

SANYO Semiconductors DATA SHEET

LA7358M

Monolithic Linear IC

For VCR SECAM Chroma Signal Processor

Overview

LA7358M is a VCR-use SECAM chroma signal processor.

Function

• 4.3MHz BPF

• 1.1MHz BPF

• Limiter

• AGC (in PB mode)

• Divide-by-four circuit

• 4×circuit

• 2.2MHz BPF

• Automatic adjustment BELL filter

• SECAM detector

Sync gate

Specifications

Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		7.0	V
Allowable power dissipation	Pd max	Ta ≤ 70°C*	600	mW
Operating temperature	Topr		-15 to +70	°C
Storage temperature	Tstg		-40 to +150	°C

^{*} Mounted on a board. 114.3×76.1×1.6mm³ Glass epoxy

Operating Conditions at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	VCC		5.0	V
Operating supply voltage range	V _{CC} op		4.8 to 5.5	٧

- Any and all SANYO Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO Semiconductor representative nearest you before using any SANYO Semiconductor products described or contained herein in such applications.
- SANYO Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor products described or contained herein.

SANYO Semiconductor Co., Ltd.

Electrical Characteristics Ta = 25°C, $V_{CC} = 5V$

Parameter	Symbol	Input	Test	Conditions		Ratings		Unit
raidifictor	Cymbol		point	Conditions	min	typ	max	Offic
REC mode current drain	I _{CC} R	S16	A23	V5 = 0V, V17 = 0V,	50	70	90	mA
				S29 = Comp.Sync				
				S16 = Color bar signal (Fig.1)				
4.3MHz BPF	VF4C	S16	T18	V5 = 5V, V17 = 0V,	145	180	215	mVp-p
characteristics (1)				S29 = Comp.Sync				
• •				S16 = sine wave				
				(200mVp-p, f = 4.286MHz)				
4.3MHz BPF	GF4L1	S16	T18	V5 = 5V, V17 = 0V,		-30	-20	dB
characteristics (2)				S29 = Comp.Sync			-	
(=)				S16 = sine wave				
				(200mVp-p, f = 1.1MHz)				
				referenced (0dB) to VF4C.				
4.3MHz BPF	GF4L2	S16	T18	V5 = 5V, V17 = 0V,		-10	-5	dB
characteristics (3)	OI 4LZ	310	110	S29 = Comp.Sync		-10	-5	QD.
Characteristics (5)				S16 = sine wave				
				(200mVp-p, f = 2.2MHz)				
				, , , , ,				
4 OMUL DDE	OFALL	040	T40	referenced (0dB) to VF4C.		20	20	4D
4.3MHz BPF	GF4H	S16	T18	V5 = 5V, V17 = 0V,		-30	-20	dB
characteristics (4)				S29 = Comp.Sync				
				S16 = sine wave				
				(200mVp-p, f = 7.5MHz)				
				referenced (0dB) to VF4C.				
REC BELL	FBLR1	S16	T22	V5 = 0V, V17 = 0V, SW22B = ON	4.243	4.286	4.329	MHz
center frequency				S16 = sine wave				
				(200mVp-p, f = 4 to 5MHz)				
				S29 = Comp.Sync (Note1)				
REC BELL	VBLRC	S16	T22	V5 = 0V, V17 = 0V, SW22B = ON	200	250	300	mVp-p
charecterictics (1)				S16 = sine wave				
				(200mVp-p, f = FBLR1)				
				S29 = Comp.Sync				
REC BELL	GBLRL	S16	T22	V5 = 0V, V17 = 0V, SW22B = ON	-14	-11	-8	dB
characteristics (2)				S16 = sine wave				
				(200mVp-p, f = 3.8MHz)				
				referenced (0dB) to VBLRC.				
REC BELL	GBLRH	S16	T22	V5 = 0V, V17 = 0V, SW22B = ON	-14	-11	-8	dB
characteristics (3)				S16 = sine wave			-	
(-)				(200mVp-p, f = 4.8MHz)				
				referenced (0dB) to VBLRC.				
REC mode	GKLR	S16	T28	V5 = 0V, V17 = 0V, SW22B = ON, V25	-28	-23	-18	dB
killer operation level	ORLIN	0.10	120	= 3.4V. V26 = 3.7V	20	20	10	QD
Killer operation level				S16 = SECAM color bar signal				
				(level variable)				
				S29 = Comp.Sync (Note2)				
DEC EO contor fraguency	FFOR1	S22	T12	SW1 = ON, V1 = 5V, V5 = 0V,	1.0000	1.0715	1 0000	MIL
REC EQ center frequency	FEQR1	522	112		1.0608	1.0715	1.0822	MHz
				V17 = 0V S22 = sine wave				
				(200mVp-p, f = 4to 5MHz)				
				SW22A = SW22B = ON,				
				S29 = Comp.Sync (Note3)				_
REC EQ characteristics (1)	VEQRC	S22	T12	SW1 = ON, V1 = 5V, V5 = 0V,	65	85	105	mVp-p
				V17 = 0V S22 = sine wave				
				(200mVp-p, f = FEQR1×4)				
				SW22A = SW22B = ON,				
				S29 = Comp.Sync	1			

Continued	from	preceding page.	

Parameter	Symbol	Input	Test	Conditions	ļ	Ratings		Unit
i alametei	Symbol	iliput	point	Conditions	min	typ	max	Offic
REC EQ characteristics (2)	GEQRL	S22	T12	SW1 = ON, V1 = 5V, V5 = 0V,	8	11	14	dB
				V17 = 0V S22 = sine wave				
				(200mVp-p, f = 3.8MHz)				
				referenced (0dB) to VEQRC.				
				SW22A = SW22B = ON,				
				S29 = Comp.Sync				
REC EQ characteristics (3)	GEQRH	S22	T12	SW1 = ON, V1 = 5V, V5 = 0V,	8	11	14	dB
				V17 = 0V S22 = sine wave				
				(200mVp-p, f = 4.8MHz)				
				referenced (0dB) to VEQRC.				
				SW22A = SW22B = ON,				
				S29 = Comp.Sync				
REC chroma signal	VOR	S16	T12	SW1 = ON, V1 = 5V, V5 = 0V,	80	110	140	mVp-p
output level				V17 = 0V S22 = sine wave				
				(200mVp-p, f = 4.4MHz)				
				SW22B = ON, S29 = Comp.Sync				
REC chroma signal output	GSR1	S16	T12	SW1 = ON, V1 = 5V, V5 = 0V,		-30	-20	dB
unwanted spectrum (1)	33.11			V17 = 0V S22 = sine wave				U.D
unwanted spectrum (1)				(200mVp-p, f = 4.4MHz)				
				SW22B = ON, S29 = Comp.Sync				
				Measure 2.2MHz component at T12.				
				Referenced (0dB) to VOR.				
DEC abrama signal autaut	GSR2	S16	T12	SW1 = ON, V1 = 5V, V5 = 0V,		-30	-20	4D
REC chroma signal output	GSRZ	510	112			-30	-20	dB
unwanted spectrum (2)				V17 = 0V S22 = sine wave				
				(200mVp-p, f = 4.4MHz)				
				SW22B = ON, S29 = Comp.Sync				
				Measure 3.3MHz component at T12.				
70		011	400	Referenced (0dB) to VOR.			400	
PB mode current drain	ICCP	S14	A23	V5 = 0V, V17 = 5V,	60	80	100	mA
				S29 = Comp.Sync				
				S14 = sine wave				
				(50mVp-p, f = 1.0715MHz)				
AGC control	VAGC	S14	T12	V6 = 5V, SW9B = ON, V17 = 5V,	90	120	150	mVp-p
characteristics (1)				S29 = Comp.Sync S14 = sine wave				
				(50mVp-p, f = 1.0715MHz)				
AGC control	GAGC1	S14	T12	V6 = 5V, SW9B = ON, V17 = 5V,	-1	0	1	dB
characteristics (2)				S29 = Comp.Sync S14 = sine wave				
				(100mVp-p, f = 1.0715MHz)				
				referenced (0dB) to VAGC.				
AGC control	GAGC2	S14	T12	V6 = 5V, SW9B = ON, V17 = 5V,	-1	0	1	dB
characteristics (3)				S29 = Comp.Sync S14 = sine wave				
				(25mVp-p, f = 1.0715MHz)				
				referenced (0dB) to VAGC.				
1.1MHz BPF	GF1L	S14	T12	V6 = 5V, SW15 = ON,	-3	0	3	dB
characteristics (1)				V15 = V15R (Note4)				
				S14 = sine wave				
				(50mVp-p, f = 500kHz),				
				V17 = 5V S29 = Comp.Sync,				
				referenced (0dB) to VAGC.				
1.1MHz BPF	GF1H1	S14	T12	V6 = 5V, SW15 = ON,		-30	-20	dB
characteristics (2)				V15 = V15R (Note4)				
				S14 = sine wave				
				(50mVp-p, f = 2.2kHz),				
				referenced (0dB) to VAGC.				
	Ì	1	1	V17 = 5V, S29 = Comp.Sync	1			

C .: 1	c	11	
Continued	from	preceding	page.

Parameter	Symbol	Input	Test	Conditions	Ratings			Unit
raiaillelei	Syllibol	input	point	Conditions	min	typ	max	UTIIL
1.1MHz BPF characteristics (3)	GF1H2	S14	T12	V6 = 5V, SW15 = ON, V15 = V15R(Note4)		-35	-25	dB
onaradionolido (d)				S14 = sine wave				
				(50mVp-p, f = 3.3kHz),				
				referenced (0dB) to VAGC.				
				V17 = 5V, S29 = Comp.Sync				
PB EQ centre frequency	FEQP1	S14	Т9	V6 = 0V, SW9B = ON, SW15 = ON, V15 = V15R (Note4), V17 = 5V	1.0608	1.0715	1.0822	MHz
				S14 = sine wave				
				(50mVp-p, f = 1 to 1.2MHz)				
				S29 = Comp.Sync (Note5)				
PB EQ characteristics (1)	VEQPC	S14	Т9	V6 = 0V, SW9B = ON, SW15 = ON, V15 = V15R (Note4), V17 = 5V	120	150	180	mVp-p
				S14 = sine wave				
				(50mVp-p, f = FEQP1)				
				S29 = Comp.Sync				
PB EQ characteristics (2)	GEQPL	S14	Т9	V6 = 0V, SW9B = ON, SW15 = ON,	-14	-11	-8	dB
(_/				V15 = V15R (Note4), V17 = 5V			_	
				S14 = sine wave				
				(50mVp-p, f = 950kHz),				
				referenced (0dB) to VEQP.				
				S29 = Comp.Sync				
PB EQ charateristics (3)	GEQPH	S14	Т9	V6 = 0V, SW9B = ON, SW15 = ON,	-14	-11	-8	dB
2 2 4 ond atomotion (b)	024			V15 = V15R (Note4), V17 = 5V			· ·	42
				S14 = sine wave				
				(50mVp-p, f = 1.2kHz),				
				referenced (0dB) to VEQP.				
				S29 = Comp.Sync				
PB BELL centre frequency	FBLP1	S9	T18	SW1 = ON, V1 = 5V, V5 = 0V,	4.243	4.286	4.329	MHz
				SW9A = SW9B = ON, V17 = 5V				
				S29 = Comp.Sync S9 = sine wave				
				(200mVp-p, f = 1 to 1.2MHz) (Note6)				
PB BELL characteristics (1)	VBLPC	S9	T18	SW1 = ON, V1 = 5V, V5 = 0V,	65	85	105	mVp-p
				SW9A = SW9B = ON, V17 = 5V				
				S10 = sine wave				
				(200mVp-p, f = FBLP1×1/4)				
				S29 = Comp.Sync				
PB BELL characteristics (2)	GBLPL	S9	T18	SW1 = ON, V1 = 5V, V5 = 0V,	8	11	14	dB
				SW9A = SW9B = ON, V17 = 5V				
				S9 = sine wave				
				(200mVp-p, f = 950kHz),				
				referenced (0dB) to VBLPC.				
				S29 = Comp.Sync				
PB BELL characteristics (3)	GBLPH	S9	T18	SW1 = ON, V1 = 5V, V5 = 0V,	8	11	14	dB
				SW9A = SW9B = ON, V17 = 5V				
				S9 = sine wave				
				(200mVp-p, f = 1.2kHz),				
				referenced (0dB) to VBLPC.				
				S29 = Comp.Sync				
PB chroma signal	VOP	S14	T18	SW1 = ON, V1 = 5V, V5 = V6 = 0V,	130	160	190	mVp-p
output level				V17 = 5V S14 = sine wave				
				(50mVp-p, f = 1.1MHz)				
				SW9B = ON, S29 = Comp.Sync				

Continued from preceding page.

Parameter	Symbol	Input	ut Test	Conditions	Ratings			Unit
. didiliotor	Cymbol	put	point	Soriditions	min	typ	max	51110
PB chroma signal output unwanted spectrum (1)	GSP1	S14	T18	SW1 = ON, V1 = 5V, V5 = 0V, V17 = 5V S14 = sine wave (50mVp-p, f = 1.1MHz) SW9B = ON, S29 = Comp.Sync Measure 2.2MHz component at T18. Referenced (0dB) to VOP.		-25	-15	dB
PB chroma signal output unwanted spectrum (2)	GSP2	S14	T18	SW1 = ON, V1 = 5V, V5 = 0V, V17 = 5V S14 = sine wave (50mVp-p, f = 1.1MHz) SW9B = ON, S29 = Comp.Sync Measure 3.3MHz component at T18. Referenced (0dB) to VOP.		-20	-10	dB
CLK input level	VCLK	S2		f = 4.433619MHz	100	200	800	mVp-p
Sync signal input threshold level	VTHS	S29			1.8	2	2.2	V
REC mode sync gate start time (MUTE OFF)	TRGB	S29	T12	SW1 = ON, V1 = 5V, V5 = 0V, V17 = 0V, S16 = sine wave (200mVp-p, 4.286MHz) SW22B = ON, S29 = Comp.Sync (Note7)	-0.3	0.2	0.7	μS
REC mode sync gate start time (MUTE ON)	TRGBM	S29	T12	SW1 = ON, V1 = 5V, V5 = 0V, V17 = 0V, S16 = sine wave (200mVp-p, 4.286MHz) SW22B = ON, S29 = Comp.Sync (Note7) SW2 = ON	1.5	2	2.5	μѕ
REC mode sync gate release time	TRGE	S29	T12	SW1 = ON, V1 = 5V, V5 = 0V, V17 = 0V, S16 = sine wave (200mVp-p, 4.286MHz) SW22B = ON, S29 = Comp.Sync (Note7) SW2 = ON	4.5	5.0	5.5	μs
REC mode mute setting resistance	VTSP2	S16	T18	(Note8)	10	20	30	kΩ
PB mode sync gate start time	TPGB	S29	T18	SW1 = ON, V5 = 0V, SW9B = ON, S14 = sine wave (50mVp-p, f = 1.0715MHz) V17 = 5V, S29 = Comp.Sync (Note9)	1.5	2	2.5	μ\$
PB mode sync gate release time	TPGE	S29	T18	SW1 = ON, V5 = 0V, SW9B = ON, S14 = sine wave (50mVp-p, f = 1.0715MHz) V17 = 5V, S29 = Comp.Sync (Note9)	4.5	5.0	5.5	μЅ
BGP start time	TBGB	S29	T28	V5 = 0V, V6 = 5V, SW22B = ON, V17 = 0V S29 = Comp.Sync (Note10)	6.4	6.55	6.7	μ\$
BGP width	TBGW	S29	T28	V5 = 0V, V6 = 5V, SW22B = ON, V17 = 0V	2.3	2.5	2.7	μS
SECAM detection output resistance	R28		T28	S29 = Comp.Sync (Note10) SW27 = ON, V27 = 5V (Note11)	7	10	13	kΩ
REC mode SECAM detection characteristics (1)	VSCMR1	S16	T28	V5 = 0V, V17 = 0V, SW22B = ON, S29 = Comp.Sync S16 = SECAM color bar signal (Note12)	4.5			V
REC mode SECAM detection characteristics (2)	VSCMR2	S16	T28	V5 = 0V, V17 = 0V, SW22B = ON, S29 = Comp.Sync S16 = PAL color bar signal (Note13)			0.5	V
PB mode phase detection output differential voltage (1)	VSCPD1	S14	T25 T26	V5 = 0V, SW9B = ON, V17 = 5V, S29 = Comp.Sync S14 = sine wave (50mVp-p, f = 1.0625/1.1016MHz) (Note14)	150	180		mV

Parameter	O: make al	lana. A	Test	Canditiana	Ratings			Unit	
Parameter	Symbol	Input	point	Conditions	min	typ	max	UTIIL	
PB mode phase detection	VSCPD2	VSCPD2 S14 T25 V5 = 0V, SW9B = ON, V17 = 5V,				100	mV		
output differential voltage (2)			T26	S29 = Comp.Sync					
				S14 = sine wave					
				(50mVp-p, f = 627kHz) (Note14)					
PB mode phase detection	VSCPD3	S14	T25	V5 = 0V, SW9B = ON, 17 = 5V,			100	mV	
output differential voltage (3)			T26	S29 = Comp.Sync S14 = sine wave					
				(50mVp-p, f = 0.7/1.04MHz)					
				(Note14)					
PB mode SECAM detection	VSCMP1	V25	T28	V17 = 5V, SW25 = SW26 = ON	4.5			V	
characteristics (1)		V26		(Note15)					
PB mode SECAM detection	VSCMP2	V25	T28	V17 = 5V, SW25 = SW26 = ON			0.5	V	
characteristics (2)		V26		(Note15)					
PB mode SECAM detection	VSCMP3	V25	T28	V17 = 5V, SW25 = SW26 = ON			0.5	V	
characteristics (3)		V26		(Note15)					
SECAM	VTCOMP	V27	T28	SW27 = ON	3.2	3.5	3.8	V	
detection comparator									
threshold voltage									
REC/PB control	VTRP	V17			2.3	2.5	2.7	V	
threshold voltage									
Forced SECAM mode	VTHSM	V1	T18	V17 = 0V, SW27 = ON, V27 = 3V		İ	4	V	
threshold voltage				S29 = Comp.Sync S16 = sine wave					
-				(200mVp-p, f = 4.286MHz)					
Forced MUTE mode	VTHMM	V1	T18	V17 = 0V, SW27 = 0N, V27 = 4V	1			V	
threshold voltage				S29 = Comp.Sync S16 = sine wave					

(200mVp-p, f = 4.286MHz)

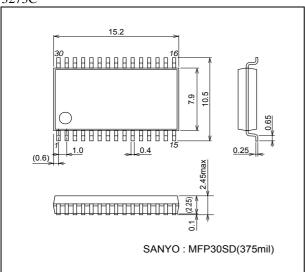
4.1

4.3

4.5

٧

Reference voltage


VREG

V13


T13

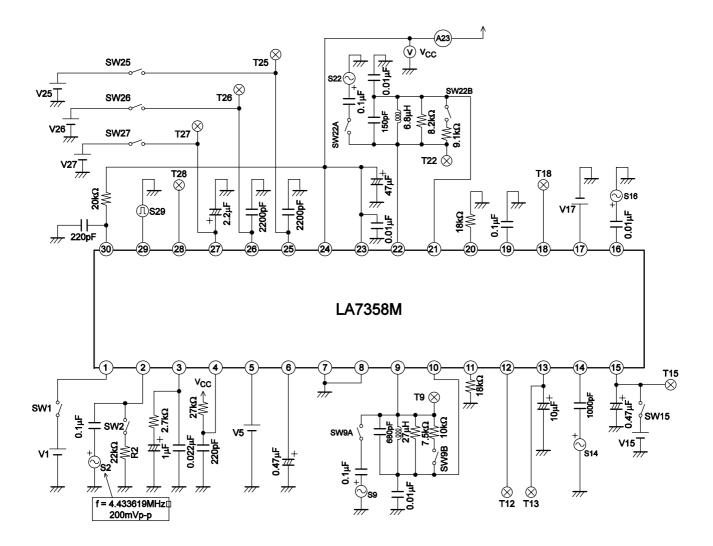
Package Dimensions

unit : mm 3273C

Block Diagram and Application Circuit Example

Pin equivalent circuit

Pin No.	Pin name	Function	DC voltage	Signal wave form	Equivalent circuit
1	MODE IN		2.5V	DC	Vcc \$350
					1) - Wy - 10kΩ Gg 2/2 2
2	CLK IN		4.0V		Vcc \$\int_{\inttitle\int_{\inttile\tint_{\inttile\int_{\inttile\int_{\int_{\inttile\int_{\inttile\int_{\inttile\int_{\inttile\int_{\inttile\int_{\inttile\int_{\inttile\int_{\inttile\int_{\inttile\int_{\inttile\inttile\int_{\inttile\int_{\inttile\int_{\inttile\int_{\inttile\int_{\inttile\int_{\inttile\int_{\inttile\int_{\inttile\iii\int_{\inttile\iii\iii\tile\iii\iii\iii\iiii\iiii
				4.433619MHz	9869 -///
3	AFC-FILTER		3.5V	DC	REG(13) VCC SHECK STATE OF THE
4	BGP TIMING		1 to 5V	5V 15.625MHz	V _{CC} (4)
5	DET SENSE	An adjusting sensitivity terminal for SECAM detecting circuit.	Add DC voltage of 2V to 4V.	DC	V _{CC}
	VCO OUT	TEST MODE	4.9V (TEST mode: connect $1k\Omega$ between V_{CC} .)	4.43MHz 4.9V	100Ω
	TEST CTL	A setting terminal for TEST mode.	Add DC voltage of 4.5V to V _{CC} .	DC	OFF except TEST mode
6	SH3	A terminal for holdinglimiter voltage of phase detection output of SECAM detection.	3.1V	DC	V _{CC} 1/2V _{CC} Sep 1/2V _C SkΩ 1kΩ 6


	from preceding page.	T T			
Pin No.	Pin name	Function	DC voltage	Signal wave form	Equivalent circuit
7	D-GND		0V		
8	A-GND		0V		
9	BELL1	A terminal for connecting filter of current Amp. Operate in PB mode	2.5V	∫ ∫ ∫200mVp-p Center frequency 1.1MHz	IKO IKO
		A terminal for connecting filter of voltage Amp. Operate in REC mode	2.5V		1000g
		Operate during automatic adjusting BELL-filter (a part of V period).	2.5V		2KΩ
10	VREF1	Occur voltage in PB mode and BELL-filter automatic adjusting mode.	2.5V	DC	Vcc Vcc (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
11	IREF1	Setting reference current (Adjusting gain of BELL-filter output)	2.3V	DC	Vcc Vcc/2 + VBE
12	REC-OUT		REC : 2.5V PB : OPEN	∫ ∫ ∫200mVp-p Center frequency 1.1MHz	ON in PB mode.(except in TEST mode)

	from preceding page.				
Pin No.	Pin name	Function	DC voltage	Signal wave form	Equivalent circuit
13	REG-4.2V	A terminal of reference voltage output.	4.2V	DC	13 to other block
14	PB-IN		2.5V	∫ ∫ ∫ 50mVp-p 1.1MHz	3.25V 10kΩ 1kΩ 4π00 14
15	AGC-FILTER	PB MODE REC MODE KILLER-FILTER	V _{CC} /2 ±VBE	DC	2kΩ
16	REC-IN		2.5V	4.286MHz	3.25V 10kΩ 1kΩ (V)
17	PB/REC mode	VTH=V _{CC} /2 selecting control	0 to V _{CC}	DC	① _ W
18	PB-OUT		B : 2.5V REC : OPEN	∫	ON in REC mode.(except TEST mode)
19	LIM-EXC		2.3V	DC	1kΩ 10μF 20kΩ 19

	from preceding page.	E	DO -11	O'real and from	Entrated to 1
Pin No.	Pin name IREF4	Function Setting reference	DC voltage 2.3V	Signal wave form DC	Equivalent circuit
		current (adjusting gain of BELL-filter output).			VCC VCC/2 + VBE W Cya
21	VREF4	Occur voltage in PB mode and BELL-filter automatic adjusting mode.	2.5V	DC	VCC (2)
22	BELL4 (REC mode)	A terminal for connecting filter of current Amp. Operate in REC mode	2.5V	∫ ∫ 200mVp-p Center frequency 4.3MHz	CAIL CAIL CAIL CAIL CAIL CAIL CAIL CAIL
		Operate in PB mode a terminal for connecting filter of voltage Amp.	2.5V	Center frequency 4.3MHz	100Ω
		Operate during adjusting automatic BELL-filter (a part of V period).	2.5V	Center frequency 4.3MHz	2ka 2ka
23	A-V _{CC}		5V	DC	
24	G-V _{CC}		5V	DC	
25	SHC1	A terminal of sample & HOLD.	2.5V	DC (when connecting condensor)	V _C C 2V 5kΩ 1kΩ 25
					Continued on next page.

Continued	from preceding page.	,		1	
Pin No.	Pin name	Function	DC voltage	Signal wave form	Equivalent circuit
26	SHC2	A terminal of sample & HOLD.	2.5V	DC (when connecting condensor)	V _{CC}
27	DETC		2 to 5V	DC	1k2 1k3 30k3 30k3 20k3 20k3 20k3 20k3 20k3 20
28	SECAM DET OUT (Generally) BGP MONITOR (TEST mode)	Operate except in TEST mode. Operate in TEST mode.	0 to 5V	5V 0V	28) VCC
29	SYNC IN		Threshold voltage 2.0V	COMP.SYNC	29 - (M) - (10Ω) - (1
30	RC DELAY		0 to 5V	5V 15.625MHz	30 200Ω 200Ω

Test Circuits

Supplemental Description

(Note 1) REC mode BELL centre frequency (1) (FBLR1) / (2) (FBLR2):
Input a sine wave (200mVp-p, 4 to 5MHz) to S16 and measure the amplitude at pin 22 using an FET probe.
Assign to FBLR1 / FBLR2 the frequency at S16 when the amplitude is maximized.

(Note 2) REC mode killer operating level (GKLR):

Input a color bar signal (Fig. 1) to S16 and take 0dB as the color signal level. Gradually decrease the color signal level at S16 and assign to GKLR [dB] the level at S16 when the voltage at T28 becomes 2.5V or less, provided that the sync signal at pin 29 lags that at S16 by 1.1µs.

SECAM stabdard color bar signal (75%)

S16

Language Paragraph

S16

Language Paragraph

S29

Fig.1

(Note 3) REC EQ centre frequency (1) (FEQR2) / (2) (FEQR2):

Observe the waveform at T12 when S22 = sine wave (200 mVp-p, 4 to 5MHz) is input and assign to FBLR1 / FBLR2 the frequency at T12 when the amplitude is minimized.

- (Note 4) Assign to V15R the voltage at the time of VAGC measurement.
- (Note 5) PB EQ centre frequency (1) (FEQP1) / (2) (FEQP2): Input a sine wave (50 mVp-p, 1 to 1.2 MHz) to S14 and assign to FEQP1 / FEQP2 the frequency at S14 when the signal level is maximized.
- (Note 6) PB BELL centre frequency (1) (FBLP1) / (2) (FBLP2):
 Input a sine wave (200mVp-p, 1 to 1.2MHz) to S9 and assign to FBQP1 / FBQP2 the frequency at T18 when the signal level at T9 is minimized.

(Note 7) REC mode sync gate start time, release time (TRGB, TRGBM, TRGE):

Input Comp. sync to S29 and take the sync gate start time (TRGB) as the time from when the signal at T12 attenuates until the signal at S29 rises and the sync gate release time (TRGE) as the time from when take TRGBM as the sync gate start time when muting in turned on with a resistor connected to GND at SW2 = ON. (See Fig. 2)

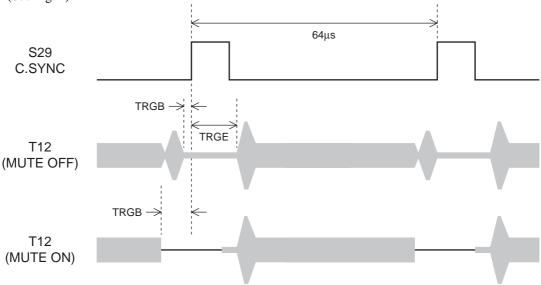


Fig.2 REC mode sync gate timing

(Note 8) REC mode mute setting resistance :

R2 value used to set T12 (MUTE-SW ON) state in REC mode in Fig.2.

(Note 9) $\,\,$ PB mode sync gate start time, release time (TRGB, TPGE) :

Input Comp.sync to S29 and take the sync gate start time (TRGB) as the time from when the signal at T18 attenuates until the horizontal sync signal rises until the signal at T18 starts increasing.

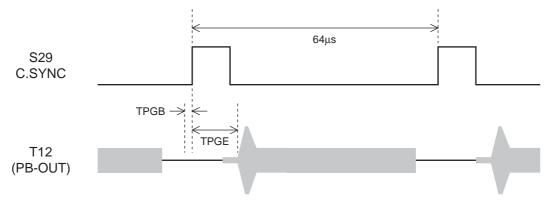
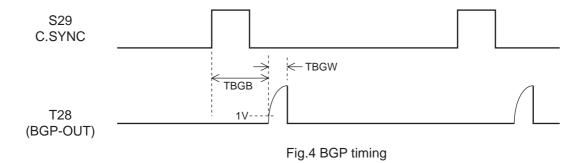
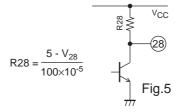
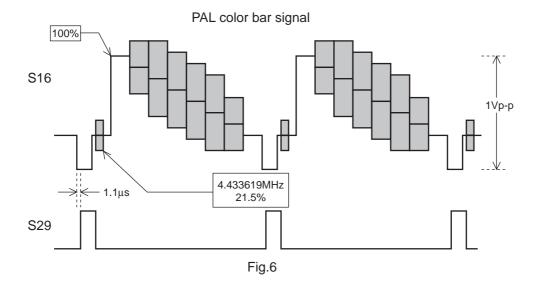




Fig.3 Sync gate timing

(Note 10) BGP start time, BGP width. (See Fig. 4)



(Note 11) Assign to V28 as when generating $100\mu A$ of current from pin 28 by adding 5V to pin 27 and take "H" as detection output at pin 28 is :

(Note 12) The sync signal at pin 29 must lag the SECAM color bar signal synchronization by 1.1µs. (See Fig. 1)

(Note 13) The sync signal at pin 29 must lag the PAL color bar signal synchronization by 1.1µs. (See Fig. 6)

(Note 14) PB mode phase detection output differential voltage:

VSAPD1: Assign to VPD1 the DC voltage at pin 25 when a sine wave of 1.0625MHz is input to pin 14 and VPD2 the DC voltage at pin 26 when a sine wave of 1.1016MHz is input.

VSCPD1 = VPD2-VPD1

VSAPD2: Assign to VPD3 and VPD4 the voltage at pin 25 and pin 26, respectively, when a sine wave of 627kHz is input to pin 14.

VSCPD2 = VPD4-VPD3

VSCPD3: Assign to VPD5 the DC voltage at pin 25 when a sine wave of 3.7MHz is input to pin 14 and VPD6 the DC voltage at pin 26 when a sine wave of 1.04MHz is input.

VSCPD3 = VPD6-VPD5

(Note 15) PB mode SECAM detection characteristics VSCMP1/VSCMP2:

SCMP1: Apply the above-mentioned VPD1 and VPD2 to pin 25 and pin 26, respectively and then measure the voltage at T28.

VSCMP2: Apply the above-mentioned VPD3 and VPD4 to pin 25 and pin 26, respectively and then measure the voltage at T28.

- Specifications of any and all SANYO Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Semiconductor Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, of otherwise, without the prior written permission of SANYO Semiconductor Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of November, 2006. Specifications and information herein are subject to change without notice.