

3.3V CMOS 12-BIT UNIVERSAL BUS DRIVER WITH PARITY CHECKER, DUAL 3-STATE OUTPUTS AND BUS-HOLD

IDT74ALVCH16903

FEATURES:

- 0.5 MICRON CMOS Technology
- Typical tsk(o) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- Vcc = 3.3V ± 0.3V, Normal Range
- Vcc = 2.7V to 3.6V, Extended Range
- $Vcc = 2.5V \pm 0.2V$
- CMOS power levels (0.4µ W typ. static)
- · Rail-to-Rail output swing for increased noise margin
- · Available in TSSOP package

DRIVE FEATURES:

- High Output Drivers: ±24mA
- Suitable for heavy loads

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +4.6	V
VTERM ⁽³⁾	Terminal Voltage with Respect to GND (Outputs Only)	-0.5 to Vcc+0.5	V
Tstg	Storage Temperature	-65 to +150	°C
lout	DC Output Current	-50 to +50	mA
lık	Continuous Clamp Current, VI < 0 or VI > VCC	±50	mA
Іок	Continuous Clamp Current, Vo < 0	-50	mA
Icc Iss	Continuous Current through each Vcc or GND	±100	mA

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause
 permanent damage to the device. This is a stress rating only and functional operation
 of the device at these or any other conditions above those indicated in the operational
 sections of this specification is not implied. Exposure to absolute maximum rating
 conditions for extended periods may affect reliability.
- 2. Vcc terminals.
- 3. This value is limited to 4.6V maximum.

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	5	7	pF
Соит	Output Capacitance	Vout = 0V	7	9	pF
Соит	I/O Port Capacitance	VIN = 0V	7	9	pF

NOTE:

1. As applicable to the device type.

DESCRIPTION:

This 12-bit universal bus driver is built using advanced dual metal CMOS technology. This device has dual outputs and can operate as a buffer or an edge-triggered register. In both modes, parity is checked on APAR, which arrives one cycle after the data to which it applies. The $\overline{\text{YERR}}$ output, which is produced one cycle after APAR, is open drain.

MODE selects one of the two data paths. When MODE is low, the device operates as an edge-triggered register. On the positive transition of the clock (CLK) input and when the clock-enable ($\overline{\text{CLKEN}}$) input is low, data setup at the A inputs is stored in the internal registers. On the positive transition of CLK and when $\overline{\text{CLKEN}}$ is high, only data setup at the 9A-12A inputs is stored in their internal registers. When MODE is high, the device operates as a buffer and data at the A inputs passes directly to the outputs. The 11A/ $\overline{\text{YERREN}}$ serves a dual purpose; it acts as a normal data bit and also enables $\overline{\text{YERR}}$ data to be clocked into the $\overline{\text{YERR}}$ output register.

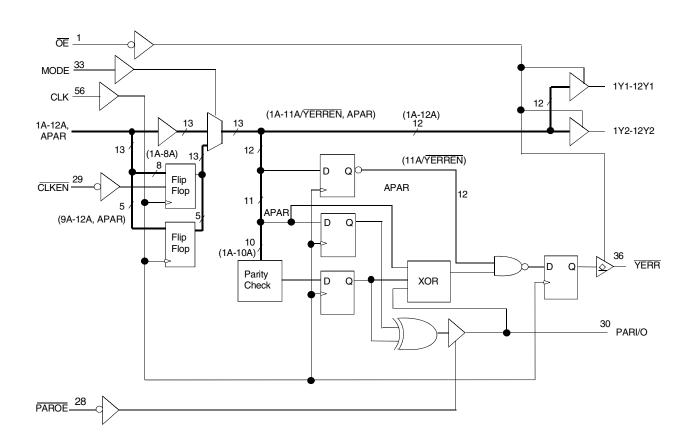
When used as a single device, parity output enable (\overline{PAROE}) must be tied high; when parity input/output (PARI/O) is low, even parity is selected and when PARI/O is high, odd parity is selected. When used in pairs and \overline{PAROE} is low, the parity sum is output on PARI/O for cascading to the second ALVCH16903. When used in pairs and \overline{PAROE} is high, PARI/O accepts a partial parity sum from the first ALVCH16903.

A buffered output-enable (\overline{OE}) input can be used to place the 24 outputs and \overline{YERR} in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components.

The ALVCH16903 has been designed with a ± 24 mA output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.

The ALVCH16903 has "bus-hold" which retains the inputs' last state whenever the input bus goes to a high-impedance. This prevents floating inputs and eliminates the need for pull-up/down resistors.

APPLICATIONS:


- 3.3V high speed systems
- 3.3V and lower voltage computing systems

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

INDUSTRIAL TEMPERATURE RANGE

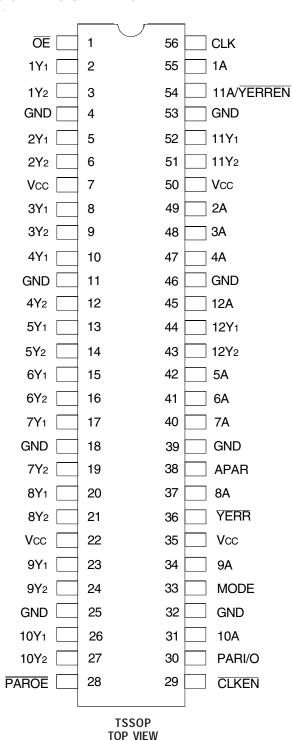
JUNE 2006

FUNCTIONAL BLOCK DIAGRAM

FUNCTION TABLE(1)

	Inputs				Out	puts
ŌĒ	MODE	CLKEN	CLK	Α	1Yx-8Yx	9Yx-12Yx
L	L	L	↑	Η	Н	Н
L	L	L	↑	L	L	L
L	L	Н	↑	Н	Υ ⁽²⁾	Н
L	L	Η	↑	L	Υ ⁽²⁾	L
L	Н	Х	Х	Н	Н	Н
L	Н	Х	Х	L	L	L
Н	Х	Х	Х	Х	Z	Z

NOTES:


- 1. H = HIGH Voltage Level
 - L = LOW Voltage Level
 - X = Don't Care
 - ↑ = LOW-to-HIGH Transition
- 2. Output level before the indicated steady-state conditions were established.

PARITY FUNCTION TABLE(1)

	Inputs						
ŌĒ	PAROE ⁽²⁾	11A/	PARI/O	RI/O Σ OF INPUTS APAR		YERR	
		YERREN ⁽³⁾		1A-10A=H			
L	Н	L	L	0, 2, 4, 6, 8, 10	L	Н	
L	Н	L	L	1, 3, 5, 7, 9	L	L	
L	Н	L	L	0, 2, 4, 6, 8, 10	Н	L	
L	Н	L	L	1, 3, 5, 7, 9	Н	Н	
L	Н	L	Н	0, 2, 4, 6, 8, 10	L	L	
L	Н	L	Н	1, 3, 5, 7, 9	L	Н	
L	Н	L	Н	0, 2, 4, 6, 8, 10	Н	Н	
L	Н	L	Н	1, 3, 5, 7, 9	Н	L	
Н	Х	Х	Х	Χ	Χ	Н	
L	Х	Н	Χ	Χ	Χ	Н	

- 1. H = HIGH Voltage Level
 - L = LOW Voltage Level
 - X = Don't Care
- 2. When used as a single device, $\overline{\mbox{PAROE}}$ must be tied HIGH.
- 3. Valid after appropriate number of clock pulses have set internal register.

PIN CONFIGURATION

PARI/O FUNCTION TABLE(1)

	Inputs				
PAROE	Σ OF INPUTS 1A-10A = H	APAR	PARI/O		
L	0, 2, 4, 6, 8,10	L	L		
L	1, 3, 5, 7, 9	L	Н		
L	0, 2, 4, 6, 8, 10	Н	Н		
L	1, 3, 5, 7, 9	Н	L		
Н	Х	Х	Z		

NOTE:

1. This table applies to the first device of a cascaded pair of ALVCH16903 devices.

PIN DESCRIPTION

Pin Names	I/O	Description
1A-12A	I	Data Inputs ⁽¹⁾
1Y1-12Y2	0	3-State Data Outputs
CLK	I	Clock Input
CLKEN		Clock Enable Input (Active LOW)
MODE	I	Select Pin
YERREN		Error Signal Output Enable (Active LOW)
PAROE		Parity Output Enable (Active LOW)
PARI/O	I/O	Parity Input/Output
YERR	0	Error Signal (Open Drain)
ŌĒ	I	Output Enable Input (Active LOW)
APAR	Ī	Parity Input

NOTE:

1. These pins have "Bus-Hold". All other pins are standard inputs, outputs, or I/Os.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: $TA = -40^{\circ}C$ to $+85^{\circ}C$

Symbol	Parameter	Test Cond	ditions	Min.	Typ. ⁽¹⁾	Max.	Unit
VIH	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	_	V
		Vcc = 2.7V to 3.6V	Vcc = 2.7V to 3.6V		_	_	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	_	0.7	V
		Vcc = 2.7V to 3.6V		_	_	0.8	
Iн	Input HIGH Current	Vcc = 3.6V	VI = VCC	_	_	± 5	μA
lıL	Input LOW Current	Vcc = 3.6V	VI = GND	_	_	± 5	
lozh	High Impedance Output Current	Vcc = 3.6V	Vo = Vcc	_	_	± 10	μA
lozl	(3-State Output pins)		Vo = GND	_	_	± 10	μA
Іон	YERR Output	Vcc = 0V to 3.6V	Vo = Vcc	_	_	± 10	μA
loz ⁽²⁾	High Impedance Output Current	Vcc = 3.6V	Vo = Vcc or GND	_	_	± 10	μA
Vik	Clamp Diode Voltage	VCC = 2.3V, IIN = - 18mA	Vcc = 2.3V, lin = - 18mA		-0.7	-1.2	V
VH	Input Hysteresis	VCC = 3.3V		_	100	_	mV
ICCL ICCH ICCZ	Quiescent Power Supply Current	Vcc = 3.6V, Vin = GND or Vcc		_	0.1	40	μA
Δlcc	Quiescent Power Supply Current Variation	One input at Vcc - 0.6V, other in	puts at Vcc or GND	_	_	750	μA
Ci	Control Inputs	Vcc = 3.3V	VI = Vcc or GND	_	5.5	_	pF
	Data Inputs			_	5.5		
Co	YERR Output	Vcc = 3.3V	Vo = Vcc or GND		5		pF
	Data Outputs				6		
Cio	PARI/O	VCC = 3.3V	Vo = Vcc or GND	-	7		pF

NOTES:

- 1. Typical values are at Vcc = 3.3V, +25°C ambient.
- 2. For I/O ports, the parameter loz includes the input leakage current.

BUS-HOLD CHARACTERISTICS

Symbol	Parameter ⁽¹⁾	Test Conditions		Min.	Typ. ⁽²⁾	Max.	Unit
Івнн	Bus-Hold Input Sustain Current	Vcc = 3V	VI = 2V	-75	_	_	μA
Івнь			VI = 0.8V	75	_		
Івнн	Bus-Hold Input Sustain Current	Vcc = 2.3V	VI = 1.7V	- 45	_	_	μΑ
IBHL			VI = 0.7V	45	_	_	
Івнно	Bus-Hold Input Overdrive Current	Vcc = 3.6V	VI = 0 to 3.6V	_	_	±500	μA
IBHLO							

- 1. Pins with Bus-Hold are identified in the pin description.
- 2. Typical values are at Vcc = 3.3V, +25°C ambient.

OUTPUT DRIVE CHARACTERISTICS, xYx PORTS

Symbol	Parameter	Test(Conditions ⁽¹⁾	Min.	Max.	Unit
		Vcc = 2.3V to 3.6V	IOH = - 0.1mA	Vcc-0.2	_	
		Vcc = 2.3V	IOH = -6mA, VIH = 1.7V	2	_	
Vон	Output HIGH Voltage	Vcc = 2.3V	IOH = - 12mA, VIH = 1.7V	1.7	_	V
		Vcc = 2.7V	IOH = - 12mA, VIH = 2V	2.2	_	
		Vcc = 3V		2.4	_	
		Vcc = 3V	IOH = - 24mA, VIH = 2V	2	_	
		Vcc = 2.3V to 3.6V	IoL = 0.1mA	_	0.2	
		Vcc = 2.3V	IOL = 6mA, VIL = 0.7V	_	0.4	
Vol	Output LOW Voltage		IOL = 12mA, VIL = 0.7V	_	0.7	V
		Vcc = 2.7V	IOL = 12mA, VIL = 0.8V	_	0.4	
		Vcc = 3V	IOL = 24mA, VIL = 0.8V	_	0.55	
		Vcc = 2.3V	Y Port		-12	
Іон	High-Level Output Current	Vcc = 2.7V		_	-12	mA
		Vcc = 3V	PARI/O	_	-12	
			Y Port	_	-24	
		Vcc = 2.3V	Y Port	_	12	
		Vcc = 2.7V		_	12	
lol	Low-Level Output Current		PARI/O	_	12	mA
		VCC = 3V	Y Port	_	24	
			YERR Output		24	

NOTE:

OUTPUT DRIVE CHARACTERISTICS FOR YERR AND PARI/O

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Max.	Unit
Vон	PARI/O	Vcc = 3V	IOH = -12mA, VIH = 2V	2	_	V
Vol	PARI/O	Vcc = 3V	IOL = 12mA, VIL = 0.8V	-	0.55	V
Vol	YERR Output only	Vcc = 3V	IoL = 24mA	_	0.5	V

^{1.} VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = - 40°C to + 85°C.

^{1.} VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. $TA = -40^{\circ}C$ to $+85^{\circ}C$.

OPERATING CHARACTERISTICS FOR BUFFER MODE, TA = 25°C

			Vcc = 2.5V ± 0.2V	$Vcc = 3.3V \pm 0.3V$	
Symbol	Parameter	Test Conditions	Typical	Typical	Unit
CPD	Power Dissipation Capacitance Outputs enabled	CL = 0pF, f = 10Mhz	57.5	65	pF
CPD	Power Dissipation Capacitance Outputs disabled		15	17.5	

OPERATING CHARACTERISTICS FOR REGISTER MODE, TA = 25°C

			Vcc = 2.5V ± 0.2V	$Vcc = 3.3V \pm 0.3V$	
Symbol	Parameter	Test Conditions	Typical	Typical	Unit
CPD	Power Dissipation Capacitance Outputs enabled	CL = 0pF, f = 10Mhz	57	87.5	pF
CPD	Power Dissipation Capacitance Outputs disabled		16.5	34	

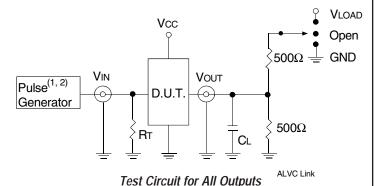
SIMULTANEOUS SWITCHING CHARACTERISTICS(1)

Parameter		From	To	Vcc = 2.5V ± 0.2V		Vcc = 2.7V		Vcc = 3.3V ± 0.3V		
		(Input)	(Output)	Min.	Max.	Min.	Max.	Min.	Max.	Unit
tPLH	Register mode	CLK	Υ	1.8	6.5		6.1	1.8	5	ns
t PHL				1.4	5.9		5.1	1.7	4.5	

NOTF.

^{1.} All outputs switching.

SWITCHING CHARACTERISTICS(1)


		Vcc = 2.5	Vcc = 2.5V ± 0.2V		Vcc = 2.7V		Vcc = 3.3V ± 0.3V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
fMAX		125	_	125	_	125	_	MHz
tplh	Propagation Delay, Buffer Mode		4.4	_	4.2	1.1	3.8	ns
tphl.	xAx to xYx							
tplh	Propagation Delay, Both Modes	1	5.7	_	4.9	1.4	4.4	ns
tphl.	CLK to YERR							
tplh	Propagation Delay, Both Modes	1.2	8.6	_	7.9	1.7	6.6	ns
tphl.	CLK to PARI/O							
tplh	Propagation Delay, Both Modes	1	6.8	_	5.2	1.3	4.5	ns
tphl	CLK to PARI/O							
tplh	Propagation Delay, Both Modes	1	5.9	_	5.8	1.3	4.9	ns
tphl	Mode to xYx					1.0	4.0	
tPLH .	Propagation Delay, Register Mode	1	6.1	_	5.5	1.2	4.8	ns
tPHL to	CLK to xYx	1	5.9		4.9	1.2	4.6	
tplh	Propagation Delay, Both Modes OE to YERR	1	3.6	_	4.2	1.9	4	ns
tphl.	Propagation Delay, Both Modes	1.2	5.1	_	4.9	1.5	4.2	ns
IPHL	OE to YERR	1.2	3.1	_	4.9	1.0	4.2	112
tpzh	Output Enable Time, Both Modes	1.1	6.5	_	6.4	1.4	5.4	ns
tpzl	OE to xYx							
tpzh	Output Enable Time, Both Modes	1	5.6	_	6	1	4.8	ns
tpzl	PAROE to PARI/O							
tphz	Output Disable Time, Both Modes	1	6.4	_	5.2	1.7	5	ns
tplz	OE to xYx							
tphz	Output Disable Time, Both Modes	1	3.2	_	3.8	1.2	3.8	ns
tplz	PAROE to PARI/O							
tsu	Set-up Time, Register Mode, 1A-12A before CLK↑	1.7	_	1.9	_	1.45	_	ns
tsu	Set-up Time, Buffer Mode, 1A to 10A before CLK↑	5.9	_	5.2	_	4.4	_	ns
tsu	Set-up Time, Register Mode, APAR before CLK↑	1.2	_	1.5	_	1.3		ns
tsu	Set-up Time, Buffer Mode, APAR before CLK↑	4.6	_	3.6	_	3.1	_	ns
tsu	Set-up Time, Both Modes, PARI/O before CLK↑	2.4	_	2	_	1.7	_	ns
tsu	Set-up Time, Buffer Mode, 11A/YERREN before CLK↑	2	_	1.9	_	1.6	_	ns
tsu	Set-up Time, Register Mode, CLKEN before CLK↑	2.5	_	2.6	_	2.2	_	ns
tH	Hold Time, Register Mode, 1A-12A after CLK↑	0.4	_	0.25	_	0.55	_	ns
tH	Hold Time, Buffer Mode, 1A-10A after CLK↑	0.25	_	0.25	_	0.25	_	ns
tH	Hold Time, Register Mode, APAR after CLK↑	0.7	_	0.4	_	0.7	_	ns
tH	Hold Time, Buffer Mode, APAR after CLK↑	0.25	_	0.25	_	0.25	_	ns
tH	Hold Time, Register Mode, PARI/O after CLK↑	0.25	_	0.25	<u> </u>	0.4	_	ns
tH	Hold Time, Buffer Mode, PARI/O after CLK↑	0.25	_	0.25	 	0.5	_	ns
tH	Hold Time, Buffer Mode, 11A/YERREN after CLK↑	0.25	_	0.25	_	0.4	_	ns
tH	Hold Time, Register Mode, CLKEN after CLK↑	0.25	_	0.5	_	0.4	_	ns
tw	Pulse Width, CLK↑	3	_	3	_	3		ns
tsk(O)	Output Skew ⁽²⁾		_	_		_	500	
ISK(U)	Output Shew.						500	ps

- 1. See TEST CIRCUITS AND WAVEFORMS. TA = -40° C to $+85^{\circ}$ C.
- 2 Skew between any two outputs of the same package and switching in the same direction.

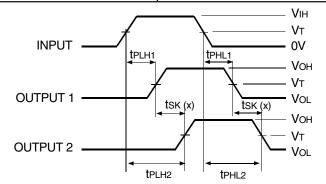
TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

Symbol	$Vcc^{(1)} = 3.3V \pm 0.3V$	Vcc ⁽¹⁾ =2.7V	Vcc ⁽²⁾ = 2.5V±0.2V	Unit
VLOAD	6	6	2 x Vcc	V
ViH	2.7	2.7	Vcc	V
VT	1.5	1.5	Vcc / 2	V
VLZ	300	300	150	mV
VHZ	300	300	150	mV
CL	50	50	30	pF

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.

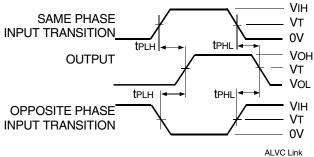

RT = Termination resistance: should be equal to ZouT of the Pulse Generator.

NOTES:

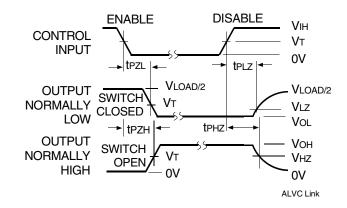
- 1. Pulse Generator for All Pulses: Rate \leq 1.0MHz; tr \leq 2.5ns; tr \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 1.0MHz; tF \leq 2ns; tR \leq 2ns.

SWITCH POSITION

Test	Switch
Open Drain Disable Low Enable Low	VLOAD
Disable High Enable High	GND
All Other Tests	Open

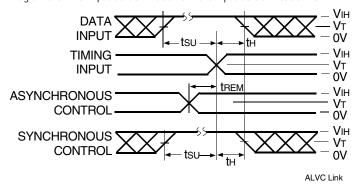


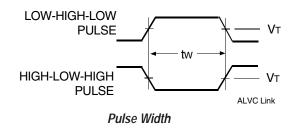
tsk(x) = |tPLH2 - tPLH1| or |tPHL2 - tPHL1|


Output Skew - tsk(x)

NOTES:

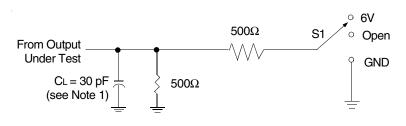
- 1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.
- 2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.


Propagation Delay


Enable and Disable Times

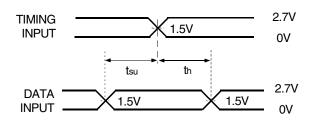
NOTE:

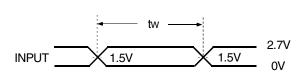
1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.



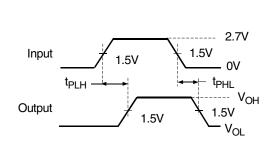
Set-up, Hold, and Release Times

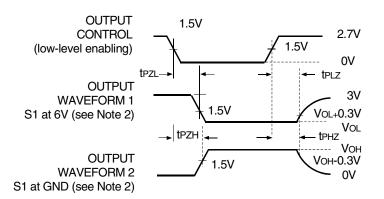
ALVC Link


PARAMETER MEASUREMENT INFORMATION Vcc = 2.7V AND 3.3V ± 0.3V

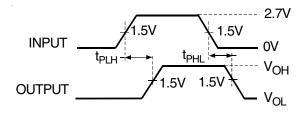

TEST	S1
^t pd	Open
^t PLZ ^{/t} PZL	6V
^t PHZ ^{/t} PZH	GND

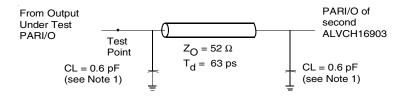
Load Circuit


YERR	S1
^t PHL (see Note 8) ^t PLH (see Note 9)	6V 6V


Voltage Waveforms Setup and Hold Times

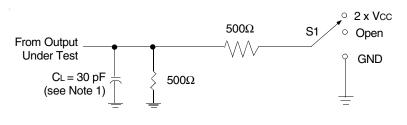
Voltage Waveforms Pulse Duration


Voltage Waveforms Propagation Delay Times


Voltage Waveforms Enable and DisableTimes

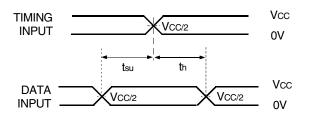
- 1. CL includes probe and jig capacitance.
- 2. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- 3. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Zo = 50 Ω , tr \leq 2 ns, tf \leq 2 ns.
- 4. The outputs are measured one at a time with one transition per measurement.
- 5. tplz and tpHz are the same as tdis.
- 6. tpzL and tpzH are the same as ten.
- 7. tplh and tphl are the same as tpd.
- 8. tphL is measured at 1.5V.
- 9. tplh is measured at Vol +0.3V.

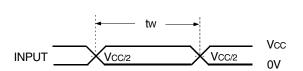
LOAD CIRCUIT AND VOLTAGE WAVEFORMS $Vcc = 2.7V \text{ AND } 3.3V \pm 0.3V$


PARI/O Load Circuit

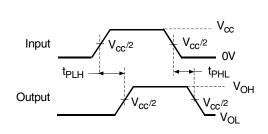
NOTE:

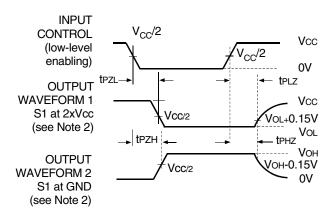
1. CL includes probe and jig capacitance.


PARAMETER MEASUREMENT INFORMATION Vcc = 2.5V ± 0.2V

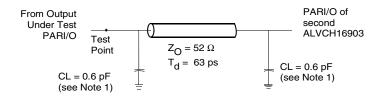

TEST	S1
^t pd	Open
^t PLZ ^{/t} PZL	2 x V _{CC}
^t PHZ ^{/t} PZH	GND

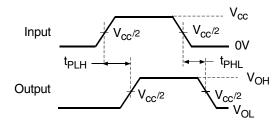
YERR	S1
^t PHL (see Note 8)	2 x V _{CC}
^t PLH (see Note 9)	2 x V _{CC}


Load Circuit


Voltage Waveforms Setup and Hold Times

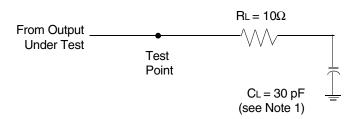
Voltage Waveforms Pulse Duration

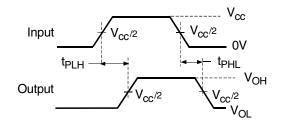

Voltage Waveforms Propagation Delay Times


Voltage Waveforms Enable and DisableTimes

- 1. $\ensuremath{\text{CL}}$ includes probe and jig capacitance.
- 2. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- 3. All input pulses are supplied by generators having the following characteristics: $PRR \le 10$ MHz, $ZO = 50\Omega$, $ZI \le 2$ ns. $ZI \le 2$ ns.
- 4. The outputs are measured one at a time with one transition per measurement.
- 5. tplz and tpHz are the same as tdis.
- 6. tpzL and tpzH are the same as ten.
- 7. tplh and tphl are the same as tpd.
- 8. tphL is measured at Vcc /2.
- 9. tplh is measured at Vol + 0.15V.

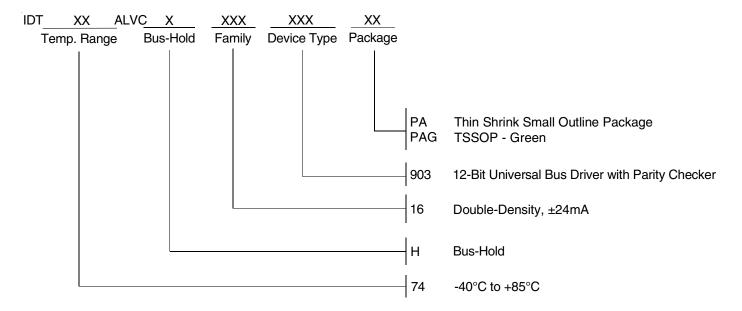
PARAMETER MEASUREMENT INFORMATION Vcc = 2.5V ± 0.2V


Load Circuit


Voltage Waveforms Propagation Delay Times

NOTES:

- 1. CL includes probe and jig capacitance.
- 2. All input pulses are supplied by generators having the following characteristics: $PRR \le 10$ MHz, $Z_0 = 50\Omega$, $Z_0 = 50\Omega$, tr $Z_0 = 50\Omega$
- 3. tplh and tphl are the same as tpd.


Load Circuit

Voltage Waveforms Propagation Delay Times

- 1. CL includes probe and jig capacitance.
- 2. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Zo = 50Ω , tr \leq 2 ns, tf \leq 2ns.

ORDERING INFORMATION

6024 Silver Creek Valley Road San Jose, CA 95138 for SALES:

800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com

for Tech Support: logichelp@idt.com