use the multiplier occur between the MAC.L and MAC.W
instructions, the stall caused by multiplier contention between MAC.L instructions is
eliminated.

IF

IF

EX

— ID

IF —

MAC.L ID

EX

ID EX —

MA mmMA mmmm

Third instruction

MAC.W

—
......

MA

MA

: Slot

IF

IF

EX

— ID

IF ID

MAC.L ID

EX MA WB

MA mmMA mmmm

Other instruction

Other instruction

MAC.W
......

ID EX MA MA mm mm

: Slot

EX

mm

MA————A mm mm

mm

MA WB

IF

Figure 7.47 MAC.W Instruction Immediately After a MAC.L Instruction

431

3. When a DMULS.L instruction is located immediately after a MAC.L instruction

DMULS.L instructions have an MA stage for accessing the multiplier. When the second MA
of the DMULS.L instruction contends with an operating MAC.L instruction multiplier (mm),
the MA is extended until the mm ends (the M—A shown in the dotted line box in figure 7.48)
to create a single slot. When two or more instructions not related to the multiplier come
between the MAC.L and DMULS.L instructions, MAC.L and DMULS.L contention does not
cause stalling. When the DMULS.L MA and IF contend, the slot is split.

IF

IF

EX

— ID

IF —

MAC.L ID

EX

ID — —

MA mmMA mmmm

Other instruction

DMULS.L

EX
......

MA

MA

: Slot

IF

IF

EX

— ID

IF ID

MAC.L ID

EX MA

MA mmMA mmmm

DMULS.L

Other instruction

Other instruction
......

— ID — EX MA

EX

mm

M————A mm mm

mm

IF

mm mm

: Slot

mm mm mm mmM——A

IF

IF

EX

— ID

IF ID

MAC.L ID

EX MA

MA mmMA mmmm

Other instruction

Other instruction

DMULS.L

Other instruction

ID EX MA MA

EX

mm

IF

: Slot

mm mm mm mm

WB

......

MA WB

— ID EX MAIF

Figure 7.48 DMULS.L Instruction Immediately After a MAC.L Instruction

432

4. When a MULS.W instruction is located immediately after a MAC.L instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with an operating MAC.L instruction multiplier (mm), the MA
is extended until the mm ends (the M—A shown in the dotted line box in figure 7.49) to
create a single slot. When three or more instructions not related to the multiplier come
between the MAC.L and MULS.W instructions, MAC.L and MULS.W contention does not
cause stalling. When the MULS.W MA and IF contend, the slot is split.

433

IF

IF

EX

— ID

IF ID

MAC.L ID

EX MA

MA mmMA mmmm

Other instruction

Other instruction

MULS.W

Other instruction

ID EX

EX

mm

IF

: Slot

WB

......

ID EX MAIF

IF

IF

EX

— ID

IF ID

MAC.L ID

EX MA

MA mmMA mmmm

Other instruction

Other instruction

Other instruction

MULS.W

ID EX

EX

mm

IF

: Slot

mm mm

WB

MA WB

ID EX MA
......

IF

MA

Other instruction
......

WB

M——A mm mm

MA

MA WB

ID EX —IF

IF

IF

EX

— ID

IF —

MAC.L ID

EX

ID EX —

MA mmMA mmmm

Other instruction

MULS.W

—
......

MA

—

: Slot

IF

IF

EX

— ID

IF ID

MAC.L ID

EX

MA mmMA mmmm

MULS.W

Other instruction

Other instruction
......

ID EX — — MA

EX

mm mm

M——————A

MA

mm mm

mm

IF

: Slot

mm mmM————A

Figure 7.49 MULS.W Instruction Immediately After a MAC.L Instruction

434

5. When an STS (register) instruction is located immediately after a MAC.L instruction

When the contents of a MAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 7.50) to create a single slot. The MA of the STS contends with the IF. Figure 7.50
illustrates how this occurs, assuming MA and IF contention.

IF

if

EX

ID

IF ID

MAC.L ID

— —

MA mmMA mmmm

Other instruction

STS

Other instruction

Other instruction

— —

EX

mm

if

: Slot

—

......

M———————A WB

—

— —

EX MA

ID EX

IF ID EX

if

IF

EX

— ID

—

MAC.L ID

ID EX

MA mmMA mmmm

Other instruction

STS

Other instruction

Other instruction

IF ID

—

mm

: Slot

......

M————A WB

— — EX

ID EX

EX

if

if — —

—

— —

Figure 7.50 STS (Register) Instruction Immediately After a MAC.L Instruction

435

6. When an STS.L (memory) instruction is located immediately after a MAC.L instruction

When the contents of a MAC register are stored in memory using an STS instruction, an MA
stage for accessing the multiplier and writing to memory is added to the STS instruction, as
described later. The MA of the STS contends with the IF. Figure 7.51 illustrates how this
occurs, assuming MA and IF contention.

IF

if

EX

— ID

IF ID

MAC.L ID

— —

MA mmMA mmmm

Other instruction

STS.L

Other instruction

Other instruction

— —

EX

mm

if

: Slot

—

......

M———————A

—

— —

EX MA

ID EX

IF ID EX

if

IF

EX

— ID

—

MAC.L ID

ID EX

MA mmMA mmmm

Other instruction

STS.L

Other instruction

Other instruction

IF ID

—

mm
: Slot

......

M————A

— — EX

ID EX

EX

if

if — —

—

—

Figure 7.51 STS.L (Memory) Instruction Immediately After a MAC.L Instruction

436

7. When an LDS (register) instruction is located immediately after a MAC.L instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 7.52) to create a single slot. The MA of this LDS contends with IF. Figure 7.52
illustrates how this occurs, assuming MA and IF contention.

IF

if

EX

— ID

IF ID

MAC.L ID

— —

MA mmMA mmmm

Other instruction

LDS

Other instruction

Other instruction

— —

EX

mm

if

: Slot

—

......

M—————–—A

—

— —

EX MA

ID EX

IF ID EX

if

IF

EX

— ID

—

MAC.L ID

ID EX

MA mmMA mmmm

Other instruction

LDS

Other instruction

Other instruction

IF ID

—

mm

: Slot

......

M————A

— — EX

ID EX

EX

if

if — —

......

......

—

—

Figure 7.52 LDS (Register) Instruction Immediately After a MAC.L Instruction

437

8. When an LDS.L (memory) instruction is located immediately after a MAC.L instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the memory and the memory and the multiplier is added to the LDS
instruction, as described later. When the MA of the LDS instruction contends with the
operating multiplier (mm), the MA is extended until the mm ends (the M—A shown in the
dotted line box in figure 7.53) to create a single slot. The MA of the LDS contends with IF.
Figure 7.53 illustrates how this occurs, assuming MA and IF contention.

IF

if

EX

— ID

IF ID

MAC.L ID

— —

MA mmMA mmmm

Other instruction

LDS.L

Other instruction

Other instruction

— —

EX

mm

if

: Slot

—

......

M—————–—A

—

— —

EX MA

ID EX

IF ID EX

if

IF

EX

— ID

—

MAC.L ID

ID EX

MA mmMA mmmm

Other instruction

LDS.L

Other instruction

Other instruction

IF ID

—

mm

: Slot

......

M————A

— — EX

ID EX

EX

if

if — —

......

......

—

—

Figure 7.53 LDS.L (Memory) Instruction Immediately After a MAC.L Instruction

438

Multiplication Instructions (SH-1 CPU): Include the following instruction types:

• MULS.W Rm, Rn

• MULU.W Rm, Rn

Next instruction

Third instruction

IF

IF

EX

ID

IF ID

Instruction A ID

EX

EX

MA

MA

: Slot

WB

WB

MA mm mm

......

Figure 7.54 Multiplication Instruction Pipeline

The pipeline has six stages: IF, ID, EX, MA, mm, and mm. The MA accesses the multiplier. mm
indicates that the multiplier is operating. mm operates for three cycles after the MA ends,
regardless of slot. The MA of the MULS.W instruction, when it contends with IF, splits the slot as
described in Section 7.2.1, Contention between Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier comes after the MULS.W instruction, the
MULS.W instruction may be considered to be a four-stage pipeline instruction of IF, ID, EX, and
MA. In such cases, it operates like a normal pipeline. When an instruction that uses the multiplier
comes after the MULS.W instruction, however, contention occurs with the multiplier, so operation
is different from normal.

This occurs in the following cases:

1. When a MAC.W instruction is located immediately after a MULS.W instruction

2. When a MULS.W instruction is located immediately after another MULS.W instruction

3. When an STS (register) instruction is located immediately after a MULS.W instruction

4. When an STS.L (memory) instruction is located immediately after a MULS.W instruction

5. When an LDS (register) instruction is located immediately after a MULS.W instruction

6. When an LDS.L (memory) instruction is located immediately after a MULS.W instruction

439

1. When a MAC.W instruction is located immediately after a MULS.W instruction

When the second MA of a MAC.W instruction contends with the mm generated by a
preceding multiplication instruction, the bus cycle of that MA is extended until the mm ends
(the M—A shown in the dotted line box below) and that extended MA occupies one slot.

If one or more instructions not related to the multiplier comes between the MULS.W and
MAC.W instructions, multiplier contention between the MULS.W and MAC.W instructions
does not cause stalls (figure 7.55).

IF

IF

EX

ID EX

—

MULS.W ID

MA

ID EX —

MA mm mmmm

Third instruction

MAC.W

MA

M——A

: Slot

IF

IF

EX

ID EX

IF ID

MULS.W ID

MA

EX MA MA

MA mm mmmm

Other instruction

mm mm

: Slot

WB

 mm mm mm

mm

.....

.....

IF
......

......
MAC.W

Figure 7.55 MAC.W Instruction Immediately After a MULS.W Instruction

440

2. When a MULS.W instruction is located immediately after another MULS.W instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with the operating multiplier (mm) of another MULS.W
instruction, the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 7.56) to create a single slot. When two or more instructions not related to the multiplier
are located between the two MULS.W instructions, contention between the MULS.Ws does
not cause stalling. When the MULS.W MA and IF contend, the slot is split.

mm mm mm

IF

IF

EX

ID EX

IF

MULS.W ID

ID EX —

MA mm mmmm

Other instruction

MULS.W

—

M————A mm mm mm

MA

: Slot

IF

IF

EX

ID EX

IF

MULS.W ID

ID EX

MA mm mmmm

MULS.W

Other instruction

M——A

: Slot

Other instruction IF ID EX — MA

IF

IF

EX

ID EX

IF

MULS.W ID

ID EX MA

MA mm mmmm

Other instruction

Other instruction

mm mm mm

: Slot

MULS.W

Other instruction

MA WB

IF ID EX MA WB

IF ID EX MA

......

......

......

Figure 7.56 MULS.W Instruction Immediately After Another MULS.W Instruction

441

When the MA of the MULS.W instruction is extended until the mm ends, contention between
MA and IF will split the slot, as is normal. Figure 7.57 illustrates a case of this type, assuming
MA and IF contention.

IF

if

EX

ID EX

IF

MULS.W ID

ID — —

MA mm mmmm

Other instruction

MULS.W

EX

M————A mm mm mm

MA

: Slot

Other instruction

Other instruction

—

 if — — ID EX—

IF ID

......

Figure 7.57 MULS.W Instruction Immediately After Another MULS.W Instruction (IF and
MA Contention)

442

3. When an STS (register) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 7.58) to create a single slot. The MA of the STS contends with the IF. Figure 7.58
illustrates how this occurs, assuming MA and IF contention.

.....

IF

if

EX

ID EX

IF

MULS.W ID

ID — —

MA mm mmmm

Other instruction

STS

EX

M————A WB

MA

: Slot

Other instruction

Other instruction

—

 if — — ID EX—

IF ID EX

if

IF

EX

ID —

if

MULS.W ID

— ID

MA mm mmmm

Other instruction

STS M——A WB

: Slot

Other instruction

Other instruction

EX

 IF —ID

if — ID

EX

EX

EX

......

......

Figure 7.58 STS (Register) Instruction Immediately After a MULS.W Instruction

443

4. When an STS.L (memory) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are loaded from memory using an STS instruction, an
MA stage for accessing the multiplier and writing to memory is added to the STS instruction,
as described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until one cycle after the mm ends (the M—A shown in the dotted
line box in figure 7.59) to create a single slot. The MA of the STS contends with the IF.
Figure 7.59 illustrates how this occurs, assuming MA and IF contention.

EX
EX

IF

if

EX

ID EX

IF

MULS.W ID

ID — —

MA mm mmmm

Other instruction

STS.L M————A

EX MA
Other instruction
Other instruction

—
 if — — ID EX—

IF ID EX

if

IF

EX

ID —

if

MULS.W ID

— ID

MA mm mmmm

Other instruction

STS.L M——A

: Slot

Other instruction
Other instruction

EX
 IF —ID

if — ID

EX

.....

......

......

: Slot

Figure 7.59 STS.L (Memory) Instruction Immediately After a MULS.W Instruction

444

5. When an LDS (register) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box below)
to create a single slot. The MA of this LDS contends with IF. Figure 7.60 illustrates how this
occurs, assuming MA and IF contention.

.....

IF

if

EX

ID EX

IF

MULS.W ID

ID — —

MA mm mmmm

Other instruction

LDS

EX

M————A

MA

: Slot

Other instruction

Other instruction

—

 if — — ID EX—

IF ID EX

if

IF

EX

ID —

if

MULS.W ID

— ID

MA mm mmmm

Other instruction

LDS M——A

: Slot

Other instruction

Other instruction

EX

 IF — EXID

if — ID EX

EX

......

......

Figure 7.60 LDS (Register) Instruction Immediately After a MULS.W Instruction

445

6. When an LDS.L (memory) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the memory and the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 7.61) to create a single slot. The MA of the LDS contends with IF. Figure 7.61
illustrates how this occurs, assuming MA and IF contention.

.....

IF

if

EX

ID EX

IF

MULS.W ID

ID — —

MA mm mmmm

Other instruction

LDS.L

EX

M————A

MA

: Slot

Other instruction

Other instruction

—

 if — — ID EX—

IF ID EX

if

IF

EX

ID —

if

MULS.W ID

— ID

MA mm mmmm

Other instruction

LDS.L M——A

: Slot

Other instruction

Other instruction

EX

 IF — EXID

if — ID EX

EX

......

......

Figure 7.61 LDS.L (Memory) Instruction Immediately After a MULS.W Instruction

446

Multiplication Instructions (SH-2 CPU, SH-DSP): Include the following instruction types:

• MULS.W Rm, Rn

• MULU.W Rm, Rn

Next instruction

Third instruction

IF

IF

EX

ID

IF

EX

ID EX

MULS.W ID

MA

MA

: Slot

.....

MA mm mm

WB

WB

Figure 7.62 Multiplication Instruction Pipeline

Operation: The pipeline has six stages: IF, ID, EX, MA, mm, and mm (figure 8.62). The MA
accesses the multiplier. The mm indicates that the multiplier is operating. The mm operates for
two cycles after the MA ends, regardless of the slot. The MA of the MULS.W instruction, when it
contends with IF, splits the slot as described in Section 7.4, Contention Between Instruction Fetch
(IF) and Memory Access (MA).

When an instruction that does not use the multiplier comes after the MULS.W instruction, the
MULS.W instruction may be considered to be four-stage pipeline instructions of IF, ID, EX, and
MA. In such cases, it operates like a normal pipeline. When an instruction that uses the multiplier
is located after the MULS.W instruction, however, contention occurs with the multiplier, so
operation is not as normal. This occurs in the following cases:

1. When a MAC.W instruction is located immediately after a MULS.W instruction

2. When a MAC.L instruction is located immediately after a MULS.W instruction

3. When a MULS.W instruction is located immediately after another MULS.W instruction

4. When a DMULS.L instruction is located immediately after a MULS.W instruction

5. When an STS (register) instruction is located immediately after a MULS.W instruction

6. When an STS.L (memory) instruction is located immediately after a MULS.W instruction

7. When an LDS (register) instruction is located immediately after a MULS.W instruction

8. When an LDS.L (memory) instruction is located immediately after a MULS.W instruction

447

1. When a MAC.W instruction is located immediately after a MULS.W instruction

The second MA of a MAC.W instruction does not contend with the mm generated by a
preceding multiplication instruction.

IF

IF

EX

ID EX

— ID

MULS.W ID

MA

EX MA

MA mmmm

Third instruction

MAC.W

......

MA

: Slot

mm mm

IF

Figure 7.63 MAC.W Instruction Immediately After a MULS.W Instruction

2. When a MAC.L instruction is located immediately after a MULS.W instruction

The second MA of a MAC.W instruction does not contend with the mm generated by a
preceding multiplication instruction.

IF

IF

EX

ID EX

— ID

MULS.W ID

MA

EX MA

MA mmmm

Third instruction

MAC.L

......

MA

: Slot

mm mm

IF

mm mm

Figure 7.64 MAC.L Instruction Immediately After a MULS.W Instruction

448

3. When a MULS.W instruction is located immediately after another MULS.W instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with the operating multiplier (mm) of another MULS.W
instruction, the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 7.65) to create a single slot. When one or more instructions not related to the multiplier
is located between the two MULS.W instructions, contention between the MULS.Ws does not
cause stalling. When the MULS.W MA and IF contend, the slot is split.

IF

IF

EX

ID EX

IF ID

MULS.W ID

EX — MA

MA mmmm

Other instruction

MULS.W
......

......

: Slot

mm mmM——A

IF

IF

EX

ID EX

IF ID

MULS.W ID

EX MA mm

MA mmmm

MULS.W

Other instruction

mm

Other instruction

: Slot

......
IF ID EX MA

Figure 7.65 MULS.W Instruction Immediately After Another MULS.W Instruction

When the MA of the MULS.W instruction is extended until the mm ends, contention between
the MA and IF will split the slot in the usual way. Figure 7.66 illustrates a case of this type,
assuming MA and IF contention.

IF

if

EX

ID EX

IF ID

MULS.W ID

— — EX

MA mmmm

Other instruction

MULS.W

MA

Other instruction

: Slot

mm mmM——A

Other instruction
......

......

if — — ID EX

IF ID

Figure 7.66 MULS.W Instruction Immediately After Another MULS.W Instruction (IF and
MA contention)

449

4. When a DMULS.L instruction is located immediately after a MULS.W instruction

Though the second MA in the DMULS.L instruction makes an access to the multiplier, it does
not contend with the operating multiplier (mm) generated by the MULS.W instruction.

IF

IF

EX

ID EX

IF —

MULS.W ID

ID EX MA

MA mmmm

Other instruction

DMULS.L
......

......

: Slot

mm mmMA MA mm mm

Figure 7.67 DMULS.L Instruction Immediately After a MULS.W Instruction

450

5. When an STS (register) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 7.68) to create a single slot. The MA of the STS contends with the IF. Figure 7.68
illustrates how this occurs, assuming MA and IF contention.

IF

if

EX

ID EX

IF ID

MULS.W ID

— — EX

MA mmmm

Other instruction

STS

MA

Other instruction

: Slot

WBM——A

Other instruction
......

if — — ID EX

IF ID EX

if

IF

EX

ID —

if —

MULS.W ID

ID EX

MA mmmm

Other instruction

STS

Other instruction

: Slot

WBMA

Other instruction
......

IF ID EX

if ID EX

EX

Figure 7.68 STS (Register) Instruction Immediately After a MULS.W Instruction

451

6. When an STS.L (memory) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are stored in memory using an STS instruction, an MA
stage for accessing the multiplier and writing to memory is added to the STS instruction, as
described later. The MA of the STS contends with the IF. Figure 7.69 illustrates how this
occurs, assuming MA and IF contention.

IF

if

EX

ID EX

IF ID

MULS.W ID

— — EX

MA mmmm

Other instruction

STS.L

MA

Other instruction

: Slot

M———A

Other instruction
......

if — — ID EX

IF ID EX

if

IF

EX

ID —

if —

MULS.W ID

ID EX

MA mmmm

Other instruction

STS.L

Other instruction

MA

Other instruction
......

IF ID EX

if ID EX

EX

......

: Slot

Figure 7.69 STS.L (Memory) Instruction Immediately After a MULS.W Instruction

452

7. When an LDS (register) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box below)
to create a single slot. The MA of this LDS contends with IF. The following figures illustrates
how this occurs, assuming MA and IF contention.

IF

if

EX

ID EX

IF ID

MULS.W ID

— — EX

MA mmmm

Other instruction

LDS

MA

Other instruction

: Slot

M——A

Other instruction
......

if — — ID EX

IF ID EX

if

IF

EX

ID —

if —

MULS.W ID

ID EX

MA mmmm

Other instruction

LDS

Other instruction

: Slot

MA

Other instruction
......

IF ID EX

if ID EX

EX

Figure 7.70 LDS (Register) Instruction Immediately After a MULS.W Instruction

453

8. When an LDS.L (memory) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the multiplier is added to the LDS instruction, as described later.
When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is
extended until the mm ends (the M—A shown in the dotted line box in figure 7.71) to create a
single slot. The MA of the LDS contends with IF. Figure 7.71 illustrates how this occurs,
assuming MA and IF contention.

IF

if

EX

ID EX

IF ID

MULS.W ID

— — EX

MA mmmm

Other instruction

LDS.L

MA

Other instruction

: Slot

M——A

Other instruction
......

if — — ID EX

IF ID EX

if

IF

EX

ID —

if —

MULS.W ID

ID EX

MA mmmm

Other instruction

LDS.L

Other instruction

: Slot

MA

Other instruction
......

IF ID EX

if ID EX

EX

Figure 7.71 LDS.L (Memory) Instruction Immediately After a MULS.W Instruction

454

Double-Length Multiplication Instructions (SH-2 CPU, SH-DSP): Include the following
instruction types:

• DMULS.L Rm, Rn

• DMULU.L Rm, Rn

• MUL.L Rm, Rn

Next instruction

Third instruction

IF

IF

EX

— ID

IF ID

Instruction A ID

EX

EX

MA

MA

: Slot

WB

WB

MA mmMA mmmmmm

......

Figure 7.72 Multiplication Instruction Pipeline

The pipeline has nine stages: IF, ID, EX, MA, MA, mm, mm, mm, and mm (figure 7.72). The
second MA accesses the multiplier. The mm indicates that the multiplier is operating. The mm
operates for four cycles after the MA ends, regardless of slot. The ID of the instruction following
the DMULS.L instruction is stalled for 1 slot (see the description of the Multiply/Accumulate
instruction). The two MA stages of the DMULS.L instruction, when they contend with IF, split the
slot as described in section 7.2.1, Contention between Instruction Fetch (IF) and Memory Access
(MA).

When an instruction that does not use the multiplier comes after the DMULS.L instruction, the
DMULS.L instruction may be considered to be a five-stage pipeline instruction of IF, ID, EX,
MA, and MA. In such cases, it operates like a normal pipeline. When an instruction that uses the
multiplier come after the DMULS.L instruction, however, contention occurs with the multiplier,
so operation is different from normal.

This occurs in the following cases:

1. When a MAC.L instruction is located immediately after a DMULS.L instruction

2. When a MAC.W instruction is located immediately after a DMULS.L instruction

3. When a DMULS.L instruction is located immediately after another DMULS.L instruction

4. When a MULS.W instruction is located immediately after a DMULS.L instruction

5. When an STS (register) instruction is located immediately after a DMULS.L instruction

6. When an STS.L (memory) instruction is located immediately after a DMULS.L instruction

7. When an LDS (register) instruction is located immediately after a DMULS.L instruction

8. When an LDS.L (memory) instruction is located immediately after a DMULS.L instruction

455

1. When a MAC.L instruction is located immediately after a DMULS.L instruction

When the second MA of a MAC.L instruction contends with the mm generated by a
preceding multiplication instruction, the bus cycle of that MA is extended until the mm ends
(the M—A shown in the dotted line box below) and that extended MA occupies one slot.

If two or more instructions not related to the multiplier are located between the DMULS.L
and MAC.L instructions, multiplier contention between the DMULS.L and MAC.L
instructions does not cause stalls (figure 7.73).

IF

IF

EX

— ID

— ID

DMULS.L ID

EX —

mm

MA mmmm

Third instruction

MAC.L mm

......

: Slot

M————A

MA—

mm

IF

mm mm

MA mm

EX MA

IF

IF

EX

— ID

ID EX

DMULS.L ID

MA WB

MA mmmm

Other instruction

Other instruction

MAC.L

: Slot

mm

IF

MA mm

EX MA

......

WB

ID EX MA MAIF mm mm mm mm

Figure 7.73 MAC.L Instruction Immediately After a DMULS.L Instruction

456

7.4.3 Logic Operation Instructions

Register-Register Logic Operation Instructions (Common): Include the following instruction
types:

• AND Rm, Rn
• AND #imm, R0
• NOT Rm, Rn
• OR Rm, Rn
• OR #imm, R0

• TST Rm, Rn

• TST #imm, R0

• XOR Rm, Rn

• XOR #imm, R0

Next instruction

Third instruction in series

IF

IF

EX

ID

IF

EX

ID EX

: Slot

Instruction A ID

......

......

......

Figure 7.74 Register-Register Logic Operation Instruction Pipeline

The pipeline has three stages: IF, ID, and EX (figure 7.74). The data operation is completed in the
EX stage via the ALU.

457

Memory Logic Operations Instructions (Common): Include the following instruction types:

• AND.B #imm, @(R0, GBR)

• OR.B #imm, @(R0, GBR)

• TST.B #imm, @(R0, GBR)

• XOR.B #imm, @(R0, GBR)

Next instruction

Third instruction in series

IF

IF

EX

—

IF

—

ID EX

Instruction A ID

EX
.....

EXMA MA
.....

: Slot

ID

.....

Figure 7.75 Memory Logic Operation Instruction Pipeline

The pipeline has six stages: IF, ID, EX, MA, EX, and MA (figure 7.75). The ID of the next
instruction stalls for 2 slots. The MAs of these instructions contend with IF.

458

TAS Instruction (Common): Includes the following instruction type:

• TAS.B @Rn

Next instruction

Third instruction in series

IF

IF

EX

—

IF

— —

ID EX

Instruction A ID

EX
.....

EXMA MA
.....

: Slot

ID

.....

Figure 7.76 TAS Instruction Pipeline

The pipeline has six stages: IF, ID, EX, MA, EX, and MA (figure 7.76). The ID of the next
instruction stalls for 3 slots. The MA of the TAS instruction contends with IF.

459

7.4.4 Shift Instructions (Common)

• ROTL Rn

• ROTR Rn

• ROTCL Rn

• ROTCR Rn

• SHAL Rn

• SHAR Rn

• SHLL Rn

• SHLR Rn

• SHLL2 Rn

• SHLR2 Rn

• SHLL8 Rn

• SHLR8 Rn

• SHLL16 Rn

• SHLR16 Rn

Next instruction

Third instruction in series

IF

IF

EX

IF ID EX

Instruction A ID

ID
.....

EX

: Slot

.....

Figure 7.77 General Shift Instruction Pipeline

The pipeline has three stages: IF, ID, and EX (figure 7.77). The data operation is completed in the
EX stage via the ALU.

460

7.4.5 Branch Instructions

Conditional Branch Instructions (Common): Include the following instruction types:

• BF label

• BT label

The pipeline has three stages: IF, ID, and EX. Condition verification is performed in the ID stage.
Conditionally branched instructions are not delay branched.

1. When condition is satisfied

The branch destination address is calculated in the EX stage. The two instructions after the
conditional branch instruction (instruction A) are fetched but discarded. The branch destination
instruction begins its fetch from the slot following the slot which has the EX stage of
instruction A (figure 7.78).

Next instruction

Third instruction in series

IF

IF

EX

IF —

Instruction A ID

—

: Slot

Branch destination — IF ID EX

..... IF ID EX

(Fetched but discarded)

(Fetched but discarded)

.....

Figure 7.78 Branch Instruction when Condition Is Satisfied

2. When condition is not satisfied

If it is determined that conditions are not satisfied at the ID stage, the EX stage proceeds
without doing anything. The next instruction also executes a fetch (figure 7.79).

Next instruction

Third instruction in series

IF

IF

EX

IF ID

Instruction A ID

ID

: Slot

..... IF ID EX

.....

EX

EX

.....

Figure 7.79 Branch Instruction when Condition Is Not Satisfied

461

Delayed Conditional Branch Instructions (SH-2 CPU, SH-DSP): Include the following
instruction types:

• BF/S label

• BT/S label

The pipeline has three stages: IF, ID, and EX. Condition verification is performed in the ID stage.

1. When condition is satisfied

The branch destination address is calculated in the EX stage. The instruction after the
conditional branch instruction (instruction A) is fetched and executed, but the instruction after
that is fetched and discarded. The branch destination instruction begins its fetch from the slot
following the slot which has the EX stage of instruction A (figure 7.80).

Next instruction

Third instruction in series

IF

IF

EX

IF —

—

Instruction A ID

: Slot

Branch destination IF ID EX

..... IF ID EX

(Fetched but discarded)

ID EX MA WB

Figure 7.80 Branch Instruction when Condition Is Satisfied

2. When condition is not satisfied

If it is determined that a condition is not satisfied at the ID stage, the EX stage proceeds
without doing anything. The next instruction also executes a fetch (figure 7.81).

Next instruction

Third instruction in series

IF

IF

EX

IF ID

Instruction A ID

ID

: Slot

..... IF ID EX

.....

EX

EX

.....

Figure 7.81 Branch Instruction when Condition Is Not Satisfied

462

Unconditional Branch Instructions (Common, or SH-2 CPU, SH-DSP): Include the following
instruction types:

• BRA label

• BRAF Rm (SH-2, SH-DSP CPU)

• BSR label

• BSRF Rm (SH-2, SH-DSP CPU)

• JMP @Rm

• JSR @Rm

• RTS

Delay slot

Branch destination

IF

IF

EX

IF ID

Instruction A ID

—

: Slot

..... IF ID EX

ID

EX
EX MA WB

.....

Figure 7.82 Unconditional Branch Instruction Pipeline

The pipeline has three stages: IF, ID, and EX (figure 7.82). Unconditionally branched instructions
are delay branched. The branch destination address is calculated in the EX stage. The instruction
following the unconditional branch instruction (instruction A), that is, the delay slot instruction is
not fetched and discarded as conditional branch instructions are, but is instead executed. Note that
the ID slot of the delay slot instruction does stall for one cycle. The branch destination instruction
starts its fetch from the slot after the slot that has the EX stage of instruction A.

463

7.4.6 System Control Instructions

System Control ALU Instructions (Common, or SH-DSP): Include the following instruction
types:

• CLRT

• LDC Rm,SR

• LDC Rm,GBR

• LDC Rm,VBR

• LDC Rm,MOD (SH-DSP)

• LDC Rm,RE (SH-DSP)

• LDC Rm,RS (SH-DSP)

• LDRE @(disp,PC)

• LDRS @(disp,PC)

• LDS Rm,PR

• NOP

• SETRC Rm (SH-DSP)

• SETRC #imm (SH-DSP)

• SETT

• STC SR,Rn

• STC GBR,Rn

• STC VBR,Rn

• STC MOD,Rn (SH-DSP)

• STC RE,Rn (SH-DSP)

• STC RS,Rn (SH-DSP)

• STS PR,Rn

Next instruction

Third instruction in series

IF

IF

EX

IF ID

Instruction A ID

ID

: Slot

EX

EX

.....

.....

Figure 7.83 System Control ALU Instruction Pipeline

The pipeline has three stages: IF, ID, and EX (figure 7.83). The data operation is completed in the
EX stage via the ALU.

464

LDC.L Instructions (Common, or SH-DSP): Include the following instruction types:

• LDC.L @Rm+, SR

• LDC.L @Rm+, GBR

• LDC.L @Rm+, VBR

• LDC.L @Rm+, MOD (SH-DSP)

• LDC.L @Rm+, RE (SH-DSP)

• LDC.L @Rm+, RS (SH-DSP)

Next instruction

Third instruction in series

IF

IF

EX MA WB

IF ID

——

Instruction A ID

ID

: Slot

EX

EX

.....

.....

Figure 7.84 LDC.L Instruction Pipeline

The pipeline has five stages: IF, ID, EX, MA, and EX (figure 7.84). The ID of the following
instruction is stalled two slots.

465

STC.L Instructions (Common, or SH-DSP): Include the following instruction types:

• STC.L SR, @–Rn

• STC.L GBR, @–Rn

• STC.L VBR, @–Rn

• STC.L MOD, @–Rn (SH-DSP)

• STC.L RE, @–Rn (SH-DSP)

• STC.L RS, @–Rn (SH-DSP)

Next instruction

Third instruction in series

IF

IF

EX MA

IF ID

—

Instruction A ID

ID

: Slot

EX

EX

.....

.....

Figure 7.85 STC.L Instruction Pipeline

The pipeline has four stages: IF, ID, EX, and MA (figure 7.85). The ID of the next instruction is
stalled one slot.

466

LDS.L Instruction (Common): Includes the following instruction type:

• LDS.L @Rm+, PR

Next instruction

Third instruction in series

IF

IF

EX

IF ID

Instruction A ID

: Slot

EX
ID

MA

EX
WB

.....

Figure 7.86 LDS.L Instructions (PR) Pipeline

The pipeline has five stages: IF, ID, EX, MA, and WB (figure 7.86). It is the same as an ordinary
load instruction.

467

STS.L Instruction (Common): Includes the following instruction type:

• STS.L PR, @–Rn

Next instruction

Third instruction in series

IF

IF

EX

IF ID

Instruction A ID

: Slot

EX
ID

MA

EX

.....

Figure 7.87 STS.L Instruction (PR) Pipeline

The pipeline has four stages: IF, ID, EX, and MA (figure 7.87). It is the same as an ordinary load
instruction.

468

Register → MAC Transfer Instructions (Common, or SH-DSP): Include the following
instruction types:

• CLRMAC

• LDS Rm, MACH

• LDS Rm, MACL

• LDS Rm,DSR (SH-DSP)

• LDS Rm,A0 (SH-DSP)

• LDS Rm,X0 (SH-DSP)

• LDS Rm,X1 (SH-DSP)

• LDS Rm,Y0 (SH-DSP)

• LDS Rm,Y1 (SH-DSP)

Next instruction

Third instruction in series

IF

IF

EX

IF ID

Instruction A ID

: Slot

EX
ID

MA

EX

.....

Figure 7.88 Register → MAC Transfer Instruction Pipeline

The pipeline has four stages: IF, ID, EX, and MA (figure 7.88). MA is a stage for accessing the
multiplier. MA contends with IF. This makes it the same as ordinary store instructions. Since the
multiplier does contend with the MA, however, the items noted for the multiplication,
Multiply/Accumulate, double-length multiplication, and double-length multiply/accumulate
instructions apply.

469

Memory → MAC Transfer Instructions (Common, or SH-DSP): Include the following
instruction types:

• LDS.L @Rm+, MACH

• LDS.L @Rm+, MACL

• LDS.L @Rm+,DSR (SH-DSP)

• LDS.L @Rm+,A0 (SH-DSP)

• LDS.L @Rm+,X0 (SH-DSP)

• LDS.L @Rm+,X1 (SH-DSP)

• LDS.L @Rm+,Y0 (SH-DSP)

• LDS.L @Rm+,Y1 (SH-DSP)

Next instruction

Third instruction in series

IF

IF

EX

IF ID

Instruction A ID

: Slot

EX
ID

MA

EX

.....

Figure 7.89 Memory → MAC Transfer Instruction Pipeline

The pipeline has four stages: IF, ID, EX, and MA (figure 7.89). MA contends with IF. MA is a
stage for memory access and multiplier access. This makes it the same as ordinary load
instructions. Since the multiplier does contend with the MA, however, the items noted for the
multiplication, Multiply/Accumulate, double-length multiplication, and double-length
multiply/accumulate instructions apply.

470

MAC → Register Transfer Instructions (Common, or SH-DSP): Include the following
instruction types:

• STS MACH, Rn

• STS MACL, Rn

• STS DSR,Rn

• STS A0,Rn

• STS X0,Rn

• STS X1,Rn

• STS Y0,Rn

• STS Y1,Rn

Next instruction

Third instruction in series

IF

IF

EX

IF ID

Instruction A ID

: Slot

EX
ID

MA

EX
WB

.....

Figure 7.90 MAC → Register Transfer Instruction Pipeline

The pipeline has five stages: IF, ID, EX, MA, and WB (figure 7.90). MA is a stage for accessing
the multiplier. MA contends with IF. This makes it the same as ordinary load instructions. Since
the multiplier does contend with the MA, however, the items noted for the multiplication,
Multiply/Accumulate, double-length multiplication, and double-length multiply/accumulate
instructions apply.

471

MAC → Memory Transfer Instructions (Common, or SH-DSP): Include the following
instruction types:

• STS.L MACH, @–Rn

• STS.L MACL, @–Rn

• STS.L DSR,@–Rn (SH-DSP)

• STS.L A0,@–Rn (SH-DSP)

• STS.L X0,@–Rn (SH-DSP)

• STS.L X1,@–Rn (SH-DSP)

• STS.L Y0,@–Rn (SH-DSP)

• STS.L Y1,@–Rn (SH-DSP)

Next instruction

Third instruction in series

IF

IF

EX

IF ID

Instruction A ID

: Slot

EX
ID

MA

EX

.....

Figure 7.91 MAC → Memory Transfer Instruction Pipeline

The pipeline has four stages: IF, ID, EX, and MA (figure 7.91). MA is a stage for accessing the
memory and multiplier. MA contends with IF. This makes it the same as ordinary store
instructions. Since the multiplier does contend with the MA, however, the items noted for the
multiplication, Multiply/Accumulate, double-length multiplication, and double-length
multiply/accumulate instructions apply.

472

RTE Instruction (Common): RTE

Delay slot

Branch destination

IF

IF

EX

IF ID

RTE ID

: Slot

EX
—

MA

— —

MA

ID EX

.....

Figure 7.92 RTE Instruction Pipeline

The pipeline has five stages: IF, ID, EX, MA, and MA (figure 7.92). The MAs do not contend
with IF. RTE is a delayed branch instruction. The ID of the delay slot instruction is stalled 3 slots.
The IF of the branch destination instruction starts from the slot following the MA of the RTE.

TRAP Instruction (Common): TRAPA #imm

Next instruction

Third instruction in series

IF

IF

EX

IF

Instruction A ID EX MA

EX

EX

IF IDBranch destination

MA MA EX EX

IF ID

: Slot

......

Figure 7.93 TRAP Instruction Pipeline

The pipeline has nine stages: IF, ID, EX, EX, MA, MA, MA, EX, and EX (figure 7.93). The MAs
do not contend with IF. TRAP is not a delayed branch instruction. The two instructions after the
TRAP instruction are fetched, but they are discarded without being executed. The IF of the branch
destination instruction starts from the slot of the EX in the ninth stage of the TRAP instruction.

SLEEP Instruction (Common): SLEEP

Next instruction

IF

IF

EXSLEEP ID

: Slot

.....

Figure 7.94 SLEEP Instruction Pipeline

The pipeline has three stages: IF, ID and EX (figure 7.94). It is issued until the IF of the next
instruction. After the SLEEP instruction is executed, the CPU enters sleep mode or standby mode.

473

7.4.7 Exception Processing

Interrupt Exception Processing (Common): The interrupt is received during the ID stage of the
instruction and everything after the ID stage is replaced by the interrupt exception processing
sequence. The pipeline has ten stages: IF, ID, EX, EX, MA, MA, EX, MA, EX, and EX (figure
7.95). Interrupt exception processing is not a delayed branch. In interrupt exception processing, an
overrun fetch (IF) occurs. In branch destination instructions, the IF starts from the slot that has the
final EX in the interrupt exception processing.

Interrupt sources are external interrupt request pins such as NMI, user breaks, IRQ, and on-chip
peripheral module interrupts.

EX

Next instruction

Branch destination

IF EXInterrupt ID EX MA MA EX MA EX EX

IF ID

IF ID

: Slot

IF

......

Figure 7.95 Interrupt Exception Processing Pipeline

Address Error Exception Processing: The address error is received during the ID stage of the
instruction and everything after the ID stage is replaced by the address error exception processing
sequence. The pipeline has ten stages: IF, ID, EX, EX, MA, MA, EX, MA, EX, and EX (figure
7.96). Address error exception processing is not a delayed branch. In address error exception
processing, an overrun fetch (IF) occurs. In branch destination instructions, the IF starts from the
slot that has the final EX in the address error exception processing.

Address errors are caused by instruction fetches and by data reads or writes. See the Hardware
Manual for information on the causes of address errors.

EX

Next instruction

Branch destination

IF EXInterrupt ID EX MA MA EX MA EX EX

IF ID

IF ID

: Slot

IF

......

Figure 7.96 Address Error Exception Processing Pipeline

Illegal Instruction Exception Processing (Common): The illegal instruction is received during
the ID stage of the instruction and everything after the ID stage is replaced by the illegal
instruction exception processing sequence. The pipeline has nine stages: IF, ID, EX, EX, MA,
MA, MA, EX, and EX (figure 7.97). Illegal instruction exception processing is not a delayed

474

branch. In illegal instruction exception processing, overrun fetches (IF) occur. Whether there is an
IF only in the next instruction or in the one after that as well depends on the instruction that was to
be executed. In branch destination instructions, the IF starts from the slot that has the final EX in
the illegal instruction exception processing.

Illegal instruction exception processing is caused by ordinary illegal instructions and by
instructions with illegal slots. When undefined code placed somewhere other than the slot directly
after the delayed branch instruction (called the delay slot) is decoded, ordinary illegal instruction
exception processing occurs. When undefined code placed in the delay slot is decoded or when an
instruction placed in the delay slot to rewrite the program counter is decoded, an illegal slot
instruction occurs.

EX

Next instruction

Branch destination

IF EXInterrupt ID EX MA MA MA EX EX

IFIF) ID

IF ID

: Slot

IF

......

Figure 7.97 Illegal Instruction Exception Processing Pipeline

475

Appendix A CPU Instructions

A.1 CPU Instructions

Instructions executed by the CPU core are described in alphabetical order.

Table A.1 CPU Instructions in Alphabetical Order

Instruction Operation Code Cycles T Bit

ADD #imm,Rn Rn + imm → Rn 0111nnnniiiiiiii 1 —

ADD Rm,Rn Rn + Rm → Rn 0011nnnnmmmm1100 1 —

ADDC Rm,Rn Rn + Rm + T → Rn, Carry → T 0011nnnnmmmm1110 1 Carry

ADDV Rm,Rn Rn + Rm → Rn, Overflow → T 0011nnnnmmmm1111 1 Over-
flow

AND #imm,R0 R0 & imm → R0 11001001iiiiiiii 1 —

AND Rm,Rn Rn & Rm → Rn 0010nnnnmmmm1001 1 —

AND.B #imm,@(R0,
GBR)

(R0 + GBR) & imm → (R0 +
GBR)

11001101iiiiiiii 3 —

BF label If T = 0, disp × 2 + PC → PC;
if T = 1, nop

10001011dddddddd 3/1*1 —

BF/S label If T = 0, disp × 2 + PC → PC;
if T = 1, nop

10001111dddddddd 2/1*1 —

BRA label Delayed branch, disp × 2 + PC
→ PC

1010dddddddddddd 2 —

BRAF Rm Delayed branch, Rm + PC →
PC

0000mmmm00100011 2 —

BSR label Delayed branch, PC → PR,
disp × 2 + PC → PC

1011dddddddddddd 2 —

BSRF Rm Delayed branch, PC → PR,
Rm + PC → PC

0000mmmm00000011 2 —

BT label If T = 1, disp × 2 + PC → PC;
if T = 0, nop

10001001dddddddd 3/1*1 —

BT/S label If T = 1, disp × 2 + PC → PC;
if T = 0, nop

10001101dddddddd 2/1*1 —

476

Table A.1 CPU Instructions in Alphabetical Order (cont)

Instruction Operation Code Cycles T Bit

CLRMAC 0 → MACH, MACL 0000000000101000 1 —

CLRT 0 → T 0000000000001000 1 0

CMP/EQ #imm,R0 If R0 = imm,
1 → T

10001000iiiiiiii 1 Comparison
result

CMP/EQ Rm,Rn If Rn = Rm, 1 → T 0011nnnnmmmm0000 1 Comparison
result

CMP/GE Rm,Rn If Rn ≥ Rm with signed
data,
1 → T

0011nnnnmmmm0011 1 Comparison
result

CMP/GT Rm,Rn If Rn > Rm with signed
data,
1 → T

0011nnnnmmmm0111 1 Comparison
result

CMP/HI Rm,Rn If Rn > Rm with
unsigned data,

0011nnnnmmmm0110 1 Comparison
result

CMP/HS Rm,Rn If Rn ≥ Rm with
unsigned data,
1 → T

0011nnnnmmmm0010 1 Comparison
result

CMP/PL Rn If Rn>0, 1 → T 0100nnnn00010101 1 Comparison
result

CMP/PZ Rn If Rn ≥ 0, 1 → T 0100nnnn00010001 1 Comparison
result

CMP/STR Rm,Rn If Rn and Rm have an
equivalent byte, 1 → T

0010nnnnmmmm1100 1 Comparison
result

DIV0S Rm,Rn MSB of Rn → Q, MSB
of Rm → M,
M ^ Q → T

0010nnnnmmmm0111 1 Calculation
result

DIV0U 0 → M/Q/T 0000000000011001 1 0

DIV1 Rm,Rn Single-step division
(Rn/Rm)

0011nnnnmmmm0100 1 Calculation
result

DMULS.L Rm,Rn Signed operation of Rn
× Rm → MACH,
MACHL

0011nnnnmmmm1101 2 to 4*2 —

DMULU.L Rm,Rn Unsigned operation of
Rn × Rm → MACH,
MACL

0011nnnnmmmm0101 2 to 4*2 —

477

Table A.1 CPU Instructions in Alphabetical Order (cont)

Instruction Operation Code Cycles T Bit

DT Rn Rn – 1 → Rn, when Rn is 0,
1 → T. When Rn is nonzero,
0 → T

0100nnnn00010000 1 Comp-
arison
result

EXTS.B Rm,Rn A byte in Rm is sign-
extended → Rn

0110nnnnmmmm1110 1 —

EXTS.W Rm,Rn A word in Rm is sign-
extended → Rn

0110nnnnmmmm1111 1 —

EXTU.B Rm,Rn A byte in Rm is zero-
extended → Rn

0110nnnnmmmm1100 1 —

EXTU.W Rm,Rn A word in Rm is zero-
extended → Rn

0110nnnnmmmm1101 1 —

JMP @Rm Delayed branch,
Rm → PC

0100mmmm00101011 2 —

JSR @Rm Delayed branch,
PC → PR, Rm → PC

0100mmmm00001011 2 —

LDC Rm,GBR Rm → GBR 0100mmmm00011110 1 —

LDC Rm,MOD Rm→MOD 0100mmmm01011110 1 —

LDC Rm,RE Rm→RE 0100mmmm01111110 1 —

LDC Rm,RS Rm→RS 0100mmmm01101110 1 —

LDC Rm,SR Rm→SR 0100mmmm00001110 1 LSB

LDC Rm,VBR Rm→VBR 0100mmmm00101110 1 —

LDC.L @Rm+,GBR (Rm)→GBR,Rm+4→Rm 0100mmmm00010111 3 —

LDC.L @Rm+,MOD (Rm)→MOD,Rn+4→Rn 0100mmmm01010111 3 —

LDC.L @Rm+,RE (Rm)→RE,Rn+4→Rn 0100mmmm01110111 3 —

LDC.L @Rm+,RS (Rm)→RS,Rn+4→Rn 0100mmmm01100111 3 —

LDC.L @Rm+,SR (Rm)→SR,Rm+4→Rm 0100mmmm00000111 3 LSB

LDC.L @Rm+,VBR (Rm)→VBR,Rm+4→Rm 0100mmmm00100111 3 —

LDRE @(disp,PC) disp × 2 +PC→RE 10001110dddddddd 1 —

LDRS @(disp,PC) disp × 2 +PC→RS 10001100dddddddd 1 —

LDS Rm,A0 Rm → A0 0100mmmm01111010 1 —

LDS Rm,DSR Rm → DSR 0100mmmm01101010 1 —

LDS Rm,MACH Rm → MACH 0100mmmm00001010 1 —

LDS Rm,MACL Rm → MACL 0100mmmm00011010 1 —

LDS Rm,PR Rm → PR 0100mmmm00101010 1 —

478

Table A.1 CPU Instructions in Alphabetical Order (cont)

Instruction Operation Code Cycles T Bit

LDS Rm,X0 Rm→X0 0100mmmm10001010 1 —

LDS Rm,X1 Rm→X1 0100mmmm10011010 1 —

LDS Rm,Y0 Rm→Y0 0100mmmm10101010 1 —

LDS Rm,Y1 Rm→Y1 0100mmmm10111010 1 —

LDS.L @Rm+,A0 (Rm) → A0,
Rm + 4 → Rm

0100mmmm01110110 1 —

LDS.L @Rm+,DSR (Rm) → DSR,
Rm + 4 → Rm

0100mmmm01100110 1 —

LDS.L @Rm+,MACH (Rm) → MACH,
Rm + 4 → Rm

0100mmmm00000110 1 —

LDS.L @Rm+,MACL (Rm) → MACL,
Rm + 4 → Rm

0100mmmm00010110 1 —

LDS.L @Rm+,PR (Rm) → PR,
Rm + 4 → Rm

0100mmmm00100110 1 —

LDS.L @Rm+,X0 (Rm)→X0,Rm+4→Rm 0100mmmm10000110 1 —

LDS.L @Rm+,X1 (Rm)→X1,Rm+4→Rm 0100mmmm10010110 1 —

LDS.L @Rm+,Y0 (Rm)→Y0,Rm+4→Rm 0100mmmm10100110 1 —

LDS.L @Rm+,Y1 (Rm)→Y1,Rm+4→Rm 0100mmmm10110110 1 —

MAC.L @Rm+,@Rn+ Signed operation of (Rn)
× (Rm) + MAC → MAC

0000nnnnmmmm1111 3 (2 to
4)*2

—

MAC.W @Rm+,@Rn+ Signed operation of (Rn)
× (Rm) + MAC → MAC

0100nnnnmmmm1111 3/(2)*2 —

MOV #imm,Rn #imm → Sign extension
→ Rn

1110nnnniiiiiiii 1 —

MOV Rm,Rn Rm → Rn 0110nnnnmmmm0011 1 —

MOV.B @(disp,GBR),
R0

(disp + GBR) → Sign
extension → R0

11000100dddddddd 1 —

MOV.B @(disp,Rm),
R0

(disp + Rm) → Sign
extension → R0

10000100mmmmdddd 1 —

MOV.B @(R0,Rm),Rn (R0 + Rm) → Sign
extension → Rn

0000nnnnmmmm1100 1 —

MOV.B @Rm+,Rn (Rm) → Sign extension
→ Rn,
Rm + 1 → Rm

0110nnnnmmmm0100 1 —

MOV.B @Rm,Rn (Rm) → Sign extension
→ Rn

0110nnnnmmmm0000 1 —

479

Table A.1 CPU Instructions in Alphabetical Order (cont)

Instruction Operation Code Cycles T Bit

MOV.B R0,@(disp,
GBR)

R0 → (disp + GBR) 11000000dddddddd 1 —

MOV.B R0,@(disp,
Rn)

R0 → (disp + Rn) 10000000nnnndddd 1 —

MOV.B Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0100 1 —

MOV.B Rm,@–Rn Rn–1 → Rn,
Rm → (Rn)

0010nnnnmmmm0100 1 —

MOV.B Rm,@Rn Rm → (Rn) 0010nnnnmmmm0000 1 —

MOV.L @(disp,GBR),
R0

(disp × 4 + GBR) → R0 11000110dddddddd 1 —

MOV.L @(disp,PC),
Rn

(disp × 4 + PC) → Rn 1101nnnndddddddd 1 —

MOV.L @(disp,Rm),
Rn

(disp × 4 + Rm) → Rn 0101nnnnmmmmdddd 1 —

MOV.L @(R0,Rm),Rn (R0 + Rm) → Rn 0000nnnnmmmm1110 1 —

MOV.L @Rm+,Rn (Rm) → Rn,
Rm + 4 → Rm

0110nnnnmmmm0110 1 —

MOV.L @Rm,Rn (Rm) → Rn 0110nnnnmmmm0010 1 —

MOV.L R0,@(disp,
GBR)

R0 → (disp × 4 + GBR) 11000010dddddddd 1 —

MOV.L Rm,@(disp,
Rn)

Rm → (disp × 4 + Rn) 0001nnnnmmmmdddd 1 —

MOV.L Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0110 1 —

MOV.L Rm,@–Rn Rn–4 → Rn, Rm → (Rn) 0010nnnnmmmm0110 1 —

MOV.L Rm,@Rn Rm → (Rn) 0010nnnnmmmm0010 1 —

MOV.W @(disp,GBR),
R0

(disp × 2 + GBR) → Sign
extension → R0

11000101dddddddd 1 —

MOV.W @(disp,PC),
Rn

(disp × 2 + PC) → Sign
extension → Rn

1001nnnndddddddd 1 —

MOV.W @(disp,Rm),
R0

(disp × 2 + Rm) → Sign
extension → R0

10000101mmmmdddd 1 —

MOV.W @(R0,Rm),Rn (R0 + Rm) → Sign
extension → Rn

0000nnnnmmmm1101 1 —

MOV.W @Rm+,Rn (Rm) → Sign extension →
Rn, Rm + 2 → Rm

0110nnnnmmmm0101 1 —

480

Table A.1 CPU Instructions in Alphabetical Order (cont)

Instruction Operation Code Cycles T Bit

MOV.W @Rm,Rn (Rm) → Sign extension
→ Rn

0110nnnnmmmm0001 1 —

MOV.W R0,@(disp,
GBR)

R0 → (disp × 2 + GBR) 11000001dddddddd 1 —

MOV.W R0,@(disp,
Rn)

R0 → (disp × 2 + Rn) 10000001nnnndddd 1 —

MOV.W Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0101 1 —

MOV.W Rm,@–Rn Rn–2 → Rn, Rm → (Rn) 0010nnnnmmmm0101 1 —

MOV.W Rm,@Rn Rm → (Rn) 0010nnnnmmmm0001 1 —

MOVA @(disp,PC),
R0

disp × 4 + PC → R0 11000111dddddddd 1 —

MOVT Rn T → Rn 0000nnnn00101001 1 —

MUL.L Rm,Rn Rn × Rm → MACL 0000nnnnmmmm0111 2 to 4*2 —

MULS.W Rm,Rn Signed operation of Rn ×
Rm → MAC

0010nnnnmmmm1111 1 to 3*2 —

MULU.W Rm,Rn Unsigned operation of Rn
× Rm → MAC

0010nnnnmmmm1110 1 to 3*2 —

NEG Rm,Rn 0–Rm → Rn 0110nnnnmmmm1011 1 —

NEGC Rm,Rn 0–Rm–T → Rn, Borrow
→ T

0110nnnnmmmm1010 1 Bor-
row

NOP No operation 0000000000001001 1 —

NOT Rm,Rn ~Rm → Rn 0110nnnnmmmm0111 1 —

OR #imm,R0 R0 | imm → R0 11001011iiiiiiii 1 —

OR Rm,Rn Rn | Rm → Rn 0010nnnnmmmm1011 1 —

OR.B #imm,@(R0,
GBR)

(R0 + GBR) | imm → (R0
+ GBR)

11001111iiiiiiii 3 —

ROTCL Rn T ← Rn ← T 0100nnnn00100100 1 MSB

ROTCR Rn T → Rn → T 0100nnnn00100101 1 LSB

ROTL Rn T ← Rn ← MSB 0100nnnn00000100 1 MSB

ROTR Rn LSB → Rn → T 0100nnnn00000101 1 LSB

RTE Delayed branch, stack
area→PC/SR

0000000000101011 4 LSB

481

Table A.1 CPU Instructions in Alphabetical Order (cont)

Instruction Operation Code Cycles T Bit

RTS Delayed branch, PR → PC 0000000000001011 2 —

SETRC #imm imm → RC (SR[23:16]), 0
→ SR[27:24]

10000010iiiiiiii 1 —

SETRC Rm Rm [11:0]), 0 →
RC(SR[27:16])

0100mmmm00010100 1 —

SETT 1 → T 0000000000011000 1 1

SHAL Rn T ← Rn ← 0 0100nnnn00100000 1 MSB

SHAR Rn MSB → Rn → T 0100nnnn00100001 1 LSB

SHLL Rn T ← Rn ← 0 0100nnnn00000000 1 MSB

SHLL2 Rn Rn << 2 → Rn 0100nnnn00001000 1 —

SHLL8 Rn Rn << 8 → Rn 0100nnnn00011000 1 —

SHLL16 Rn Rn << 16 → Rn 0100nnnn00101000 1 —

SHLR Rn 0 → Rn → T 0100nnnn00000001 1 LSB

SHLR2 Rn Rn>>2 → Rn 0100nnnn00001001 1 —

SHLR8 Rn Rn>>8 → Rn 0100nnnn00011001 1 —

SHLR16 Rn Rn>>16 → Rn 0100nnnn00101001 1 —

SLEEP Sleep 0000000000011011 3 —

STC GBR,Rn GBR → Rn 0000nnnn00010010 1 —

STC MOD,Rn MOD → Rn 0000nnnn01010010 1 —

STC RE,Rn RE → Rn 0000nnnn01110010 1 —

STC RS,Rn RS → Rn 0000nnnn01100010 1 —

STC SR,Rn SR → Rn 0000nnnn00000010 1 —

STC VBR,Rn VBR → Rn 0000nnnn00100010 1 —

STC.L GBR,@–Rn Rn–4 → Rn,
GBR → (Rn)

0100nnnn00010011 2 —

STC.L MOD,@–Rn Rn–4 → Rn,
MOD → (Rn)

0100nnnn01010011 2 —

STC.L RE,@–Rn Rn–4 → Rn,
RE → (Rn)

0100nnnn01110011 2 —

STC.L RS,@–Rn Rn–4 → Rn,
RS → (Rn)

0100nnnn01100011 2 —

482

Table A.1 CPU Instructions in Alphabetical Order (cont)

Instruction Operation Code Cycles T Bit

STC.L SR,@–Rn Rn–4 → Rn,
SR → (Rn)

0100nnnn00000011 2 —

STC.L VBR,@–Rn Rn–4 → Rn,
VBR → (Rn)

0100nnnn00100011 2 —

STS A0,Rn A0 → Rn 0000nnnn01111010 1 —

STS DSR,Rn DSR → Rn 0000nnnn01101010 1 —

STS MACH,Rn MACH → Rn 0000nnnn00001010 1 —

STS MACL,Rn MACL → Rn 0000nnnn00011010 1 —

STS PR,Rn PR → Rn 0000nnnn00101010 1 —

STS X0,Rn X0→Rn 0000nnnn10001010 1 —

STS X1,Rn X1→Rn 0000nnnn10011010 1 —

STS Y0,Rn Y0→Rn 0000nnnn10101010 1 —

STS Y1,Rn Y1→Rn 0000nnnn10111010 1 —

STS.L A0,@–Rn Rn–4 → Rn,
A0 → (Rn)

0100nnnn01110010 1 —

STS.L DSR,@–Rn Rn–4 → Rn,
DSR → (Rn)

0100nnnn01100010 1 —

STS.L MACH,@–Rn Rn–4 → Rn,
MACH → (Rn)

0100nnnn00000010 1 —

STS.L MACL,@–Rn Rn–4 → Rn,
MACL → (Rn)

0100nnnn00010010 1 —

STS.L PR,@–Rn Rn–4 → Rn,
R → (Rn)

0100nnnn00100010 1 —

STS.L X0,@-Rn Rn–4→Rn,X0→(Rn) 0100nnnn10000010 1 —

STS.L X1,@-Rn Rn–4→Rn,X1→(Rn) 0100nnnn10010010 1 —

STS.L Y0,@-Rn Rn–4→Rn,Y0→(Rn) 0100nnnn10100010 1 —

STS.L Y1,@-Rn Rn–4→Rn,Y1→(Rn) 0100nnnn10110010 1 —

SUB Rm,Rn Rn–Rm → Rn 0011nnnnmmmm1000 1 —

SUBC Rm,Rn Rn–Rm–T → Rn,
Borrow → T

0011nnnnmmmm1010 1 Borrow

SUBV Rm,Rn Rn–Rm → Rn, Underflow
→ T

0011nnnnmmmm1011 1 Under-
flow

483

Table A.1 CPU Instructions in Alphabetical Order (cont)

Instruction Operation Code Cycles T Bit

SWAP.B Rm,Rn Rm → Swap the two
lowest-order bytes → Rn

0110nnnnmmmm1000 1 —

SWAP.W Rm,Rn Rm → Swap two
consecutive words → Rn

0110nnnnmmmm1001 1 —

TAS.B @Rn If (Rn) is 0, 1 → T; 1 →
MSB of (Rn)

0100nnnn00011011 4 Test
result

TRAPA #imm PC/SR → Stack area,
(imm × 4 + VBR) → PC

11000011iiiiiiii 8 —

TST #imm,R0 R0 & imm; if the result is 0,
1 → T

11001000iiiiiiii 1 Test
result

TST Rm,Rn Rn & Rm; if the result is 0,
1 → T

0010nnnnmmmm1000 1 Test
result

TST.B #imm,@(R0,
GBR)

(R0 + GBR) & imm;
if the result is 0, 1 → T

11001100iiiiiiii 3 Test
result

XOR #imm,R0 R0 ^ imm → R0 11001010iiiiiiii 1 —

XOR Rm,Rn Rn ^ Rm → Rn 0010nnnnmmmm1010 1 —

XOR.B #imm,@(R0,
GBR)

(R0 + GBR) ^ imm → (R0
+ GBR)

11001110iiiiiiii 3 —

XTRCT Rm,Rn Rm: Middle 32 bits of Rn
→ Rn

0010nnnnmmmm1101 1 —

Notes: 1. The normal minimum number of execution cycles. The number in parentheses is the
number of cycles when there is contention with following instructions.

2. One state when it does not branch.

Added CPU Instructions: Table A.2 shows the CPU instructions in the SH-DSP added since the
SH-2 (3 types, 24 instructions). Table A.3 shows the CPU instructions in the SH-2 added since the
SH-1 (6 types, 9 instructions).

484

Table A.2 CPU Instructions in the SH-DSP Added since the SH-2

Instruction Operation Code Cycles T Bit

LDC Rm,MOD Rm → MOD 0100mmmm01011110 1 —

LDC Rm,RE Rm → RE 0100mmmm01111110 1 —

LDC Rm,RS Rm → RS 0100mmmm01101110 1 —

LDC.L @Rm+,MOD (Rm) → MOD,
Rm + 4 → Rm

0100mmmm01010111 3 —

LDC.L @Rm+,RE (Rm) → RE,
Rm + 4 → Rm

0100mmmm01110111 3 —

LDC.L @Rm+,RS (Rm) → RS,
Rm + 4 → Rm

0100mmmm01100111 3 —

LDRE
@(disp,PC)

disp × 2 + PC → RE 10001110dddddddd 1 —

LDRS
@(disp,PC)

disp × 2 + PC → RS 10001100dddddddd 1 —

LDS Rm,DSR Rm → DSR 0100mmmm01101010 1 —

LDS Rm,A0 Rm → A0 0100mmmm01111010 1 —

LDS Rm,X0 Rm→X0 0100mmmm10001010 1 —

LDS Rm,X1 Rm→X1 0100mmmm10011010 1 —

LDS Rm,Y0 Rm→Y0 0100mmmm10101010 1 —

LDS Rm,Y1 Rm→Y1 0100mmmm10111010 1 —

LDS.L @Rm+,DSR (Rm) → DSR,
Rm + 4 → Rm

0100mmmm01100110 1 —

LDS.L @Rm+,A0 (Rm) → A0, Rm + 4 →
Rm

0100mmmm01110110 1 —

LDS.L@Rm+,X0 (Rm)→X0,Rm+4→Rm 0100nnnn10000110 1 —

LDS.L@Rm+,X1 (Rm)→X1,Rm+4→Rm 0100nnnn10010110 1 —

LDS.L@Rm+,Y0 (Rm)→Y0,Rm+4→Rm 0100nnnn10100110 1 —

LDS.L@Rm+,Y1 (Rm)→Y1,Rm+4→Rm 0100nnnn10110110 1 —

SETRC Rm Rm[11:0] → RC
(SR[27:16])

0100nnnn00010100 1 —

SETRC #imm imm → RC (SR [23:16]),
zeros → SR[27:24]

10000010iiiiiiii 1 —

STC MOD,Rn MOD → Rn 0000nnnn01010010 1 —

STC RE,Rn RE → Rn 0000nnnn01110010 1 —

STC RS,Rn RS → Rn 0000nnnn01100010 1 —

485

Table A.2 CPU Instructions in the SH-DSP Added since the SH-2 (cont)

Instruction Operation Code Cycles T Bit

STC.L MOD,@–Rn Rn–4 → Rn, MOD → (Rn) 0100nnnn01010011 2 —

STC.L RE,@–Rn Rn–4 → Rn, RE → (Rn) 0100nnnn01110011 2 —

STC.L RS,@–Rn Rn–4 → Rn, RS → (Rn) 0100nnnn01100011 2 —

STS DSR,Rn DSR → Rn 0000nnnn01101010 1 —

STS A0,Rn A0 → Rn 0000nnnn01111010 1 —

STS X0,Rn X0→Rn 0000nnnn10001010 1 —

STS X1,Rn X1→Rn 0000nnnn10011010 1 —

STS Y0,Rn Y0→Rn 0000nnnn10101010 1 —

STS Y1,Rn Y1→Rn 0000nnnn10111010 1 —

STS.L DSR,@–Rn Rn–4 → Rn, DSR → (Rn) 0100nnnn01100010 1 —

STS.L A0,@–Rn Rn–4 → Rn, A0 → (Rn) 0100nnnn01110010 1 —

STS.LX0,@-Rn Rn–4→Rn,X0→(Rn) 0100nnnn10000010 1 —

STS.LX1,@-Rn Rn–4→Rn,X1→(Rn) 0100nnnn10010010 1 —

STS.LY0,@-Rn Rn–4→Rn,Y0→(Rn) 0100nnnn10100010 1 —

STS.LY1,@-Rn Rn–4→Rn,Y1→(Rn) 0100nnnn10110010 1 —

486

Table A.3 CPU Instructions in the SH-2 Added since the SH-1

Instruction Operation Code Cycles T Bit

BF/S label When T = 0, disp × 2 +
PC → PC; When T = 1,
nop

10001111dddddddd 2/1 —

BRAF Rm Delayed branch, Rm + PC
→ PC

0000mmmm00100011 2 —

BSRF Rm Delayed branch, PC →
PR, Rm + PC → PC

0000mmmm00000011 2 —

BT/S label When T = 1, disp × 2 +
PC → PC; When T = 0,
nop

10001101dddddddd 2/1 —

DMULS.L
Rm,Rn

Signed Rn x Rm →
MACH, MACL 32 × 32 →
64 bits

0011nnnnmmmm1101 2 (to 4) —

DMULU.L
Rm,Rn

Unsigned Rn x Rm →
MACH, MACL 32 × 32 →
64 bits

0011nnnnmmmm0101 2 (to 4) —

DT Rn Rn - 1 → Rn, When Rn is
0, 1 → T, when Rn is
nonzero, 0 → T

0100nnnn00010000 1 Compa-
rison
result

MAC.L @Rm+,@Rn+ Signed (Rn) × (Rm) +
MAC → MAC

0000nnnnmmmm1111 2 (to 4) —

MUL.L Rm,Rn Rn × Rm → MACL 0000nnnnmmmm0111 2 (to 4) —

SH-1/SH-2/SH-DSP Programming Manual

Publication Date: 1st Edition, September 1994
4th Edition, March 1999

Published by: Electronic Devices Sales & Marketing Group
Semiconductor & Integrated Circuits Group
Hitachi, Ltd.

Edited by: Technical Documentation Group
UL Media Co., Ltd.

Copyright © Hitachi, Ltd., 1994. All rights reserved. Printed in Japan.

	Cautions
	Introduction
	Contents
	Section 1 Features
	1.1 SH-1 and SH-2 Features
	1.2 SH-DSP Features

	Section 2 Register Configuration
	2.1 General Registers
	2.2 Control Registers
	2.3 System Registers
	2.4 DSP Registers
	2.5 Precautions for Handling of Guard Bit and Overflow
	2.6 Initial Values of Registers

	Section 3 Data Formats
	3.1 Data Format in Registers
	3.2 Data Format in Memory
	3.3 Immediate Data Format
	3.4 DSP Type Data Formats
	3.5 DSP Instructions and Data Formats
	3.5.1 DSP Data Processing
	3.5.2 X and Y Data Transfers
	3.5.3 Single Data Transfers

	Section 4 Instruction Features
	4.1 RISC-Type Instruction Set
	4.2 Addressing Modes
	4.3 Instruction Format
	4.4 DSP
	4.5 DSP Data Addressing
	4.5.1 X and Y Data Addressing
	4.5.2 Single Data Addressing
	4.5.3 Modulo Addressing
	4.5.4 DSP Addressing Operation

	4.6 Instruction Formats for DSP Instructions
	4.6.1 Double and Single Data Transfer Instructions
	4.6.2 Parallel Processing Instructions

	4.7 ALU Fixed Decimal Point Operations
	4.7.1 Function
	4.7.2 Instructions and Operands
	4.7.3 DC Bit
	4.7.4 Condition Bits
	4.7.5 Overflow Prevention Function (Saturation Operation)

	4.8 ALU Integer Operations
	4.9 ALU Logical Operations
	4.9.1 Function
	4.9.2 Instructions and Operands
	4.9.3 DC Bit
	4.9.4 Condition Bits

	4.10 Fixed Decimal Point Multiplication
	4.11 Shift Operations
	4.11.1 Arithmetic Shift Operations
	4.11.2 Logical Shift Operations

	4.12 The MSB Detection Instruction
	4.12.1 Function
	4.12.2 Instructions and Operands
	4.12.3 DC Bit
	4.12.4 Condition Bits

	4.13 Rounding
	4.13.1 Operation Function
	4.13.2 Instructions and Operands
	4.13.3 DC Bit
	4.13.4 Condition Bits
	4.13.5 Overflow Prevention Function (Saturation Operation)

	4.14 Condition Select Bits (CS) and the DSP Condition Bit (DC)
	4.15 Overflow Prevention Function (Saturation Operation)
	4.16 Data Transfers
	4.16.1 X and Y Memory Data Transfer
	4.16.2 Single Data Transfers

	4.17 Operand Contention
	4.18 DSP Repeat (Loop) Control
	4.18.1 Actual programming

	4.19 Conditional Instructions and Data Transfers

	Section 5 Instruction Set
	5.1 Instruction Set for CPU Instructions
	5.1.1 Data Transfer Instructions
	5.1.2 Arithmetic Instructions
	5.1.3 Logic Operation Instructions
	5.1.4 Shift Instructions
	5.1.5 Branch Instructions
	5.1.6 System Control Instructions
	5.1.7 CPU Instructions That Support DSP Functions

	5.2 DSP Data Transfer Instruction Set
	5.2.1 Double Data Transfer Instructions (X Memory Data)
	5.2.2 Double Data Transfer Instructions (Y Memory Data)
	5.2.3 Single Data Transfer Instructions

	5.3 DSP Operation Instruction Set
	5.3.1 ALU Arithmetic Operation Instructions
	5.3.2 ALU Logical Operation Instructions
	5.3.3 Fixed Decimal Point Multiplication Instructions
	5.3.4 Shift Operation Instructions
	5.3.5 System Control Instructions
	5.3.6 NOPX and NOPY Instruction Code

	Section 6 Instruction Descriptions
	6.1 Instruction Descriptions
	6.1.1 Sample Description (Name): Classification
	6.1.2 ADD (ADD Binary): Arithmetic Instruction
	6.1.3 ADDC (ADD with Carry): Arithmetic Instruction
	6.1.4 ADDV (ADD with V Flag Overflow Check): Arithmetic Instruction
	6.1.5 AND (AND Logical): Logic Operation Instruction
	6.1.6 BF (Branch if False): Branch Instruction
	6.1.7 BF/S (Branch if False with Delay Slot): Branch Instruction
	6.1.8 BRA (Branch): Branch Instruction
	6.1.9 BRAF (Branch Far): Branch Instruction
	6.1.10 BSR (Branch to Subroutine): Branch Instruction
	6.1.11 BSRF (Branch to Subroutine Far): Branch Instruction
	6.1.12 BT (Branch if True): Branch Instruction
	6.1.13 BT/S (Branch if True with Delay Slot): Branch Instruction
	6.1.14 CLRMAC (Clear MAC Register): System Control Instruction
	6.1.15 CLRT (Clear T Bit): System Control Instruction
	6.1.16 CMP/cond (Compare Conditionally): Arithmetic Instruction
	6.1.17 DIV0S (Divide Step 0 as Signed): Arithmetic Instruction
	6.1.18 DIV0U (Divide Step 0 as Unsigned): Arithmetic Instruction
	6.1.19 DIV1 (Divide 1 Step): Arithmetic Instruction
	6.1.20 DMULS.L (Double-Length Multiply as Signed): Arithmetic Instruction
	6.1.21 DMULU.L (Double-Length Multiply as Unsigned): Arithmetic Instruction
	6.1.22 DT (Decrement and Test): Arithmetic Instruction
	6.1.23 EXTS (Extend as Signed): Arithmetic Instruction
	6.1.24 EXTU (Extend as Unsigned): Arithmetic Instruction
	6.1.25 JMP (Jump): Branch Instruction
	6.1.26 JSR (Jump to Subroutine): Branch Instruction (Class: Delayed Branch Instruction)
	6.1.27 LDC (Load to Control Register): System Control Instruction (Class: Interrupt
	6.1.28 LDRE (Load Effective Address to RE Register): System Control Instruction
	6.1.29 LDRS (Load Effective Address to RS Register): System Control Instruction
	6.1.30 LDS (Load to System Register): System Control Instruction
	6.1.31 MAC.L (Multiply and Accumulate Calculation Long): Arithmetic Instruction
	6.1.32 MAC.W (Multiply and Accumulate Calculation Word): Arithmetic Instruction
	6.1.33 MOV (Move Data): Data Transfer Instruction
	6.1.34 MOV (Move Immediate Data): Data Transfer Instruction
	6.1.35 MOV (Move Peripheral Data): Data Transfer Instruction
	6.1.36 MOV (Move Structure Data): Data Transfer Instruction
	6.1.37 MOVA (Move Effective Address): Data Transfer Instruction
	6.1.38 MOVT (Move T Bit): Data Transfer Instruction
	6.1.39 MUL.L (Multiply Long): Arithmetic Instruction
	6.1.40 MULS.W (Multiply as Signed Word): Arithmetic Instruction
	6.1.41 MULU.W (Multiply as Unsigned Word): Arithmetic Instruction
	6.1.42 NEG (Negate): Arithmetic Instruction
	6.1.43 NEGC (Negate with Carry): Arithmetic Instruction
	6.1.44 NOP (No Operation): System Control Instruction
	6.1.45 NOT (NOT—Logical Complement): Logic Operation Instruction
	6.1.46 OR (OR Logical) Logic Operation Instruction
	6.1.47 ROTCL (Rotate with Carry Left): Shift Instruction
	6.1.48 ROTCR (Rotate with Carry Right): Shift Instruction
	6.1.49 ROTL (Rotate Left): Shift Instruction
	6.1.50 ROTR (Rotate Right): Shift Instruction
	6.1.51 RTE (Return from Exception): System Control Instruction
	6.1.52 RTS (Return from Subroutine): Branch Instruction (Class: Delayed Branch Instruction)
	6.1.53 SETRC (Set Repeat Count to RC): System Control Instruction
	6.1.54 SETT (Set T Bit): System Control Instruction
	6.1.55 SHAL (Shift Arithmetic Left): Shift Instruction
	6.1.56 SHAR (Shift Arithmetic Right): Shift Instruction
	6.1.57 SHLL (Shift Logical Left): Shift Instruction
	6.1.58 SHLLn (Shift Logical Left n Bits): Shift Instruction
	6.1.59 SHLR (Shift Logical Right): Shift Instruction
	6.1.60 SHLRn (Shift Logical Right n Bits): Shift Instruction
	6.1.61 SLEEP (Sleep): System Control Instruction
	6.1.62 STC (Store Control Register): System Control Instruction (Interrupt Disabled Instructions)
	6.1.63 STS (Store System Register): System Control Instruction (Interrupt Disabled Instructions)
	6.1.64 SUB (Subtract Binary): Arithmetic Instruction
	6.1.65 SUBC (Subtract with Carry): Arithmetic Instruction
	6.1.66 SUBV (Subtract with V Flag Underflow Check): Arithmetic Instruction
	6.1.67 SWAP (Swap Register Halves): Data Transfer Instruction
	6.1.68 TAS (Test and Set): Logic Operation Instruction
	6.1.69 TRAPA (Trap Always): System Control Instruction
	6.1.70 TST (Test Logical): Logic Operation Instruction
	6.1.71 XOR (Exclusive OR Logical): Logic Operation Instruction
	6.1.72 XTRCT (Extract): Data Transfer Instruction

	6.2 DSP Data Transfer Instructions
	6.2.1 X and Y Data Transfers (MOVX.W and MOVY.W)
	6.2.2 Single Data Transfers (MOVS.W and MOVS.L)
	6.2.3 Sample Description (Name): Classification
	6.2.4 MOVS (Move Single Data between Memory and DSP Register): DSP Data Transfer Instruction
	6.2.5 MOVX (Move between X Memory and DSP Register): DSP Data Transfer Instruction
	6.2.6 MOVY (Move between Y Memory and DSP Register): DSP Data Transfer Instruction
	6.2.7 NOPX (No Access Operation for X Memory): DSP Data Transfer Instruction
	6.2.8 NOPY (No Access Operation for Y Memory): DSP Data Transfer Instruction

	6.3 DSP Operation Instructions
	6.3.1 PABS (Absolute): DSP Arithmetic Operation Instruction
	6.3.2 [if cc]PADD (Addition with Condition): DSP Arithmetic Operation Instruction
	6.3.3 PADD PMULS (Addition & Multiply Signed by Signed): DSP Arithmetic Operation Instruction
	6.3.4 PADDC (Addition with Carry): DSP Arithmetic Operation Instruction
	6.3.5 [if cc] PAND (Logical AND): DSP Logical Operation Instruction
	6.3.6 [if cc] PCLR (Clear): DSP Arithmetic Operation Instruction
	6.3.7 PCMP (Compare Two Data): DSP Arithmetic Operation Instruction
	6.3.8 [if cc] PCOPY (Copy with Condition): DSP Arithmetic Operation Instruction
	6.3.9 [if cc] PDEC (Decrement by 1): DSP Arithmetic Operation Instruction
	6.3.10 [if cc] PDMSB (Detect MSB with Condition): DSP Arithmetic Operation Instruction
	6.3.11 [if cc] PINC (Increment by 1 with Condition): DSP Arithmetic Operation Instruction
	6.3.12 [if cc] PLDS (Load System Register): DSP System Control Instruction
	6.3.13 PMULS (Multiply Signed by Signed): DSP Arithmetic Operation Instruction
	6.3.14 [if cc] PNEG (Negate): DSP Arithmetic Operation Instruction
	6.3.15 [if cc] POR (Logical OR): DSP Logical Operation Instruction
	6.3.16 PRND (Rounding): DSP Arithmetic Operation Instruction
	6.3.17 [if cc] PSHA (Shift Arithmetically with Condition): DSP Arithmetic Shift Instruction
	6.3.18 [if cc] PSHL (Shift Logically with Condition): DSP Logical Shift Instruction
	6.3.19 [if cc] PSTS (Store System Register): DSP System Control Instruction
	6.3.20 [if cc]PSUB (Subtract with Condition): DSP Arithmetic Operation Instruction
	6.3.21 PSUB PMULS (Subtraction & Multiply Signed by Signed): DSP Arithmetic Operation Instruction
	6.3.22 PSUBC (Subtraction with Carry): DSP Arithmetic Operation Instruction
	6.3.23 [if cc] PXOR (Logical Exclusive OR): DSP Logical Operation Instruction
	6.1.1 Sample Description (Name): Classification
	6.1.2 ADD (ADD Binary): Arithmetic Instruction
	6.1.3 ADDC (ADD with Carry): Arithmetic Instruction
	6.1.4 ADDV (ADD with V Flag Overflow Check): Arithmetic Instruction
	6.1.5 AND (AND Logical): Logic Operation Instruction
	6.1.6 BF (Branch if False): Branch Instruction
	6.1.7 BF/S (Branch if False with Delay Slot): Branch Instruction
	6.1.8 BRA (Branch): Branch Instruction
	6.1.9 BRAF (Branch Far): Branch Instruction
	6.1.10 BSR (Branch to Subroutine): Branch Instruction
	6.1.11 BSRF (Branch to Subroutine Far): Branch Instruction
	6.1.12 BT (Branch if True): Branch Instruction
	6.1.13 BT/S (Branch if True with Delay Slot): Branch Instruction
	6.1.14 CLRMAC (Clear MAC Register): System Control Instruction
	6.1.15 CLRT (Clear T Bit): System Control Instruction
	6.1.16 CMP/cond (Compare Conditionally): Arithmetic Instruction
	6.1.17 DIV0S (Divide Step 0 as Signed): Arithmetic Instruction
	6.1.18 DIV0U (Divide Step 0 as Unsigned): Arithmetic Instruction
	6.1.19 DIV1 (Divide 1 Step): Arithmetic Instruction
	6.1.20 DMULS.L (Double-Length Multiply as Signed): Arithmetic Instruction
	6.1.21 DMULU.L (Double-Length Multiply as Unsigned): Arithmetic Instruction
	6.1.22 DT (Decrement and Test): Arithmetic Instruction
	6.1.23 EXTS (Extend as Signed): Arithmetic Instruction
	6.1.24 EXTU (Extend as Unsigned): Arithmetic Instruction
	6.1.25 JMP (Jump): Branch Instruction
	6.1.26 JSR (Jump to Subroutine): Branch Instruction (Class: Delayed Branch Instruction)
	6.1.27 LDC (Load to Control Register): System Control Instruction (Class: Interrupt Disabled Instruction)
	6.1.28 LDRE (Load Effective Address to RE Register): System Control Instruction
	6.1.29 LDRS (Load Effective Address to RS Register): System Control Instruction
	6.1.30 LDS (Load to System Register): System Control Instruction
	6.1.31 MAC.L (Multiply and Accumulate Calculation Long): Arithmetic Instruction
	6.1.32 MAC.W (Multiply and Accumulate Calculation Word): Arithmetic Instruction
	6.1.33 MOV (Move Data): Data Transfer Instruction
	6.1.34 MOV (Move Immediate Data): Data Transfer Instruction
	6.1.35 MOV (Move Peripheral Data): Data Transfer Instruction
	6.1.36 MOV (Move Structure Data): Data Transfer Instruction
	6.1.37 MOVA (Move Effective Address): Data Transfer Instruction
	6.1.38 MOVT (Move T Bit): Data Transfer Instruction
	6.1.39 MUL.L (Multiply Long): Arithmetic Instruction
	6.1.40 MULS.W (Multiply as Signed Word): Arithmetic Instruction
	6.1.41 MULU.W (Multiply as Unsigned Word): Arithmetic Instruction
	6.1.42 NEG (Negate): Arithmetic Instruction
	6.1.43 NEGC (Negate with Carry): Arithmetic Instruction
	6.1.44 NOP (No Operation): System Control Instruction
	6.1.45 NOT (NOT—Logical Complement): Logic Operation Instruction
	6.1.46 OR (OR Logical) Logic Operation Instruction
	6.1.47 ROTCL (Rotate with Carry Left): Shift Instruction
	6.1.48 ROTCR (Rotate with Carry Right): Shift Instruction
	6.1.49 ROTL (Rotate Left): Shift Instruction
	6.1.50 ROTR (Rotate Right): Shift Instruction
	6.1.51 RTE (Return from Exception): System Control Instruction
	6.1.52 RTS (Return from Subroutine): Branch Instruction (Class: Delayed Branch Instruction)
	6.1.53 SETRC (Set Repeat Count to RC): System Control Instruction
	6.1.54 SETT (Set T Bit): System Control Instruction
	6.1.55 SHAL (Shift Arithmetic Left): Shift Instruction
	6.1.56 SHAR (Shift Arithmetic Right): Shift Instruction
	6.1.57 SHLL (Shift Logical Left): Shift Instruction
	6.1.58 SHLLn (Shift Logical Left n Bits): Shift Instruction
	6.1.59 SHLR (Shift Logical Right): Shift Instruction
	6.1.60 SHLRn (Shift Logical Right n Bits): Shift Instruction
	6.1.61 SLEEP (Sleep): System Control Instruction
	6.1.62 STC (Store Control Register): System Control Instruction (Interrupt Disabled Instruction)
	6.1.63 STS (Store System Register): System Control Instruction (Interrupt Disabled Instruction)
	6.1.64 SUB (Subtract Binary): Arithmetic Instruction
	6.1.65 SUBC (Subtract with Carry): Arithmetic Instruction
	6.1.66 SUBV (Subtract with V Flag Underflow Check): Arithmetic Instruction
	6.1.67 SWAP (Swap Register Halves): Data Transfer Instruction
	6.1.68 TAS (Test and Set): Logic Operation Instruction
	6.1.69 TRAPA (Trap Always): System Control Instruction
	6.1.70 TST (Test Logical): Logic Operation Instruction
	6.1.71 XOR (Exclusive OR Logical): Logic Operation Instruction
	6.1.72 XTRCT (Extract): Data Transfer Instruction

	Section 7 Pipeline Operation
	7.1 Basic Configuration of Pipelines
	7.1.1 The Five-Stage Pipeline
	7.1.2 Slot and Pipeline Flow
	7.1.3 Slot Length
	7.1.4 Number of Instruction Execution Cycles

	7.2 Contention
	7.2.1 Contention between Instruction Fetch (IF) and Memory Access (MA)
	7.2.2 Contention when the Previous Instruction’s Destination Register Is Used
	7.2.3 Multiplier Access Contention
	7.2.4 Contention between Memory Stores and DSP Operations

	7.3 Programming Guide
	7.3.1 Types of Contention and Affected Instructions
	7.3.2 Increasing Instruction Execution Speed
	7.3.3 Cycles

	7.4 Operation of Instruction Pipelines
	7.4.1 Data Transfer Instructions
	7.4.2 Arithmetic Instructions
	7.4.3 Logic Operation Instructions
	7.4.4 Shift Instructions (Common)
	7.4.5 Branch Instructions
	7.4.6 System Control Instructions
	7.4.7 Exception Processing

	Appendix A CPU Instructions
	A.1 CPU Instructions

