

HD74HCT620, HD74HCT623

Octal Bus Transceivers (with inverted 3-state outputs) Octal Bus Transceivers (with 3-state outputs)

REJ03D0671-0200
(Previous ADE-205-561)
Rev.2.00
Mar 30, 2006

Description

This octal bus transceiver is designed for asynchronous two-way communication between data buses. The control function implementation allows for maximum flexibility in timing.

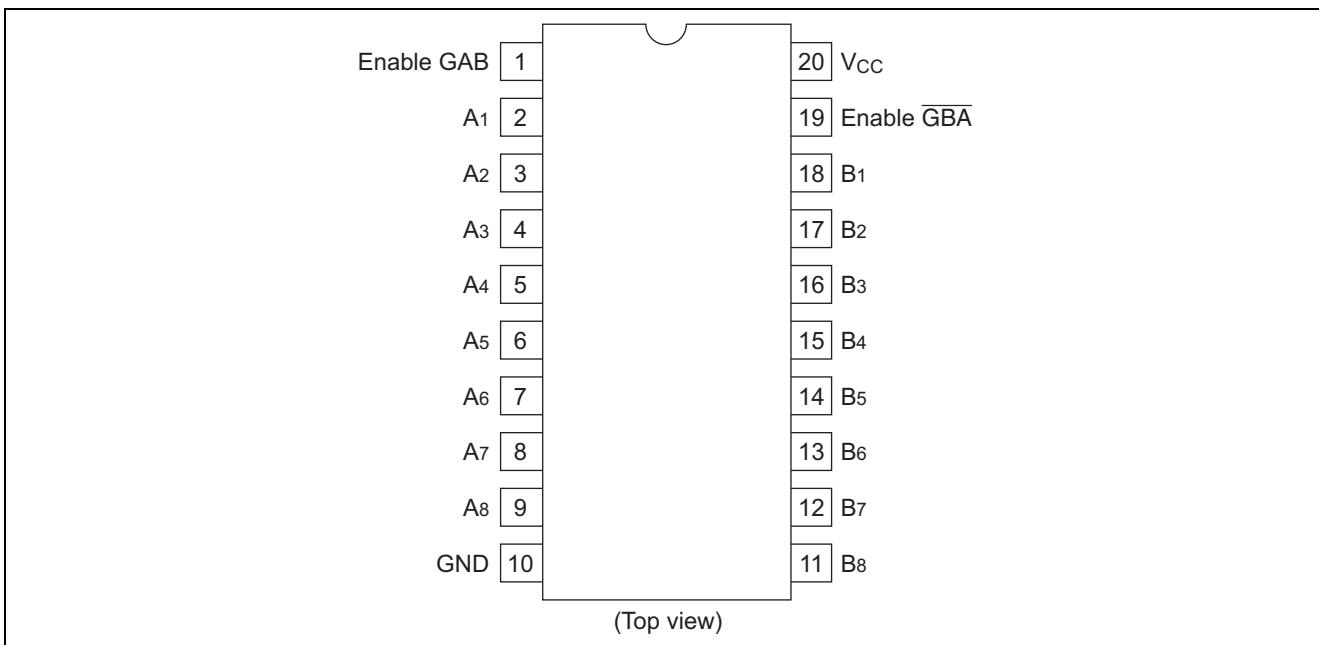
This device allows data transmission from the A bus to the B bus or from the B bus to the A bus depending upon the logic levels at the enable inputs (\overline{GBA} and GAB).

The enable inputs can be used to disable the device so that the buses are effectively isolated.

The dual-enable configuration gives these devices the capability to store data by simultaneous enabling of \overline{GBA} and GAB . Each output reinforces its input in this transceiver configuration. Thus, when both control inputs are enabled and all other data sources to the two sets of bus lines are at high impedance, both sets of bus lines (16 in all) will remain at their last states. The 8-bit codes appearing on the two sets of buses will be identical for the HD74HCT623 or complementary for the HD74HCT620.

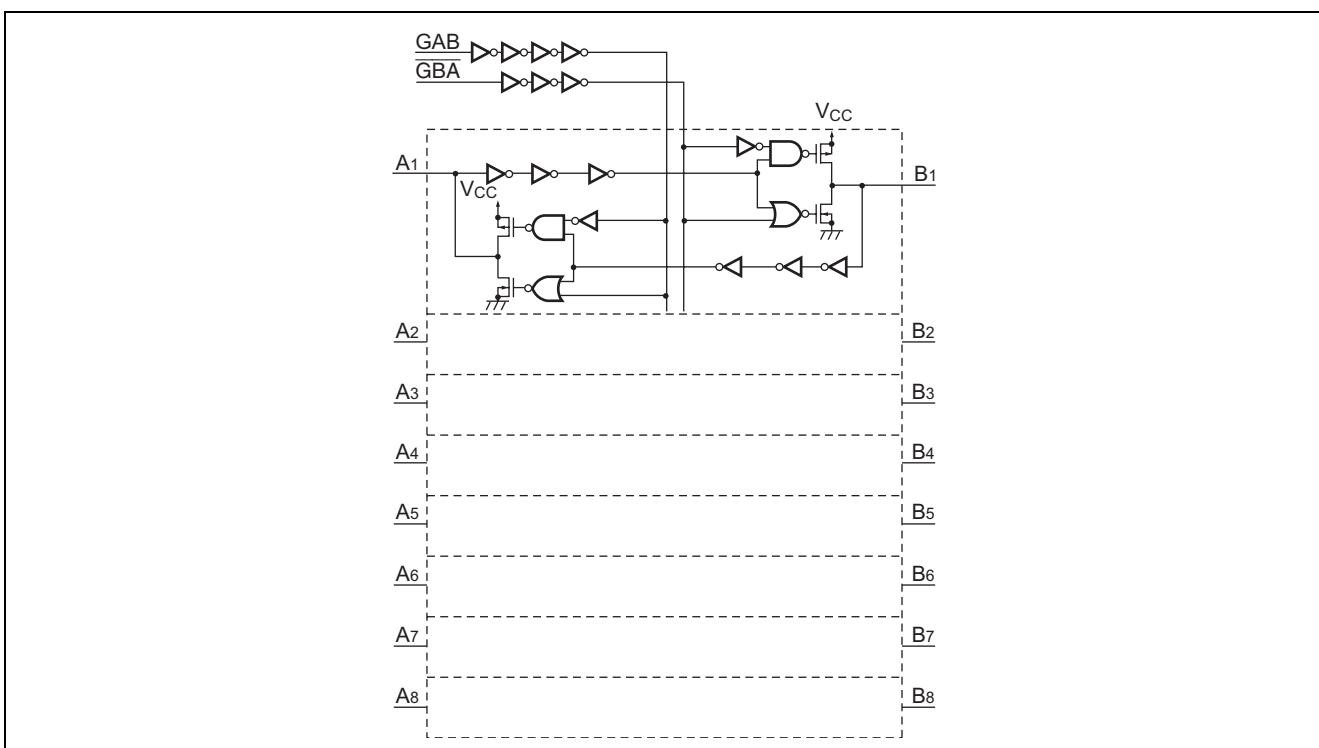
Features

- LSTTL Output Logic Level Compatibility as well as CMOS Output Compatibility
- High Speed Operation: t_{pd} (Bus to Bus) = 15 ns typ ($C_L = 50 \text{ pF}$)
- High Output Current: Fanout of 15 LSTTL Loads (Q_A to Q_H outputs)
- Wide Operating Voltage: $V_{CC} = 4.5$ to 5.5 V
- Low Input Current: $1 \mu\text{A}$ max
- Low Quiescent Supply Current: I_{CC} (static) = $4 \mu\text{A}$ max ($T_a = 25^\circ\text{C}$)
- Ordering Information

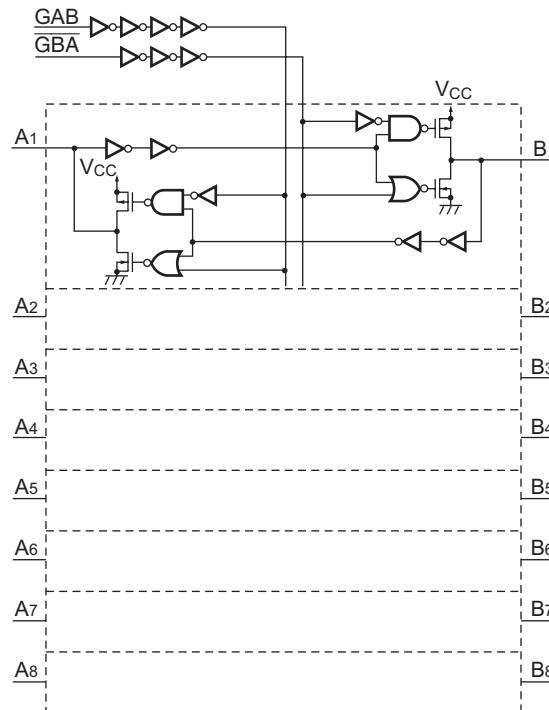

Part Name	Package Type	Package Code (Previous Code)	Package Abbreviation	Taping Abbreviation (Quantity)
HD74HCT623FPEL	SOP-20 pin (JEITA)	PRSP0020DD-B (FP-20DAV)	FP	EL (2,000 pcs/reel)
HD74HCT620RPEL HD74HCT623RPEL	SOP-20 pin (JEDEC)	PRSP0020DC-A (FP-20DBV)	RP	EL (1,000 pcs/reel)

Note: Please consult the sales office for the above package availability.

Function Table


Enable Inputs		Operation	
\overline{GBA}	GAB	HD74HCT620	HD74HCT623
L	L	\overline{B} data to A bus	B data to A bus
H	H	\overline{A} data to B bus	A data to B bus
H	L	Isolation	Isolation
L	H	\overline{B} data to A bus, \overline{A} data to B bus	B data to A bus, A data to B bus

Pin Arrangement



Logic Diagram

HD74HCT620

HD74HCT623

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit
Supply voltage range	V_{CC}	-0.5 to 7.0	V
Input / Output voltage	V_{IN}, V_{OUT}	-0.5 to $V_{CC} + 0.5$	V
Input / Output diode current	I_{IK}, I_{OK}	± 20	mA
Output current	I_{OUT}	± 35	mA
V_{CC} , GND current	I_{CC} or I_{GND}	± 75	mA
Power dissipation	P_T	500	mW
Storage temperature	T_{STG}	-65 to +150	°C

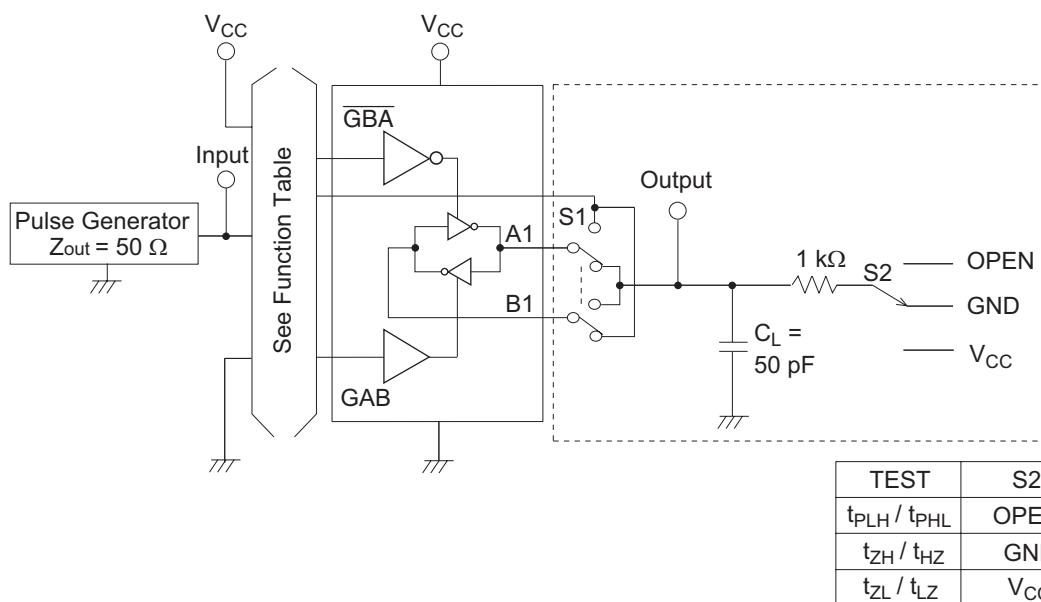
Note: The absolute maximum ratings are values, which must not individually be exceeded, and furthermore, no two of which may be realized at the same time.

Recommended Operating Conditions

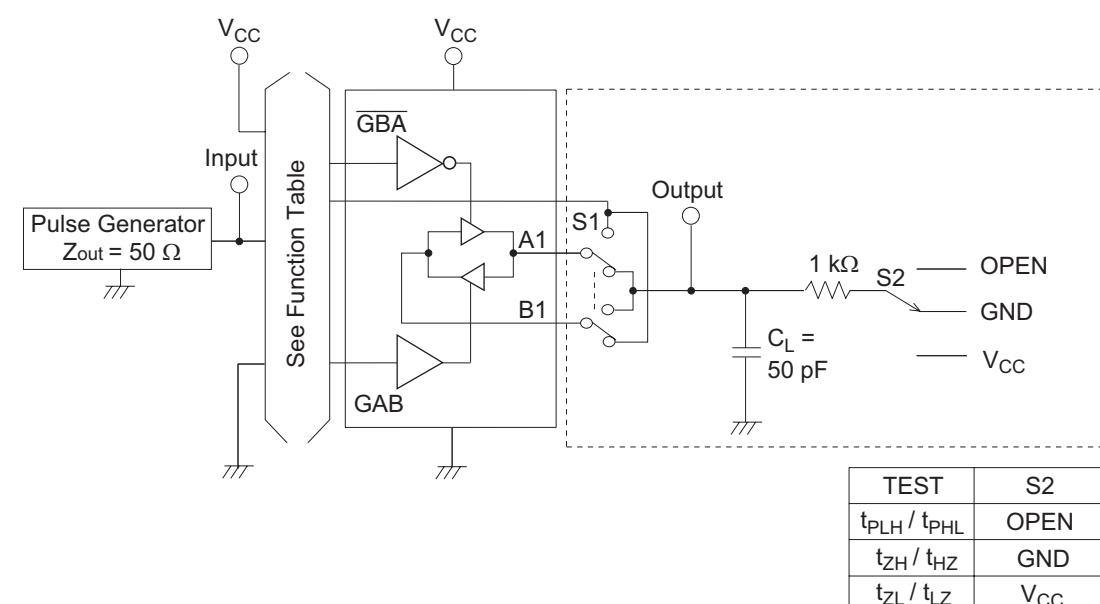
Item	Symbol	Ratings	Unit	Conditions
Supply voltage	V_{CC}	4.5 to 5.5	V	
Input / Output voltage	V_{IN}, V_{OUT}	0 to V_{CC}	V	
Operating temperature	T_a	-40 to 85	°C	
Input rise / fall time ^{*1}	t_r, t_f	0 to 500	ns	$V_{CC} = 4.5$ V

Notes: 1. This item guarantees maximum limit when one input switches.

Waveform: Refer to test circuit of switching characteristics.


Electrical Characteristics

Item	Symbol	V _{CC} (V)	Ta = 25°C			Ta = -40 to +85°C		Unit	Test Conditions	
			Min	Typ	Max	Min	Max			
Input voltage	V _{IH}	4.5 to 5.5	2.0	—	—	2.0	—	V		
	V _{IL}	4.5 to 5.5	—	—	0.8	—	0.8	V		
Output voltage	V _{OH}	4.5	4.4	—	—	4.4	—	V	Vin = V _{IH} or V _{IL}	I _{OH} = -20 μA
		4.5	4.18	—	—	4.13	—			I _{OH} = -6 mA
	V _{OL}	4.5	—	—	0.1	—	0.1	V	Vin = V _{IH} or V _{IL}	I _{OL} = 20 μA
		4.5	—	—	0.26	—	0.33			I _{OL} = 6 mA
Off-state output current	I _{OZ}	5.5	—	—	±0.5	—	±5.0	μA	Vin = V _{IH} or V _{IL} , V _{out} = V _{CC} or GND	
Input current	I _{IN}	5.5	—	—	±0.1	—	±1.0	μA	Vin = V _{CC} or GND	
Quiescent supply current	I _{CC}	5.5	—	—	4.0	—	40	μA	Vin = V _{CC} or GND, I _{out} = 0 mA	

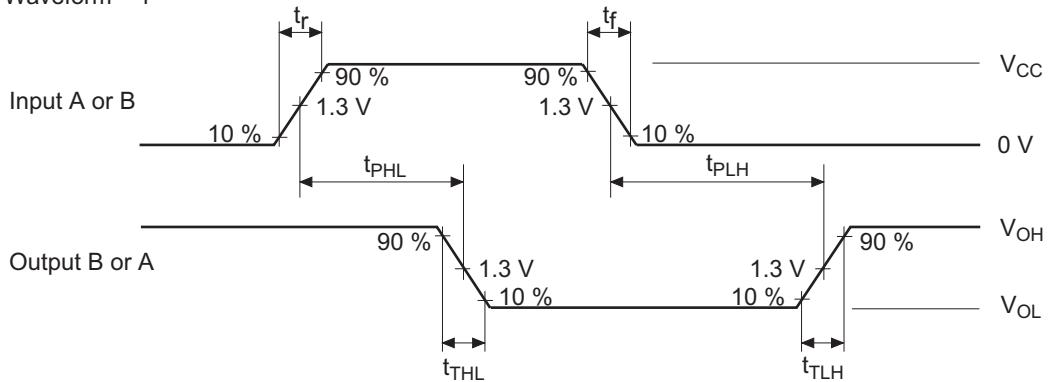

Switching Characteristics

(C_L = 50 pF, Input t_r = t_f = 6 ns)

Item	Symbol	V _{CC} (V)	Ta = 25°C			Ta = -40 to +85°C		Unit	Test Conditions	
			Min	Typ	Max	Min	Max			
Propagation delay time	t _{PLH}	4.5	—	13	20	—	25	ns		
	t _{PHL}	4.5	—	16	20	—	25			
Output enable time	t _{ZH}	4.5	—	16	30	—	38	ns		
	t _{ZL}	4.5	—	16	30	—	38			
Output disable time	t _{HZ}	4.5	—	19	30	—	38	ns		
	t _{LZ}	4.5	—	21	30	—	38			
Output rise/fall time	t _{TLH} t _{THL}	4.5	—	4	12	—	15	ns		
	C _{in}	—	—	5	10	—	10		pF	

Test Circuit**HD74HCT620**

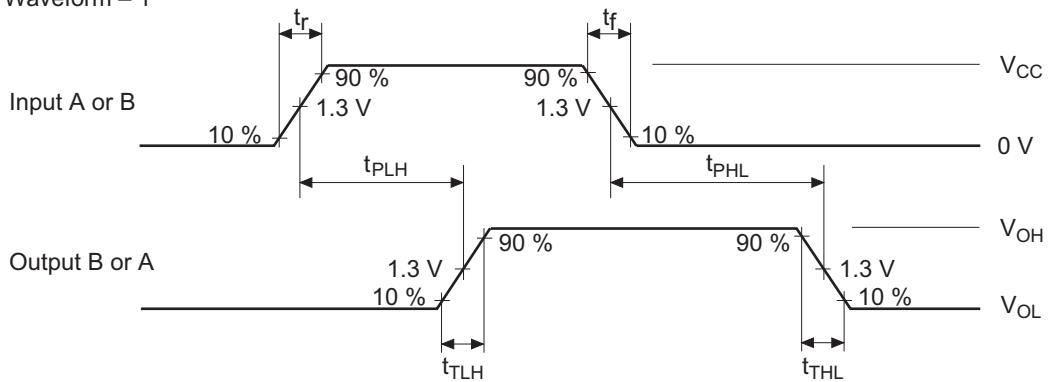
Note : 1. C_L includes probe and jig capacitance.
 2. A2–B2, A3–B3, A4–B4, A5–B5, A6–B6, A7–B7, A8–B8 are identical to above load circuit.
 3. S1 is a input / output swich.


HD74HCT623

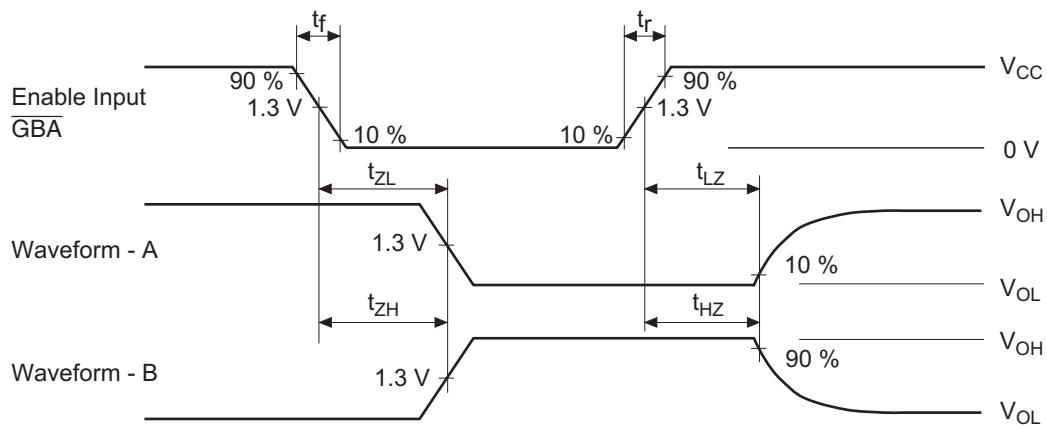
Note : 1. C_L includes probe and jig capacitance.
 2. A2–B2, A3–B3, A4–B4, A5–B5, A6–B6, A7–B7, A8–B8 are identical to above load circuit.
 3. S1 is a input / output swich.

Waveforms

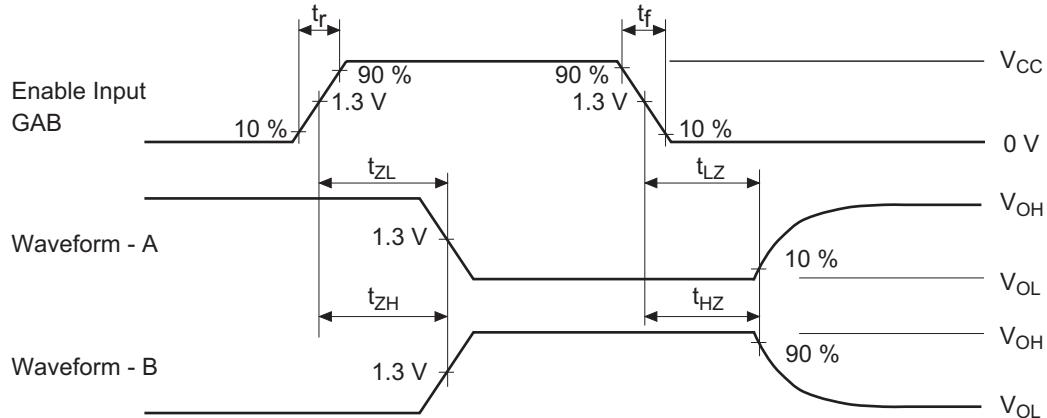
HD74HCT620


- Waveform – 1

Notes : 1. Input waveform : PRR \leq 1 MHz, duty cycle 50%, $t_r \leq 6$ ns, $t_f \leq 6$ ns
 2. The output are measured one at a time with one transition per measurement.


HD74HCT623

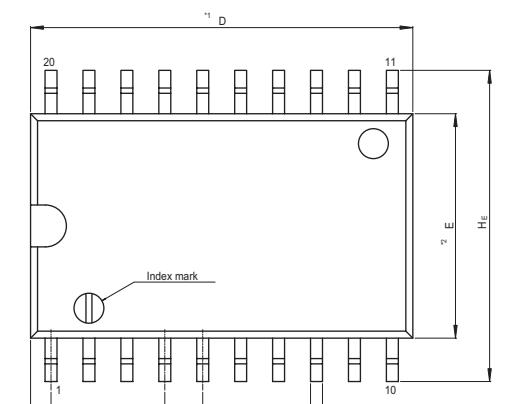
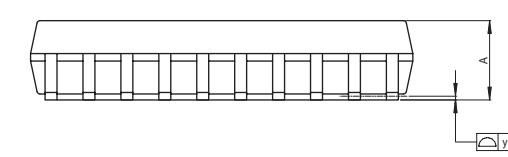
- Waveform – 1



Notes : 1. Input waveform : PRR \leq 1 MHz, duty cycle 50%, $t_r \leq 6$ ns, $t_f \leq 6$ ns
 2. The output are measured one at a time with one transition per measurement.

• Waveform – 2

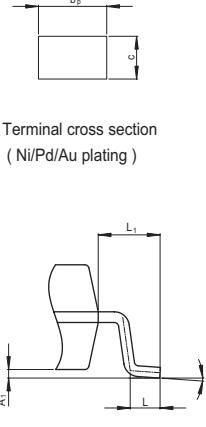
• Waveform – 3

Notes :

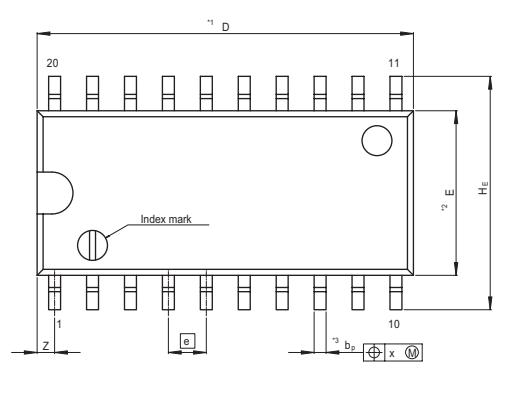
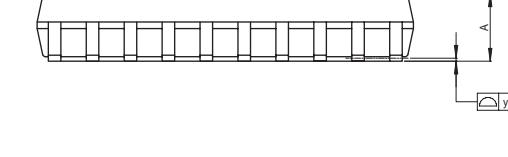
1. Input waveform : PRR \leq 1 MHz, duty cycle 50%, $t_r \leq 6$ ns, $t_f \leq 6$ ns
2. Waveform– A is for an output with internal conditions such that the output is low except when disabled by the output control.
3. Waveform– B is for an output with internal conditions such that the output is high except when disabled by the output control.
4. The output are measured one at a time with one transition per measurement.

Package Dimensions


JEITA Package Code	RENESAS Code	Previous Code	MASS[Typ.]
P-SOP20-7.5x12.8-1.27	PRSP0020DC-A	FP-20DBV	0.52g

NOTE)

1. DIMENSIONS**1 (Nom) AND **2
@ DO NOT INCLUDE MOLD FLASH.
2. DIMENSION**3 DOES NOT
@ INCLUDE TRIM OFFSET.



Terminal cross section (Ni/Pd/Au plating)

Detail F

Reference Symbol	Dimension in Millimeters		
	Min	Nom	Max
D	—	12.80	13.2
E	—	7.50	—
A ₂	—	—	—
A ₁	0.10	0.20	0.30
A	—	—	2.65
b _p	0.34	0.40	0.46
b ₁	—	—	—
c	0.20	0.25	0.30
C ₁	—	—	—
θ	0°	—	8°
H _E	10.00	10.40	10.65
⊕	—	1.27	—
x	—	—	0.12
y	—	—	0.15
Z	—	—	0.935
L	0.40	0.70	1.27
L ₁	—	1.45	—

JEITA Package Code	RENESAS Code	Previous Code	MASS[Typ.]
P-SOP20-5.5x12.6-1.27	PRSP0020DD-B	FP-20DAV	0.31g

NOTE)

1. DIMENSIONS**1 (Nom) AND **2
DO NOT INCLUDE MOLD FLASH.
2. DIMENSION**3 DOES NOT
INCLUDE TRIM OFFSET.

Terminal cross section (Ni/Pd/Au plating)

Detail F

Reference Symbol	Dimension in Millimeters		
	Min	Nom	Max
D	—	12.60	13.0
E	—	5.50	—
A ₂	—	—	—
A ₁	0.00	0.10	0.20
A	—	—	2.20
b _p	0.34	0.40	0.46
b ₁	—	—	—
c	0.15	0.20	0.25
C ₁	—	—	—
θ	0°	—	8°
H _E	7.50	7.80	8.00
⊕	—	1.27	—
x	—	—	0.12
y	—	—	0.15
Z	—	—	0.80
L	0.50	0.70	0.90
L ₁	—	1.15	—

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
4. The information described here may contain technical inaccuracies or typographical errors.
5. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
6. Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (<http://www.renesas.com>).
7. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
8. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
9. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
10. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
11. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
12. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

RENESAS SALES OFFICES

<http://www.renesas.com>

Refer to "<http://www.renesas.com/en/network>" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A.
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.

Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120
Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd.

7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd.

10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd.

Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea
Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd.

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: <603> 7955-9390, Fax: <603> 7955-9510