64Mbit SDRAM
 4M x 4Bit x 4 Banks Synchronous DRAM LVTTL

Revision 0.1

Sept. 2001

* Samsung Electronics reserves the right to change products or specification without notice.

4M x 4Bit x 4 Banks Synchronous DRAM

FEATURES

- JEDEC standard 3.3V power supply
- LVTTL compatible with multiplexed address
- Four banks operation
- MRS cycle with address key programs
-. CAS latency (2 \& 3)
-. Burst length (1, 2, 4, 8 \& Full page)
-. Burst type (Sequential \& Interleave)
- All inputs are sampled at the positive going edge of the system clock
- Burst read single-bit write operation
- DQM for masking
- Auto \& self refresh
- 64 ms refresh period (4K cycle)

GENERAL DESCRIPTION

The K4S640432E is $67,108,864$ bits synchronous high data rate Dynamic RAM organized as $4 \times 4,194,304$ words by 4 bits, fabricated with SAMSUNG's high performance CMOS technology. Synchronous design allows precise cycle control with the use of system clock I/O transactions are possible on every clock cycle. Range of operating frequencies, programmable burst length and programmable latencies allow the same device to be useful for a variety of high bandwidth, high performance memory system applications.
ORDERING INFORMATION

Part No.	Max Freq.	Interface	Package
K4S640432E-TC/L75	$133 \mathrm{MHz}(\mathrm{CL}=3)$		54
K4S640432E-TC/L1H	$100 \mathrm{MHz}(\mathrm{CL}=2)$		
K4S640432E-TC/L1L	$100 \mathrm{MHz}(\mathrm{CL}=3)$		

FUNCTIONAL BLOCK DIAGRAM

* Samsung Electronics reserves the right to change products or specification without notice.

PIN CONFIGURATION (Top view)

54Pin TSOP (II)
($400 \mathrm{mil} \times 875 \mathrm{mil}$)
(0.8 mm Pin pitch)

PIN FUNCTION DESCRIPTION

Pin	Name	Input Function
CLK	System clock	Active on the positive going edge to sample all inputs.
$\overline{\mathrm{CS}}$	Chip select	Disables or enables device operation by masking or enabling all inputs except CLK, CKE and DQM
CKE	Masks system clock to freeze operation from the next clock cycle. CKE should be enabled at least one cycle prior to new command. Disable input buffers for power down in standby.	
A0 ~ A11	Address	Row/column addresses are multiplexed on the same pins. Row address : RAo ~ RA11, Column address : CA0 ~ CA9
BA0 ~ BA1	Bank select address	Selects bank to be activated during row address latch time. Selects bank for read/write during column address latch time.
$\overline{\text { RAS }}$	Row address strobe	Latches row addresses on the positive going edge of the CLK with $\overline{\text { RAS }}$ low. Enables row access \& precharge.
$\overline{\mathrm{CAS}}$	Column address strobe	Latches column addresses on the positive going edge of the CLK with $\overline{\mathrm{CAS}}$ low. Enables column access.
$\overline{\text { WE }}$	Write enable	Enables write operation and row precharge. Latches data in starting from CAS, WE active.
DQM	Data input/output mask	Makes data output Hi-Z, tsHz after the clock and masks the output. Blocks data input when DQM active.
DQ0 ~ 3	Data input/output	Data inputs/outputs are multiplexed on the same pins.
VDD/Vss	Power supply/ground	Power and ground for the input buffers and the core logic.
VDDQ/VssQ	Data output power/ground	Isolated power supply and ground for the output buffers to provide improved noise immunity.
N.C/RFU	No connection /reserved for future use	This pin is recommended to be left No Connection on the device.

SMMSUNG

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Voltage on any pin relative to Vss	VIN, VouT	$-1.0 \sim 4.6$	V
Voltage on VDD supply relative to VsS	VDD, VDDQ	$-1.0 \sim 4.6$	V
Storage temperature	TsTG	$-55 \sim+150$	${ }^{\circ} \mathrm{C}$
Power dissipation	PD	1	W
Short circuit current	IOS	50	mA

Note : Permanent device damage may occur if "ASOLUTE MAXIMUM RATINGS" are exceeded.
Functional operation should be restricted to recommended operating condition.
Exposure to higher than recommended voltage for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS

Recommended operating conditions (Voltage referenced to $\mathrm{Vss}=0 \mathrm{~V}, \mathrm{TA}=0$ to $70^{\circ} \mathrm{C}$)

Parameter	Symbol	Min	Typ	Max	Unit	Note
Supply voltage	VDD, VDDQ	3.0	3.3	3.6	V	
Input logic high voltage	VIH	2.0	3.0	VDD +0.3	V	1
Input logic low voltage	VIL	-0.3	0	0.8	V	2
Output logic high voltage	VOH	2.4	-	-	V	IOH $=-2 \mathrm{~mA}$
Output logic low voltage	VOL	-	-	0.4	V	IoL $=2 \mathrm{~mA}$
Input leakage current	ILI	-10	-	10	uA	3

Notes: 1. V IH $(\max)=5.6 \mathrm{~V}$ AC. The overshoot voltage duration is $\leq 3 \mathrm{~ns}$.
2. VIL $(\min)=-2.0 \mathrm{~V}$ AC. The undershoot voltage duration is $\leq 3 \mathrm{~ns}$.
3. Any input $0 \mathrm{~V} \leq \mathrm{V} I \mathrm{~N} \leq \mathrm{VDDQ}$.

Input leakage currents include Hi-Z output leakage for all bi-directional buffers with Tri-State outputs.

CAPACITANCE (Vdd $=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=23^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$, V REF $=1.4 \mathrm{~V} \pm 200 \mathrm{mV}$)

Pin	Symbol	Min	Max	Unit	Note
Clock	CCLK	2.5	4.0	pF	
$\overline{\text { RAS }} \overline{\mathrm{CAS}}, \overline{\mathrm{WE}}, \overline{\mathrm{CS}}, \mathrm{CKE}$, DQM	CIN	2.5	5.0	pF	
Address	CADD	2.5	5.0	pF	
DQ0 \sim DQ3	COUT	4.0	6.5	pF	2

Notes: 1. -75 only specify a maximum value of 3.5 pF
2. -75 only specify a maximum value of 3.8 pF
3. - 75 only specify a maximum value of 6.0 pF

DC CHARACTERISTICS

(Recommended operating condition unless otherwise noted, $\mathrm{TA}=0$ to $70^{\circ} \mathrm{C}$)

Notes: 1. Measured with outputs open.
2. Refresh period is 64 ms .
3. K4S640432E-TC**
4. K4S640432E-TL**
5. Unless otherwise noted, input swing level is CMOS(VIH /VIL=VDDQ/VSSQ)

AC OPERATING TEST CONDITIONS ($\mathrm{VDD}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{TA}=0$ to $70^{\circ} \mathrm{C}$)

Parameter	Value	Unit
AC input levels (Vih/Vil)	$2.4 / 0.4$	V
Input timing measurement reference level	1.4	V
Input rise and fall time	$\mathrm{tr} / \mathrm{tf}=1 / 1$	ns
Output timing measurement reference level	1.4	V
Output load condition	See Fig. 2	

(Fig. 1) DC output load circuit

(Fig. 2) AC output load circuit

OPERATING AC PARAMETER

(AC operating conditions unless otherwise noted)

Parameter		Symbol	Version			Unit	Note	
		-75	-1H	-1L				
Row active to row active delay			tRRD (min)	15	20	20	ns	1
$\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ delay		tRCD (min)	20	20	20	ns	1	
Row precharge time		tRP(min)	20	20	20	ns	1	
Row active time		tRAS (min)	45	50	50	ns	1	
		tRAS (max)	100			us		
Row cycle time		trc(min)	65	70	70	ns	1	
Last data in to row precharge		trDL(min)	2			CLK	2,5	
Last data in to Active delay		tDAL(min)	$2 \mathrm{CLK}+20 \mathrm{~ns}$			-	5	
Last data in to new col. address delay		tCDL(min)	1			CLK	2	
Last data in to burst stop		tBDL(min)		1		CLK	2	
Col. address to col. address delay		tccionin)		1		CLK	3	
Number of valid output data		CAS latency=3	2			ea	4	
		CAS latency=2	1					

Notes :1. The minimum number of clock cycles is determined by dividing the minimum time required with clock cycle time and then rounding off to the next higher integer.
2. Minimum delay is required to complete write.
3. All parts allow every cycle column address change.
4. In case of row precharge interrupt, auto precharge and read burst stop.
5. In 100 MHz and below 100 MHz operating conditions, $\mathrm{tRDL}=1 \mathrm{CLK}$ and $\mathrm{tDAL}=1 \mathrm{CLK}+20 \mathrm{~ns}$ is also supported. SAMSUNG recommends $\mathrm{tRDL}=2 \mathrm{CLK}$ and $\mathrm{tDAL}=2 C L K+t R P$.

sMMSUNG

AC CHARACTERISTICS (AC operating conditions unless otherwise noted)

Parameter		Symbol	-75		-1H		-1L		Unit	Note	
		Min	Max	Min	Max	Min	Max				
CLK cycle time	CAS latency=3		tcc	7.5	1000	10	1000	10	1000	ns	1
	CAS latency=2	10		10		12					
CLK to valid output delay	CAS latency=3	tSAC		5.4		6		6	ns	1,2	
	CAS latency=2			6		6		7			
Output data hold time	CAS latency=3	toh	3		3		3		ns	2	
	CAS latency=2		3		3		3				
CLK high pulse width		tch	2.5		3		3		ns	3	
CLK low pulse width		tcL	2.5		3		3		ns	3	
Input setup time		tss	1.5		2		2		ns	3	
Input hold time		tsh	0.8		1		1		ns	3	
CLK to output in Low-Z		tSLz	1		1		1		ns	2	
CLK to output in Hi-Z	CAS latency=3	tsHz		5.4		6		6	ns		
	CAS latency=2			6		6		7			

Notes: 1. Parameters depend on programmed CAS latency.
2. If clock rising time is longer than 1 ns , ($\mathrm{tr} / 2-0.5$) ns should be added to the parameter.
3. Assumed input rise and fall time ($\operatorname{tr} \& \mathrm{tf}$) $=1 \mathrm{~ns}$.

If $\mathrm{tr} \& \mathrm{tf}$ is longer than 1 ns , transient time compensation should be considered,
i.e., $[(\mathrm{tr}+\mathrm{tf}) / 2-1] \mathrm{ns}$ should be added to the parameter.

DQ BUFFER OUTPUT DRIVE CHARACTERISTICS

Parameter	Symbol	Condition	Min	Typ	Max	Unit	Notes
Output rise time	trh	Measure in linear region $: 1.2 \mathrm{~V} \sim 1.8 \mathrm{~V}$	1.37		4.37	Volts/ns	3
Output fall time	tfh	Measure in linear region $: 1.2 \mathrm{~V} \sim 1.8 \mathrm{~V}$	1.30		3.8	Volts/ns	3
Output rise time	trh	Measure in linear region $: 1.2 \mathrm{~V} \sim 1.8 \mathrm{~V}$	2.8	3.9	5.6	Volts/ns	1,2
Output fall time	tfh	Measure in linear region $: 1.2 \mathrm{~V} \sim 1.8 \mathrm{~V}$	2.0	2.9	5.0	Volts/ns	1,2

Notes: 1. Rise time specification based on $0 p F+50 \Omega$ to Vss, use these values to design to.
2. Fall time specification based on $0 p F+50 \Omega$ to VDD, use these values to design to.
3. Measured into 50 pF only, use these values to characterize to.
4. All measurements done with respect to Vss.

IBIS SPECIFICATION

Іон Characteristics (Pull-up)

Voltage	100 MHz 133 MHz Min	100 MHz 133 MHz Max	66 MHz Min
(V)	$\mathrm{I}(\mathrm{mA})$	$\mathrm{I}(\mathrm{mA})$	$\mathrm{I}(\mathrm{mA})$
3.45		-2.4	
3.3		-27.3	
3.0	0.0	-74.1	-0.7
2.6	-21.1	-129.2	-7.5
2.4	-34.1	-153.3	-13.3
2.0	-58.7	-197.0	-27.5
1.8	-67.3	-226.2	-35.5
1.65	-73.0	-248.0	-41.1
1.5	-77.9	-269.7	-47.9
1.4	-80.8	-284.3	-52.4
1.0	-88.6	-344.5	-72.5
0.0	-93.0	-502.4	-93.0

66MHz and 100MHz/133MHz Pull-down

Vdd Clamp @ CLK, CKE, $\overline{\mathrm{CS}}, \mathrm{DQM}$ \& DQ

VDD (V)	$\mathrm{I}(\mathrm{mA})$
0.0	0.0
0.2	0.0
0.4	0.0
0.6	0.0
0.7	0.0
0.8	0.0
0.9	0.0
1.0	0.23
1.2	1.34
1.4	3.02
1.6	5.06
1.8	7.35
2.0	9.83
2.2	12.48
2.4	15.30
2.6	18.31

Minimum Vdd clamp current (Referenced to VdD)

[^0]Vss Clamp @ CLK, CKE, $\overline{\text { CS, }}$, DQM \& DQ

VSS (V)	$\mathrm{I}(\mathrm{mA})$
-2.6	-57.23
-2.4	-45.77
-2.2	-38.26
-2.0	-31.22
-1.8	-24.58
-1.6	-18.37
-1.4	-12.56
-1.2	-7.57
-1.0	-3.37
-0.9	-1.75
-0.8	-0.58
-0.7	-0.05
-0.6	0.0
-0.4	0.0
-0.2	0.0
0.0	0.0

Minimum Vss clamp current

Voltage

SIMPLIFIED TRUTH TABLE

Command			CKEn-1	CKEn	$\overline{\text { cs }}$	$\overline{\text { RAS }}$	$\overline{\text { CAS }}$	$\overline{\text { WE }}$	DQM	BA0, 1	A10/AP	A11,	Note			
Register	Mode register set		H	X	L	L	L	L	X	OP code			1,2			
Refresh	Auto refresh		H	H	L	L	L	H	X	X			3			
	Self refresh	Entry		L									3			
		Exit	L	H	L	H	H	H	X	X			3			
					H	X	X	X					3			
Bank active \& row addr.			H	X	L	L	H	H	X	V	Row address					
Read \& column address	Auto precharge disable		H	X	L	H	L	H	X	V	L	$\begin{aligned} & \text { Column } \\ & \text { address } \\ & \left(\mathrm{A}_{0} \sim \mathrm{~A}_{9}\right) \end{aligned}$	4			
	Auto prech	e enable									H		4,5			
Write \& column address	Auto precharge disable		H	X	L	H	L	L	X	V	L	$\begin{aligned} & \text { Column } \\ & \text { address } \\ & \left(\mathrm{A}_{0} \sim \mathrm{~A}_{9}\right) \end{aligned}$	4			
	Auto prech	e enable									H		4,5			
Burst stop			H	X	L	H	H	L	X	X			6			
Precharge	Bank selection		H	X	L	L	H	L	X	V	L	X				
	All banks									X	H					
Clock suspend or active power down		Entry	H	L	H	X	X	X	X	X						
		L			V	V	V									
		Exit	L	H	X	X	X	X	X							
Precharge power down mode			Entry	H	L	H	X	X	X	X	X					
		L				H	H	H								
		Exit	L	H	H	X	X	X	X							
		L			V	V	V									
DQM			H	X					V		X		7			
No operation command			H	X	H	X	X	X	X	X						
			L		H	H	H									

(V=Valid, X=Don’t care, H=Logic high, L=Logic low)
Notes: 1. OP Code: Operand code
A0 ~ A 11 \& BA $0 \sim B A_{1}$: Program keys. (@ MRS)
2. MRS can be issued only at all banks precharge state.

A new command can be issued after 2 CLK cycles of MRS.
3. Auto refresh functions are as same as CBR refresh of DRAM.

The automatical precharge without row precharge command is meant by "Auto".
Auto/self refresh can be issued only at all banks precharge state.
4. $B A_{0} \sim B A_{1}$: Bank select addresses. If both $B A_{0}$ and $B A_{1}$ are "Low" at read, write, row active and precharge, bank A is selected. If both $B A_{0}$ is "Low" and $B A_{1}$ is "High" at read, write, row active and precharge, bank B is selected. If both $B A_{0}$ is "High" and BA 1 is "Low" at read, write, row active and precharge, bank C is selected. If both BAo and BA1 are "High" at read, write, row active and precharge, bank D is selected. If $\mathrm{A}_{10} / \mathrm{AP}$ is "High" at row precharge, $\mathrm{BA} \mathrm{A}_{0}$ and BA_{1} is ignored and all banks are selected.
5. During burst read or write with auto precharge, new read/write command can not be issued.

Another bank read/write command can be issued after the end of burst.
New row active of the associated bank can be issued at tRP after the end of burst.
6. Burst stop command is valid at every burst length.
7. DQM sampled at positive going edge of a CLK and masks the data-in at the very CLK (Write DQM latency is 0), but makes Hi-Z state the data-out of 2 CLK cycles after. (Read DQM latency is 2)

[^0]: $\because \quad I(\mathrm{~mA})$

