Section 18 Electrical Specifications

18.1 Absolute Maximum Ratings

Table 18-1 lists the absolute maximum ratings.

Table 18-1 Absolute Maximum Ratings

Item	Symbol	Rating	Unit
Supply voltage	Vcc	-0.3 to +0.7	٧
Programming voltage	VPP	-0.3 to +13.5	٧
Input voltage (except port 6)	Vin	-0.3 to Vcc + 0.3	٧
Input voltage (port 6)	Vìn	-0.3 to AVcc + 0.3	٧
Analog supply voltage	AVcc	-0.3 to +7.0	٧
Analog input voltage	Van	-0.3 to AVcc + 0.3	٧
Operating temperature	Topr	Regular specifications: -20 to +75	.c
		Wide-range specifications: -40 to +85	.c
Storage temperature	Tstg	-55 to +125	.c

Note: Permanent damage to the chip may result if the absolute maximum ratings shown in table 18-1 are exceeded.

18.2 Electrical Characteristics

18.2.1 DC Characteristics

Table 18-2 lists the DC characteristics.

Table 18-2 DC Characteristics

Conditions: $Vcc = AVcc = 5.0 \text{ V} \pm 10\%^{*1}$, Vss = AVss = 0 V,

 $T_a = -20$ to 75°C (Regular specifications)

 $T_a = -40$ to 85°C (Wide-range specifications)

	•						Test
Item		Symbol	min	typ	max	Unit	Conditions
Input high voltage	RES, MD ₂ ,	Vін	Vcc - 0.7		Vcc + 0.3	V	
	MD ₁ , MD ₀						
	EXTAL		Vcc × 0.7		Vcc + 0.3	<u>v</u>	
	Port 6		2.2		AVcc + 0.3		
	Other input pins		2.2	_	Vcc + 0.3	٧	
	(except port 5)						
Input low voltage	RES, MD2,	VIL	-0.3	_	0.5	٧	
	MD ₁ , MD ₀						
	Other input pins		-0.3	_	8.0		
	(except port 5)						
Schmitt trigger	Port 5	VT-	1.0		2.5		
input voltage		VT+	2.0		3.5	V	
		VT+ – VT-	0.4			٧	
Input leakage current	RES	lin			10.0	μА	$V_{in} = 0.5 to$
	NMI, MD2,				1.0	μА	Vcc - 0.5 V
	MD1, MD0,						
	Port 6		_	_	1.0	μΑ	$V_{in} = 0.5 to$
							AVcc - 0.5 V
Leakage current	Port 7,	Itsi	_	_	1.0	μΑ	$V_{in} = 0.5 to$
in 3-state	ports 5 to 1						Vcc - 0.5 V
(off state)							
Input pull-up	Ports 3 and 4	-IP	50	_	200	μА	Vin = 0 V
MOS current							
Output high voltage	All output pins	Vон	Vcc - 0.5		_	٧	Iон = −200 μA
			3.5		_	٧	loн = -1 mA
Output low voltage	All output pins	Vol		_	0.4	٧	loL = 1.6 mA
•	(except RES)						
	Port 3		_	_	1.0	٧	lot = 8 mA
			_		1.2	٧	lot = 10 mA
	RES		_		0.4	V	lot = 2.6 mA
Input capacitance	RES	Cin	_		60	pF	Vin = 0 V
. It - :	NMI	-		_	30	pF	f = 1 MHz
	All input pins		_		15	pF	Ta = 25°C
	except RES					•	

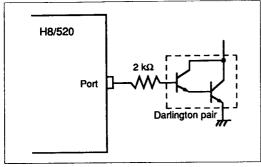
Table 18-2 DC Characteristics (cont)

							Test
Item		Symbol	min	typ	max	Unit	Conditions
Current dissipation*	Normal operation	lcc		20	30	mA	f = 6 MHz
				25	40	mA	f = 8 MHz
				30	50	mA	f = 10 MHz
				12	20	mA	f = 6 MHz
	Sleep mode			16	25	mA	f = 8 MHz
			_	20	30	mA	f = 10 MHz
	Standby		_	0.01	5.0	μА	
Analog supply	During A/D	Alcc	_	0.6	2.0	mA	
current	conversion						
	While waiting	•	_	0.01	5.0	μА	
RAM standby voltage		VRAM	2.0	_	_	٧	

Note: AVcc must be connected to a power supply even when the A/D converter is not used.

Table 18-3 Allowable Output Current Sink Values

Conditions: $VCC = AVCC = 5.0 \text{ V} \pm 10\%$, Vss = AVss = 0 V,


 $T_a = -20$ to 75°C (Regular specifications)

 $T_a = -40$ to 85°C (Wide-range specifications)

Item		Symbol	min	typ	max	Unit
Allowable output low	Port 3	loL		_	10	mA
current sink (per pin)	RES				2.6	mA
	Other output pins		_	_	2.0	mA
Allowable output low	Port 3, total of 8 pins	∑ lor	_	_	40	mA
current sink (total)	Total of all other		_	_	80	mA
	output pins					
Allowable output high	All output pins	-Іон	_	_	2.0	mA
current sink (per pin)						
Allowable output high	Total of all output	∑ –Юн	_	_	40	mA
current sink (total)	pins					

Note: To avoid degrading the reliability of the chip, be careful not to exceed the output current sink values in table 18-3. In particular, when driving a Darlington transistor pair or LED directly, be sure to insert a current-limiting resistor in the output path. See figures 18-1 and 18-2.

^{*} Current dissipation values assume that V_{IH} min = V_{CC} − 0.5 V, V_{IL} max = 0.5 V, all output pins are in the no-load state, and all MOS input pull-ups are off.

H8/520 Vcc 600 Ω

Figure 18-1 Example of Circuit for Driving a Darlington Transistor Pair

Figure 18-2 Example of Circuit for Driving an LED

18.2.2 AC Characteristics

The AC characteristics of the H8/520 chip are listed in three tables. Bus timing parameters are given in table 18-4, control signal timing parameters in table 18-5, and timing parameters of the on-chip supporting modules in table 18-6. See figure 18-3 for the output load circuit.

Table 18-4 Bus Timing

Conditions:

 $Vcc = 5.0 \text{ V} \pm 10\%$, $\emptyset = 0.5 \text{ to } 10 \text{ MHz}$, Vss = 0 V

 $T_a = -20$ to 75°C (Regular specifications)

 $T_a = -40$ to 85°C (Wide-range specifications)

		6 N	lHz _	8 1	MHz	10	MHz		Test
ltem	Symbol	min	max	min	max	min	max	Unit	Conditions
Clock cycle time	toyc	166.7	2000	125	2000	100	2000	ns	See figure 18-4
Clock pulse width low	tcL	65		45		35		ns	_
Clock pulse width high	tсн	65		45		35		ns	_
Clock rise time	t Cr	-	15		15		15	ns	
Clock fall time	tor		15		15		15	ns	-
Address delay time	tad		70		60	_	55	ns	_
Address hold time	tah	30		25		20		ns	_
RD delay time 1	tRDD1		70		60		40	ns	_
RD delay time 2	tRDD2	_	70		60		50	ns	_
WR delay time 1	twnD1	_	70		60		50	ns	_
WR delay time 2	twRD2		70		60		50	ns	_
Write data strobe pulse width	tosww	200		150		120	_	ns	_
Address setup time 1	tası	25		20		15		ns	
Address setup time 2	tas2	105		80		65	-	ns	See figure 18-4
Read data setup time	tros	60		50		40	_	ns	

Table 18-4 Bus Timing (cont)

		6 1	6 MHz		8 MHz		10 MHz		Test	
Item	Symbol	min	max	min	max	min	max	Unit	Conditions	
Read data hold time	troh	0	_	0	_	0	_	ns	See figure 18-4	
Read data access time	tacc		280	_	190	_	160	ns	_	
Write data delay time	twoo		70		60		60	ns	_	
Write data setup time	twos	30		15	_	10	_	ns	-	
Write data hold time	twoH	30		25	_	20	_	ns		
Wait setup time	twrs	40		40		40		ns	See figure 18-5	
Wait hold time	twrH	10		10		10		ns		

Table 18-5 Control Signal Timing

Conditions: $Vcc = 5.0 \text{ V} \pm 10\%$, $\emptyset = 0.5 \text{ to } 10 \text{ MHz}$, Vss = 0 V

 $T_a = -20$ to 75°C (Regular specifications) $T_a = -40$ to 85°C (Wide-range specifications)

		6 N	ИHz	8 1	ЛНZ	10	10 MHz		Test
Item	Symbol	min	max	min	max	min	max	Unit	Conditions
RES setup time	tress	200	****	200	_	200	_	ns	See figure 18-6
RES pulse width 1*	tresw1	6.0	_	6.0		6.0		toyo	
RES pulse width 2*	tRESW2	520		520	_	520	_	tcyc	
RES output delay time	tresd	_	100	_	100	_	100	ns	See figure 18-7
RES output pulse width	tresow	132	_	132		132		tcyc	
Mode programming setup time	tMDS	4.0	_	4.0	_	4.0		toyo	See figure 18-6
NMI setup time	tnmis	150		150	_	150	-	ns	See figure 18-8
NMI hold time	tnmih	10		10	_	10	_	ns	_
IRQo setup time	tirqos	50		50		50	_	ns	-
IRQ1 to IRQ7 setup time	tiRQ1S	50		50		50		ns	
IRQ1 to IRQ7 hold time	tiRQ1H	10		10		10		ns	
NMI pulse width (for recovery from software standby mode)	tnmiw	200	_	200	_	200		ns	
A/D trigger setup time	trrgs	50		50		50		ns	See figure 18-18
A/D trigger hold time	tтrgн	10		10		10	-	ns	
Crystal oscillator settling time (reset)	toscı	20		20		20	_	ms	See figure 18-9
Crystal oscillator settling time (software standby)	tosc2	10		10		10		ms	See figure 17-1

Note: * tresw2 applies when the RSTOE bit in the reset control/status register (RSTCR) is set to 1. tresw1 applies when RSTOE is cleared to 0. tresw1 also applies at power-up.

Table 18-6 Timing Conditions of On-Chip Supporting Modules

Conditions: $Vcc = 5.0 \text{ V} \pm 10\%$, $\emptyset = 0.5 \text{ to } 10 \text{ MHz}$, Vss = 0 V

 $T_a = -20$ to 75°C (Regular specifications) $T_a = -40$ to 85°C (Wide-range specifications)

				6 N	AHZ	8 1	VIHz	10 /	MHz		Test
Item			Symbol	min	max	min	max	min	max	Unit	Conditions
FRT	Timer output delay time		t FTOD		100		100	_	100	ns	See figure 18-11
	Timer input setup time		t FTIS	50	_	50	_	50	_	ns	
	Timer clock input setup tin	ne	trtcs	50		50	_	50	_	ns	See figure 18-12
	Timer clock pulse width		trtcw	1.5	_	1.5	_	1.5		tcyc	-
TMR	Timer output delay time		TTMOD		100	_	100	_	100	ns	See figure 18-13
	Timer clock input setup tin	ne	trucs	50		50	_	50	_	ns	See figure 18-14
	Timer clock pulse width		trucw	1.5	_	1.5	_	1.5	_	tcyc	-
	Timer reset input setup tin	пе	TTMRS	50	_	50	_	50	_	ns	See figure 18-15
SCI	Input clock cycle	(Async)	tScyc	2	_	2	_	2	_	tcyc	See figure 18-16
		(Sync)		4	_	4	_	4	-	tcyc	
	Input clock pulse width		tsckw	0.4	0.6	0.4	0.6	0.4	0.6	tscyc	-
	Transmit data delay time	(Sync)	ttxD	_	100	_	100	_	100	ns	See figure 18-17
	Receive data setup time	(Sync)	trxs	100		100	_	100	_	ns	_
	Receive data hold time	(Sync)	taxh	_	100	_	100	_	100	ns	-
Ports	Output data delay time		tpwD	_	100		100	_	100	ns	See figure 18-10
	Input data setup time		tprs	50	_	50	_	50		ns	-
	Input data hold time		tркн	50	_	50		50		ns	•

• Measurement Conditions for AC Characteristics

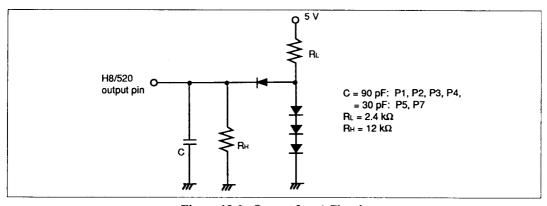


Figure 18-3 Output Load Circuit

18.2.3 A/D Converter Characteristics

Table 18-7 lists the characteristics of the on-chip A/D converter.

Table 18-7 (1) A/D Converter Characteristics

Conditions: $Vcc = AVcc = 5.0 \text{ V} \pm 10\%$, Vss = AVss = 0 V,

 $T_a = -40$ to 85°C (Wide-range specifications)

	6 MHz			8 MHz			10 MHz			
Item	min	typ	max	min	typ	max	min	typ	max	Unit
Resolution	10	10	10	10	10	10	10	10	10	Bits
Conversion time	_		23.0		_	17.25			13.8	μs
Analog input capacitance			20			20			20	pF
Allowable signal-source impedance	_	-	10			10		_	10	kΩ
Nonlinearity error		_	±2.0		_	±2.0			±2.0	LSB
Offset error			±2.0	_	_	±2.0	_	_	±2.0	LSB
Full-scale error	_	_	±2.0			±2.0		_	±2.0	LSB
Quantizing error	_	_	±0.5	_		±0.5		_	±0.5	LSB
Absolute accuracy	_	_	±2.5	_		±2.5	_		±2.5	LSB

Table 18-7 (2) A/D Converter Characteristics

Conditions: $Vcc = AVcc = 5.0 V \pm 10\%$, Vss = AVss = 0 V,

 $T_a = -20$ to 75°C (Regular specifications)

		6 MH	z		8 MH	z		10 MF	lz	
Item	min	typ	max	min	typ	max	min	typ	max	Unit
Resolution	10	10	10	10	10	10	10	10	10	Bits
Conversion time	_	_	23.0		_	17.25	-		13.8	μs
Analog input capacitance		_	20			20			20	pF
Allowable signal-source impedance	_	_	10			10			10	kΩ
Nonlinearity error	_	_	±3.5			±3.5	_	_	±3.5	LSB
Offset error	_		±3.5			±3.5	_	_	±3.5	LSB
Full-scale error	_		±3.5			±3.5	_		±3.5	LSB
Quantizing error	_	_	±0.5		_	±0.5		_	±0.5	LSB
Absolute accuracy	_	_	±4.0			±4.0		_	±4.0	LSB

18.3 MCU Operational Timing

This section provides the following timing charts:

18.3.1 Bus timing	Figures 18-4 and 18-5
18.3.2 Control Signal Timing	Figures 18-6 to 18-8
18.3.3 Clock Timing	Figure 18-9
18.3.4 I/O Port Timing	Figure 18-10
18.3.5 16-Bit Free-Running Timer Timing	Figures 18-11 and 18-12
18.3.6 8-Bit Timer Timing	Figures 18-13 to 18-15
18.3.7 SCI Timing	Figures 18-16 and 18-17

18.3.1 Bus Timing

1. Basic Bus Cycle (without Wait States) in Expanded Modes

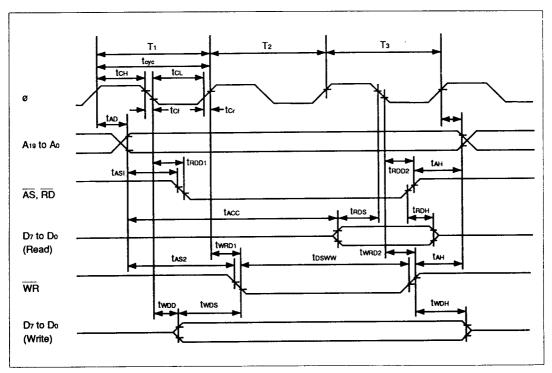


Figure 18-4 Basic Bus Cycle (without Wait States) in Expanded Modes

2. Basic Bus Cycle (with 1 Wait State) in Expanded Modes

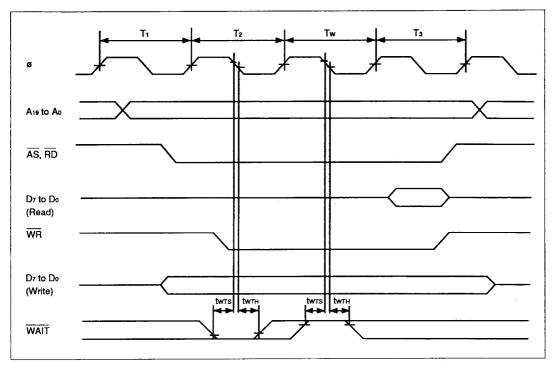


Figure 18-5 Basic Bus Cycle (with 1 Wait State) in Expanded Modes

18.3.2 Control Signal Timing

1. Reset Input Timing

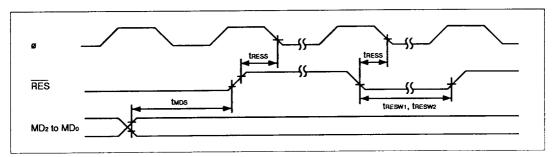


Figure 18-6 Reset Input Timing

2. Reset Output Timing

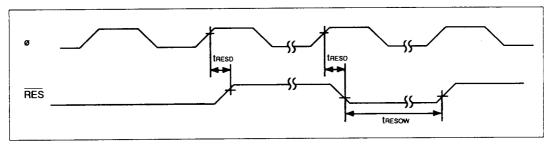


Figure 18-7 Reset Output Timing

3. Interrupt Input Timing

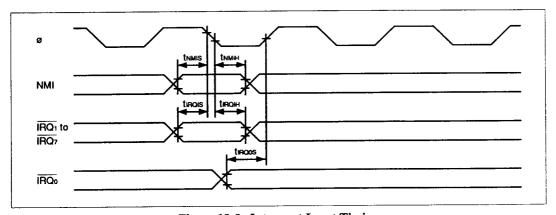


Figure 18-8 Interrupt Input Timing

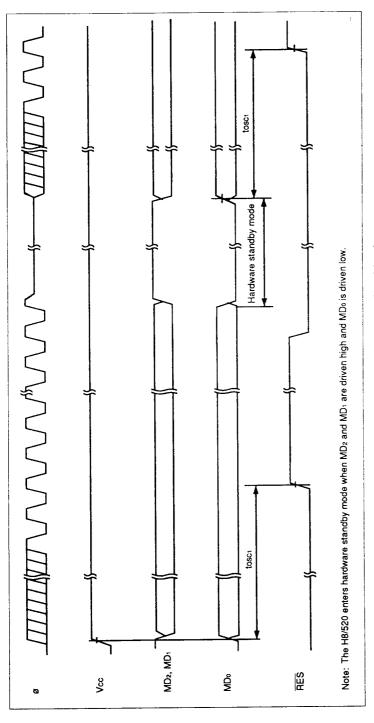


Figure 18-9 Clock Oscillator Stabilization

18.3.4 I/O Port Timing

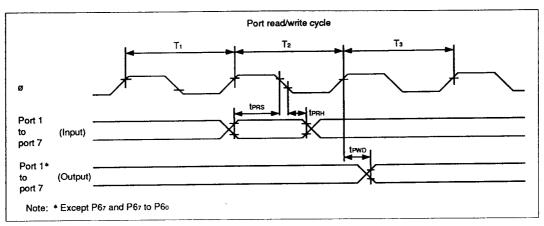


Figure 18-10 I/O Port Input/Output Timing

18.3.5 16-Bit Free-Running Timer Timing

1. Free-Running Timer Input/Output Timing

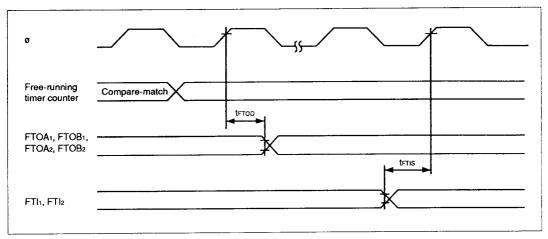


Figure 18-11 Free-Running Timer Input/Output Timing

2. External Clock Input Timing for Free-Running Timers

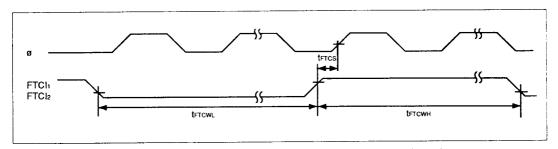


Figure 18-12 External Clock Input Timing for Free-Running Timers

18.3.6 8-Bit Timer Timing

1. 8-Bit Timer Output Timing

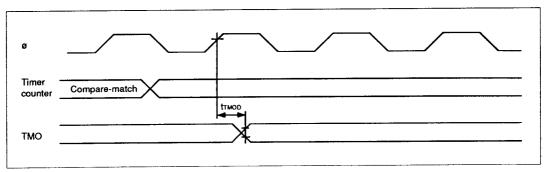


Figure 18-13 8-Bit Timer Output Timing

2. 8-Bit Timer Clock Input Timing

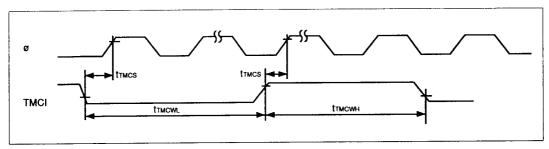


Figure 18-14 8-Bit Timer Clock Input Timing

3. 8-Bit Timer Reset Input Timing

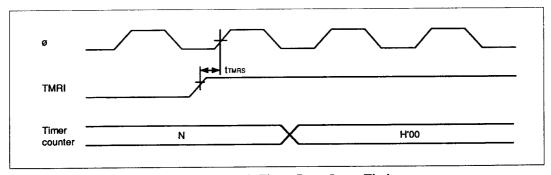


Figure 18-15 8-Bit Timer Reset Input Timing

18.3.7 Serial Communication Interface Timing

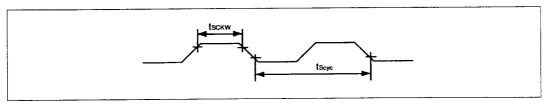


Figure 18-16 SCI Input Clock Timing



Figure 18-17 SCI Input/Output Timing (Synchronous Mode)

18.3.8 A/D External Trigger Input Timing

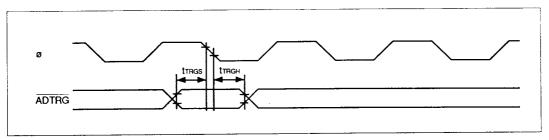


Figure 18-18 A/D External Trigger Input Timing

7-90-20

Appendix F Package Dimensions

Figure F-1 shows the dimensions of the DC-64S package. Figure F-2 shows the dimensions of the DP-64S package. Figure F-3 shows the dimensions of the FP-64A package. Figure F-4 shows the dimensions of the CP-68 package.

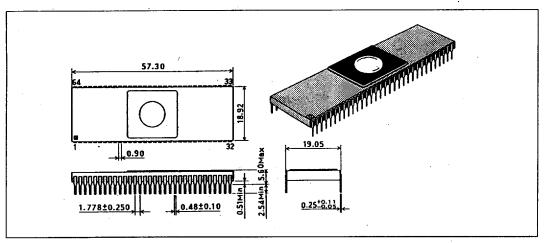


Figure F-1 Package Dimensions (DC-64S)

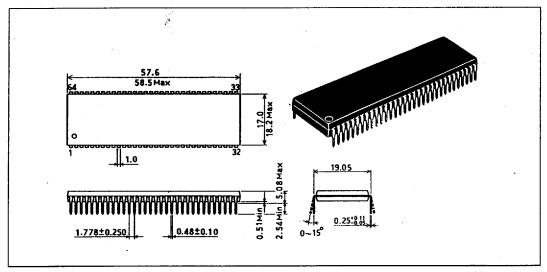


Figure F-2 Package Dimensions (DP-64S)

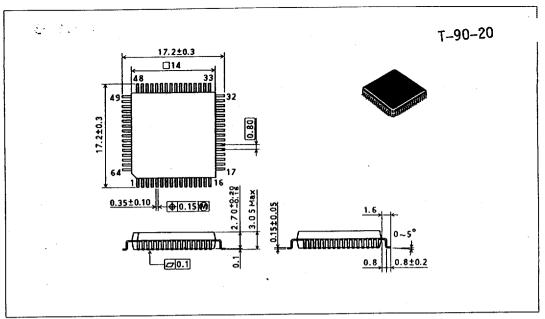


Figure F-3 Package Dimensions (FP-64A)

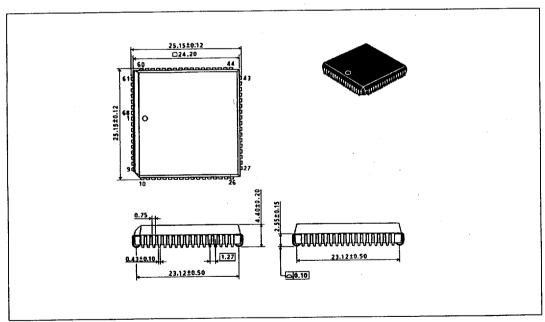


Figure F-4 Package Dimensions (CP-68)