LA6558 Monolithic Lenear IC 6-CH Driver for Mini Disk and Compact Disk Applications

Overview

The LA6558 is a 6-channel driver developed for MD and CD players.

Features

- Power amplifier 6-channel built-in
- IO max 700 mA
- Level shift circuit built-in (BTL AMP)
- One mute circuit (output ON/OFF) built-in
-3.3V power supply built-in (IO max=300mA)
- 5 V power supply built-in (IO max=5mA)
- Overheat protection circuit (thermal shutdown) built-in

Specifications

Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Power supply voltage	$\mathrm{V}_{\text {CC }}$ max		14	V
Maximum output current	I_{0} max		0.7	A
Maximum input voltage	$\mathrm{V}_{\text {IN }}{ }^{\text {B }}$	Each CH for CH 1 to CH 6	13	V
Mute pin voltage	$V_{\text {MUTE }}$		13	V
Allowable operation	Pd max	Mounted on a board	2.00	W
		Independent IC	1.20	
Operating temperature	Topr		-30 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-55 to +150	${ }^{\circ} \mathrm{C}$

Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.

- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

LA6558
Recommended Operating Conditions at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Power supply voltage	V_{CC}		6 to 13	V

Electrical Characteristics at $\mathrm{S}-\mathrm{V}_{\mathrm{CC}}=\mathrm{P}-\mathrm{V}_{\mathrm{CC}}=8 \mathrm{~V}, \mathrm{VREF}=1.65 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, unless especially specified.

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
All Blocks						
No-load current drain ON	$\mathrm{I}_{\mathrm{CC}} \mathrm{ON}$	All AMPs output ON *1		30	50	mA
No-load current drain OFF	ICC-OFF	All AMPs output OFF *1		10	20	mA
VREF input voltage range	$\mathrm{V}_{\text {REF }}$-IN		0.5		$\mathrm{V}_{\mathrm{CC}}-1.5$	V
BTL AMP Block						
Output offset voltage	V OFF	Voltage difference between output AMPs, each CH	-50		+50	mV
Input voltage range	$\mathrm{V}_{\text {IN }}$		0		V_{CC}	V
Output voltage	V_{O}	Voltage between each $\mathrm{V}_{\mathrm{O}^{+}}$and $\mathrm{V}_{\mathrm{O}^{-}}$ when $\mathrm{R}_{\mathrm{L}}=8 \Omega$ *2	4	4.5		V
Closed-circuit voltage gain	VG	Input/output gain Input resistance $11 \mathrm{k} \Omega$		12		dB
Slew rate	SR	Multiply 2 between outputs. *3		1		V/us
MUTE ON voltage	$\mathrm{V}_{\text {MUTE }}$-ON	Each MUTE *4			0.5	V
MUTE OFF voltage	$\mathrm{V}_{\text {MUTE }}$-OFF	Each MUTE *4	2			V
Loading Block						
Voltage between outputs F	$\mathrm{V}_{\mathrm{O}} \mathrm{F}$	$\mathrm{V}_{1 \mathrm{I}^{+}}=2 \mathrm{~V}, \mathrm{~V}_{\text {IN }}-=0 \mathrm{~V}$	2.5	2.9	3.3	V
Voltage between outputs R	$\mathrm{V}_{\mathrm{O}} \mathrm{R}$	$\mathrm{V}_{1 \mathrm{~N}^{+}}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}{ }^{-}=2 \mathrm{~V}$	-3.3	-2.9	-2.5	V
Output voltage range F	$\mathrm{V}_{\mathrm{O}} \mathrm{MF}$	$\mathrm{V}_{1 \mathrm{IN}^{+}}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0$	5.2	5.7		V
Output voltage range R	$\mathrm{V}_{\mathrm{O}} \mathrm{MR}$	$\mathrm{V}_{\text {IN }}+=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}-=5 \mathrm{~V}$		-5.7	-5.2	V
Output offset voltage	$\mathrm{V}_{\text {OFF }}$	Voltage difference between outputs when brake is applied.	-50		+50	mV
Input current	I-IN	At $\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}$			500	$\mu \mathrm{A}$
3.3VREG Block						
Output voltage	V_{O}-REG1	${ }^{1} \mathrm{O}=100 \mathrm{~mA}$	3.15	3.3	3.45	V
Line regulation	$\Delta \mathrm{V}$-LIN1	$\mathrm{V}_{\mathrm{CC}}=6$ to 12 V at $\mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$	-100		+100	mV
Load regulation	$\Delta \mathrm{V}$-LOAD1	${ }^{1} \mathrm{O}=0$ to 200 mA	-100		+100	mV
5VREG Block						
Output voltage	V_{O}-REG2	$\mathrm{I}^{\mathrm{O}}=3 \mathrm{~mA}$	4.75	5	5.25	V
Line regulation	$\Delta \mathrm{V}$-LIN1	$\mathrm{l}_{\mathrm{O}}=3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=6$ to 12 V		100		mV
Load regulation	$\Delta \mathrm{V}$-LOAD	$\mathrm{I}^{\mathrm{O}}=1$ to 3 mA		100		mV
O-RESET Block (Operating for Vref)						
H reset output voltage	$\mathrm{V}_{\mathrm{OR}}{ }^{\mathrm{H}}$	$10 \mathrm{k} \Omega$ between $\mathrm{V}_{\text {CC }}$-RESET	6.5			V
L reset output voltage	$\mathrm{V}_{\text {OR }} \mathrm{V}^{\text {L }}$	$10 \mathrm{k} \Omega$ between V_{CC} and RESET			0.5	V
O-RESET threshold voltage	V_{RT}		0.5	0.7	0.9	V
O-RESET hysteresis voltage	$V_{\text {hys }}$		50	100	200	mV

*1. P-V ${ }_{\mathrm{CC}}$ and $\mathrm{S}-\mathrm{V}_{\mathrm{CC}}$ total current dissipation under no load.
*2. Voltage difference between both ends of the load(8Ω). Output in the saturated condition.
*3. These values are design guarantee values, and are not tested.
*4. Output is ON with IN-MUTE: [H] and OFF (HI impedance) with IN-MUTE: [L].

Package Dimensions

unit : mm (typ)
3196A

Block Diagram

LA6558
Pin Functions

Pin No.	Pin Name	Description (functions)
1	$\mathrm{V}_{\mathrm{O}} 3-$	Output for CH3 (-)
2	V^{3+}	Output for CH3 (+)
3	$\mathrm{V}_{\mathrm{O}}{ }^{\text {- }}$	Output for $\mathrm{CH} 5(-)$, inverted relative to input
4	$\mathrm{V}_{0}{ }^{+}$	Output for $\mathrm{CH} 5(+)$, not inverted relative to input
5	$\mathrm{V}_{\mathrm{O}}{ }^{-}$	Output for $\mathrm{CH} 4(-)$, inverted relative to input
6	$\mathrm{V}_{0}{ }^{4+}$	Output for CH4 (+), not inverted relative to input
7	P-GND1	Power system GND (CH3, 4, 5)
8	S-GND	Signal system GND
9	$V_{\text {REF }}$	Reference voltage input pin
10	IN-MUTE	Output ON/OFF for BTL AMP (CH1, 2, 4, and 5) and 3.3 V, 5 VREG. ([H]: Output ON, [L]: Output OFF)
11	O-RESET	Reset output (Open collector)
12	$\mathrm{V}_{1 \mathrm{~N}}{ }^{4}$	Input for CH4
13	$\mathrm{V}_{1 N^{5}}$	Input for CH5
14	$\mathrm{V}_{\text {IN }}{ }^{+}$	Input for CH3 (+)
15	$\mathrm{V}_{1 \mathrm{IN}^{3-}}$	Input for CH3 (-)
16	$5 \mathrm{~V}_{\text {REG }}$	5 V Power output
17	$\mathrm{V}_{\text {IN }} 6$ -	Input for CH6 (-)
18	$\mathrm{V}_{\text {IN }}{ }^{6+}$	Input for CH6 (+)
19	$\mathrm{V}_{\mathrm{IN}}{ }^{2}$	Input for CH2
20	$\mathrm{V}_{1 \mathrm{~N}^{1}}$	Input for CH1
21	$\mathrm{S}-\mathrm{V}_{\mathrm{CC}}$	Signal system $\mathrm{V}_{\text {CC }}$
22	$3.3 \mathrm{~V}_{\text {REG }}$	3.3V Power output
23	$\mathrm{P}-\mathrm{V}_{\mathrm{CC}}$	Power system power supply
24	P-GND2	Power system GND(CH1, 2, 6)
25	$\mathrm{V}_{\mathrm{O}} 1-$	Output for $\mathrm{CH} 1(-)$, inverted relative to input
26	$\mathrm{V}_{\mathrm{O}^{1+}}$	Output for $\mathrm{CH} 1(+)$, not inverted relative to input
27	$\mathrm{V}_{\mathrm{O}}{ }^{-}$	Output for $\mathrm{CH} 2(-)$, inverted relative to input
28	V^{2+}	Output for $\mathrm{CH} 2(+)$, not inverted relative to input
29	$\mathrm{V}_{0}{ }^{6-}$	Output for CH6 (-)
30	$\mathrm{V}^{6}{ }^{+}$	Output for CH 6 (+)

*1. Connect P-GND and S-GND externally and set both to the lowest potential (sub-straight).
*2. Connect $\mathrm{S}-\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{P}-\mathrm{V}_{\mathrm{CC}}$ externally for use as power supplies.

Pin Description

Pin Name	Pin Name	Pin No	Description	Equivalent Circuit Diagram
Input (BTL AMP)	$\begin{aligned} & \hline \mathrm{V}_{I N}{ }^{1} \\ & \mathrm{~V}_{I N^{2}} \\ & \mathrm{~V}_{I N} \\ & \mathrm{~V}_{I N} \end{aligned}$	$\begin{aligned} & 20 \\ & 19 \\ & 12 \\ & 13 \end{aligned}$	Each input pin	
Output (BTL AMP)	$\mathrm{V}_{\mathrm{O}}{ }^{1+}$ $\mathrm{V}_{\mathrm{O}} 1-$ $\mathrm{V}_{\mathrm{O}}{ }^{2+}$ $\mathrm{V}_{\mathrm{O}}{ }^{2-}$ $\mathrm{V}_{\mathrm{O}}{ }^{4+}$ $\mathrm{V}_{\mathrm{O}}{ }^{4-}$ $V_{0}{ }^{5+}$ $\mathrm{V}_{\mathrm{O}} 5-$	$\begin{gathered} \hline 26 \\ 25 \\ 28 \\ 27 \\ 6 \\ 5 \\ 4 \\ 3 \end{gathered}$	Each output	
Mute	IN-MUTE	10	Output ON/OFF. IN-MUTE: H output ON IN-MUTE: L output OFF	
Reset	O-RESET	11	Open collector	

Continued on next page.

LA6558
Continued from preceding page.

Pin Name	Pin Name	Pin No	Description	Equivalent Circuit Diagram
Input (Loading block)	$\begin{aligned} & \mathrm{V}_{I N^{3-}} \\ & \mathrm{v}_{I N^{3+}} \\ & \mathrm{V}_{I N^{6-}} \\ & \mathrm{V}_{\text {IN }}{ }^{-} \end{aligned}$	$\begin{aligned} & 15 \\ & 14 \\ & 17 \\ & 18 \end{aligned}$	Each input pin	
Output (Loading block)	$\begin{aligned} & \mathrm{v}_{\mathrm{O}^{3+}} \\ & \mathrm{v}_{\mathrm{O}^{3-}} \\ & \mathrm{v}_{\mathrm{O}^{6+}} \\ & \mathrm{v}_{\mathrm{O}}{ }^{6-} \end{aligned}$	$\begin{gathered} 2 \\ 1 \\ 30 \\ 29 \end{gathered}$	Each output	
$5 \mathrm{~V}_{\text {REG }}$	$5 \mathrm{~V}_{\text {REG }}$	16	Output for $5 \mathrm{~V}_{\text {REG }}$	
$3.3 \mathrm{~V}_{\text {REG }}$	$3.3 \mathrm{~V}_{\text {REG }}$	22	Output for $3.3 \mathrm{~V}_{\text {REG }}$	

Sample Application Circuit

Note: When connecting a load to CH3 and CH6, set the output capacitor to $0.56 \mu \mathrm{~F}$ or more and select the capacitor according to the setting. The capacitor to be used should be less in capacity fluctuation due to temperature.

Relation of MUTE and Power (P-VCC)

* Connect $\mathrm{S}-\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{P}-\mathrm{V}_{\mathrm{CC}}$ externally.
* Connect P-GND and S-GND externally.

Various MUTE functions and output, 3.3V REG operation condition

	CH1, 2, 4,5 (BTL-AMP)	CH3, 6 $($ LOADING $)$	$3.3 V_{R E G}$ $5 V_{R E G}$
With IN-MUTE: L	OFF	-	OFF
With thermal shutdown operating	OFF	OFF	OFF
With VREF lowering (0.7V or less)	OFF	-	-

* (-) indicates no-operation for functions to which MUTE, thermal shutdown, and VREF lowering correspond.
* IN- $\overline{\mathrm{MUTE}}$ operates for BTL-AMP (CH1, 2, 4, and 5) and 3.3VREF and 5 VREF.
* VREF lowering is effective for BTL-AMP only.

Operative for ((MUTE operation)) to BTL-AMP(CH1, 2, 4, 5) and 3.3VREF, $5 V_{\text {REF }}$

IN-MUTE condition	BTL-AMP (CH1, 2, 4,5)	$3.3 V_{\text {REG }}$ $5 V_{\text {REG }}$
H	ON	
L OFF		

Operative for (($V_{R E F}$ lowering)) to BTL-AMP

$\mathrm{V}_{\text {REF }}$ condition	BTL-AMP $(\mathrm{CH} 1,2,4,5)$
$\mathrm{V}_{\text {REF }}>0.7(\mathrm{~V})$	ON
$\mathrm{V}_{\text {REF }}<0.7(\mathrm{~V})$	OFF

LOADING Block

$\mathrm{V}_{\mathrm{IN}}{ }^{\star+}$ (FWD)	$\mathrm{V}_{I N^{\star}-}$ (REV)	Loading output
L	L	Brake
	H	Reversed $\left(\mathrm{V}_{\mathrm{O}}=-1.5 \times \mathrm{REV}\right) * 1$
H	L	Forward $\left(\mathrm{V}_{\mathrm{O}}=1.5 \times \mathrm{FWD}\right) * 1$
	H	$\left(\mathrm{V}_{\mathrm{O}}=1.5 \times(\mathrm{VFO}-\mathrm{VRE})\right)$

* When the brake is applied, each " + " and "-" output voltage becomes $\mathrm{V}_{\mathrm{CC}} / 2$.
*1 FWD: $\mathrm{V}_{\mathrm{IN}} 6+, \mathrm{V}_{\mathrm{IN}}{ }^{3+}$, REV: $\mathrm{V}_{\mathrm{IN}} 6-, \mathrm{V}_{\mathrm{IN}}{ }^{3-}$.
* L voltage is $\mathrm{L}<\mathrm{VF}_{\mathrm{F}}(\approx 0.6 \mathrm{~V})$.
* Gain of loading (CH3, 6) is 3.5 dB (TYP).

Reset function

IN-MUTE	$V_{\text {REF }}$	O-RESET
L	$\mathrm{V}_{\text {REF }}<0.7 \mathrm{~V}$	L
	$\mathrm{~V}_{\text {REF }}>0.7 \mathrm{~V}$	L
H	$\mathrm{V}_{\text {REF }}<0.7 \mathrm{~V}$	L
	$\mathrm{~V}_{\text {REF }}>0.7 \mathrm{~V}$	H

* O- $\overline{\text { RESET }}$ is an open collector output (NPN).

Relation of input and output (BTL-AMP)

■SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
■ SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
\square In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
■ No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
\square Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
■ Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.

- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellctual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of February, 2007. Specifications and information herein are subject to change without notice.

