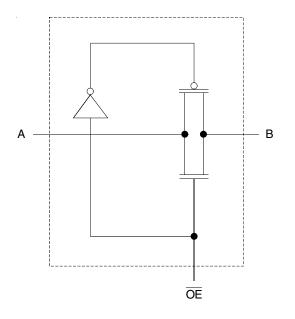
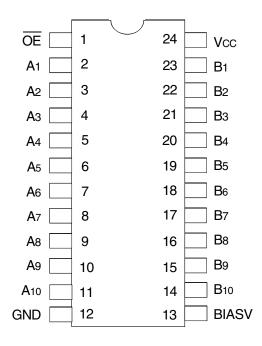

LOW-VOLTAGE 10-BIT BUS SWITCH WITH PRECHARGED OUTPUTS


IDT74CBTLV6800

 FEATURES: Functionally equivalent to QS3800 5Ω A/B bi-directional switch Isolation under power-off conditions Over-voltage tolerant Latch-up performance exceeds 100mA Vcc = 2.3V - 3.6V, Normal Range ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0) Available in QSOP and TSSOP packages 	DESCRIPTION: The CBTLV6800 provides 10-bits of high-speed bus switching with low on-state resistance of the switch allowing connections to be made with minimal propagation delay. The device also precharges the B port to a user-selectable bias voltage (BIASV) to minimize live-insertion noise. The CBTLV6800 is organized as a single 10-bit bus switch with a single output-enable (\overline{OE}) input. When \overline{OE} is low, the 10-bit bus switch is on and port A is connected to port B. When \overline{OE} is high, the switch is open, and a high impedance state exists between the two ports, and port B is precharged to BIASV through the equivalent of a 10-k Ω resistor. To ensure the high-impedance state during power up or power down,
APPLICATIONS: • 3.3V High Speed Bus Switching and Bus Isolation	OE should be tied to Vcc through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

FUNCTIONAL BLOCK DIAGRAM

SIMPLIFIED SCHEMATIC, EACH SWITCH



The IDT logo is a registered trademark of Integrated Device Technology, Inc.

JUNE 2006

IDT74CBTLV6800 LOW-VOLTAGE 10-BIT BUSSWITCH WITH PRECHARGED OUTPUTS

PINCONFIGURATION

QSOP / TSSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Description	Max	Unit	
Vcc	SupplyVoltage Range	-0.5 to +4.6	V	
Vi	Input Voltage Range	-0.5 to +4.6	V	
	Continuous Channel Current	128	mA	
Ік	Input Clamp Current, VI/O < 0	-50	mA	
Tstg	Storage Temperature	-65 to +150	°C	

NOTE:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

FUNCTION TABLE⁽¹⁾

Input OE	Inputs/Outputs
L	A Port = B Port
Н	A Port = Z B Port = BIASV

NOTE:

1. H = HIGH Voltage Level

L = LOW Voltage Level

Z = High-Impedance

OPERATING CHARACTERISTICS, TA = $25^{\circ}C^{(1)}$

Symbol	Parameter	Test Conditions		Max.	Unit
Vcc	Supply Voltage		2.3	3.6	V
BIASV	Bias Voltage		1.3	Vcc	V
Vih	High-Level Control Input Voltage	Vcc = 2.3V to 2.7V	1.7	—	V
		Vcc = 2.7V to 3.6V	2	—	
Vil	Low-Level Control Input Voltage	Vcc = 2.3V to 2.7V	—	0.7	V
		Vcc = 2.7V to 3.6V	-	0.8	
Ta	Operating Free-Air Temperature		-40	85	°C

NOTE:

1. All unused control inputs of the device must be held at Vcc or GND to ensure proper device operation.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Conditions: TA = -40° C to $+85^{\circ}$ C

Symbol	Parameter	Test Condi	lions	Min.	Тур.	Max.	Unit
Vik	Control Inputs, Data Inputs	Vcc = 3V, II = -18mA		_	_	-1.2	V
1	Control Inputs	Vcc = 3.6V, VI = Vcc or GND		_	_	±1	μA
loz	Data I/O	Vcc = 3.6V, Vo = 0 or 3.6V, switcl	n disabled	_	_	±20	μA
IOFF		Vcc = 0, VI or Vo = 0 to 3.6V		_	—	50	μA
lo		Vcc = 3V, BIASV = 2.4V, Vo = 0), OE = Vcc	0.25	—	_	mA
Icc		Vcc = 3.6V, Io = 0, VI = Vcc or G	Vcc = 3.6V, Io = 0, VI = Vcc or GND		-	10	μA
$\Delta ICC^{(1)}$	Control Inputs	Vcc = 3.6V, one input at 3V, other inputs at Vcc or GND		_	_	300	μA
Сі	Control Inputs	VI = 3V or 0		_	4	_	pF
CIO(OFF)		Vo = 3V or 0, switch OFF, BIASV = Open, \overline{OE} = Vcc		_	7	_	pF
	Vcc = 2.3V	VI = 0	lı = 64mA	-	5	8	
	Typ. at Vcc = 2.5V		lı = 24mA	—	5	8	
Ron ⁽²⁾		VI = 1.7V	lı = 15mA	_	27	40	Ω
		VI = 0	lı = 64mA	_	5	7	
	Vcc = 3V		lı = 24mA	_	5	7	
		VI = 2.4V	lı = 15mA	-	10	15	

NOTES:

1. The increase in supply current is attributable to each current that is at the specified voltage level rather than Vcc or GND.

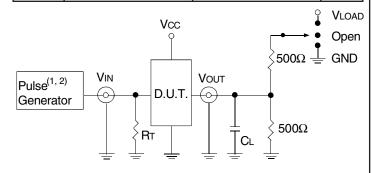
2. This is measured by the voltage drop between the A and B terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two (A or B) terminals.

SWITCHING CHARACTERISTICS

		$Vcc = 2.5V \pm 0.2V$		Vcc = 3		
Symbol	Parameter	Min.	Мах.	Min.	Max.	Unit
tPD ⁽¹⁾	Propagation Delay	-	0.15	-	0.25	ns
	A to B or B to A					
tрzн	BIASV = 3V or GND	1	4.8	1	4.5	ns
t PZL	OE to A or B					
tрнz	BIASV = 3V or GND	1	5.6	1	5.5	ns
t PLZ	OE to A or B					

NOTE:

1. The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance driven by an ideal voltage source (zero output impedance).


IDT74CBTLV6800 LOW-VOLTAGE 10-BIT BUSSWITCH WITH PRECHARGED OUTPUTS

INDUSTRIALTEMPERATURERANGE

TEST CIRCUITS AND WAVEFORMS

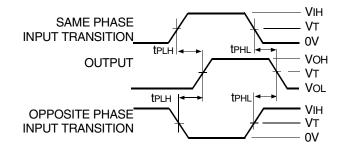
TEST CONDITIONS

Symbol	$Vcc^{(1)} = 3.3V \pm 0.3V$	Vcc ⁽²⁾ =2.5V±0.2V	Unit
VLOAD	6	2 x Vcc	V
Vih	3	Vcc	V
V⊤	1.5	Vcc / 2	V
Vlz	300	150	mV
Vhz	300	150	mV
Cl	50	30	pF

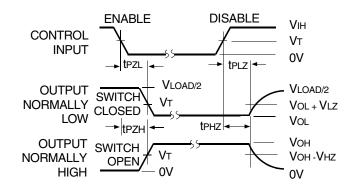
Test Circuits for All Outputs

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.

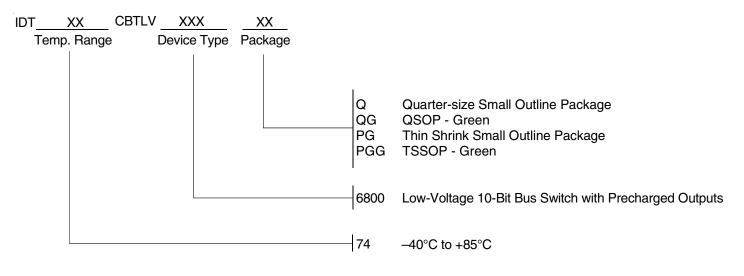

RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.

NOTES:


- 1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tr \leq 2ns; tr \leq 2.5ns.

SWITCH POSITION

Test	Switch
tplz/tpzl	Vload
tpнz/tpzн	GND
ted	Open



Enable and Disable Times

ORDERING INFORMATION

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138 for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com for Tech Support: logichelp@idt.com