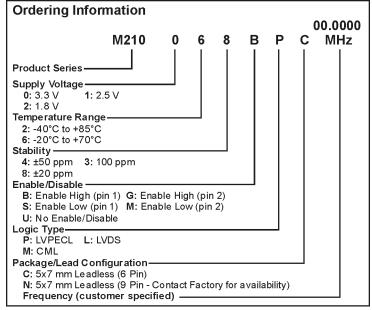


Product Features

- Featuring QiK Chip™ Technology
- From order to ship in 2 weeks
- Superior Jitter Performance (less than 0.25 ps RMS, 12 kHz - 20 MHz)
- SAW replacement better performance
- Frequencies from 150 MHz to 1.4 GHz

QiK Chip™

Product Description


The 210x series of oscillators are 5x7 mm oscillators designed with the QiK Chip™ technology. The QiK Chip™ technology was specifically designed for crystal based oscillators to provide low jitter performance (as low as 0.25 ps RMS) and a wide range of frequency support (150.00 MHz to 1.4 GHz) and provides a breakthrough in lean manufacturing enabling product to be provided in less than 2 weeks. The M210x provides design engineers with the stability needed in their advanced applications and supports the need for parts to be supplied quickly so that the rest of their circuit design can be solidified.

Product Applications

- Telecommunications such as SONET / SDH / DWDM / FEC / SERDES / OC-3 thru OC-192
- 1-2-4-10 Gigabit Fibre Channel
- Wireless Base Stations / WLAN / Gigabit Ethernet
- Avionic Flight Controls

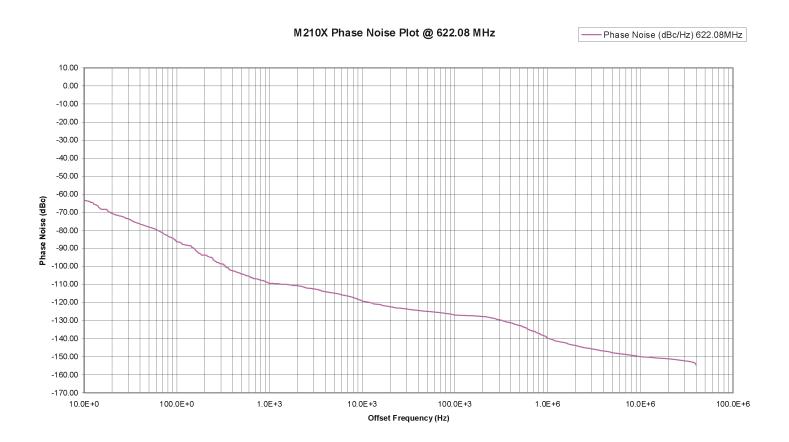
- Military Communications
- Clock and Data Recovery
- SD/HD Video
- FPGA/ASIC Clock Generation
- Test and Measurement Equipment

Product Ordering Information

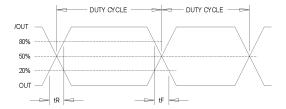
M2100Sxxx, M2101Sxxx, M2102Sxxx & M2103Sxxx - Contact factory for datasheets.

Performance Characteristics

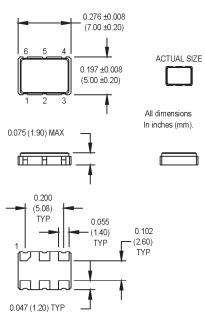
П	PARAMETER	Symbol	Min.	Тур.	Max.	Units	Condition/Notes		
П	Frequency Range	F	150	1,7,51	1400	MHz	See Note 1		
П	Operating Temperature	TA	(See orderi	na inforr			333 11313 1		
	Storage Temperature	Ts	-55		+125	°C			
	Frequency Stability	ΔF/F		ordering information)			See Note 2		
П	Aging		(0000.000	I			000 11010 2		
П	1st Year		-3	l	+3	ppm			
П	Thereafter (per year)		-1		+1	ppm			
П	Supply Voltage	Vcc	1.71	1.8	1.89	V	LVDS/CML		
П			2.375	2.5	2.625	V			
П			3.135	3.3	3.465	V .	1) (DEC) (1) (DO)(O) (1)		
П	Input Current	Icc	<u> </u>		125	mA	LVPECL/LVDS/CML		
П	Load		50 Ohmsto	. //)) \	See Note 3 LVPECL Waveform			
П						LVDS/CML Waveform			
П			100 Ohm differential load		l	LVPECL – Vdd-1.3 V			
۱.,	Symmetry (Duty Cycle)		45	l	55	%	LVDS – 1.25 V		
Specifications	Output Skew			20		ps	LVPECL		
ă;	-			15		ps	CML		
I≗l				20		ps	LVDS		
e	Differential Voltage	Vod	250	350	450	mV	LVDS		
		Vod	0.7	.095	1.20	Vpp	CML		
Electrical	Common Mode Output Voltage	Vcm		1.2		V	LVDS		
듗	Logic "1" Level	Voh	Vcc -1.02			V	LVPECL		
Ιŭ	Logic "0" Level	Vol			Vcc -1.63	V	LVPECL		
П	Rise/Fall Time	Tr/Tf		0.23	0.50	ns	@ 20/80% LVPECL		
П	Enable Function		80% Vcc min or N/C: Output active				Output Option B or G		
П					lisables to hig				
П					output active		Output Option S or M		
П	Otant Time		80% Vcc min: Output disables to high-Z						
П	Start up Time Phase Jitter				10	ms			
П	@ 622.08 MHz	фЈ		0.25		ps RMS	Integrated 12 kHz – 20 MHz		
П	Phase Noise	ψυ	-	0.23		ps ixivio	@ 622.08 MHz		
П	10 Hz			-60			dBc/Hz		
П	100 Hz			-97			dBc/Hz		
П	1 KHz			-107			dBc/Hz		
П	10 KHz			-116			dBc/Hz		
	100 KHz 1 MHz			-121			dBc/Hz		
	10 MHz			-134 -146			dBc/Hz dBc/Hz		
П	100 MHz			-148			dBc/Hz		
ᅥ	Mechanical Shock	Per MIL-	STD-202, Method 213, Condition C (100 g's, 6 mS duration, ½ sinewave)						
Environmental	Vibration		STD-202, Me						
	Hermeticity		er MIL-STD-202, Method 112, (1x10° atm. cc/s of Helium)						
l u	Thermal Cycle		r MIL-STD-883, Method 1010, Condition B (-55°C to +125°C, 15 min. dwell, 10 cycles)						
<u>₹</u>	Solderability		I-STD-002		,	2 (00 0 10 112	es e, remin. awen, re eyeles)		
[뉴	Max Soldering Condition								
ш	max solutering containons See soluter profile, rigure 1								


Note 1: Contact factory for standard frequency availability over 945 MHz

Note 2: Stability is inclusive of initial tolerance, deviation over temperature, shock, vibration, supply voltage, and aging for one year at 50°C mean ambient temperature.


Note 3: See Load Circuit Diagram in this Datasheet. Consult factory with nonstandard output load requirements.

Phase Noise Plot


Output Waveform

Output Waveform: LVDS/CML/PECL

Product Dimension & Pinout Information

PIN 1 ENABLE

Pad1: Enable/Disable

Pad2: N/C

Pad3: Ground

Pad4: Output Q (LVPECL,LVDS,CML)

6 Pad Standard Option

Pad5: Output Q (LVPECL, LVDS, CML)

Pad6: Vcc

PIN 2 ENABLE

Pad1: N/C

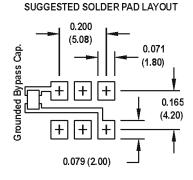
Pad2: Enable/Disable

Pad3: Ground

Pad4: Output Q (LVPECL,LVDS,CML)

Pad5: Output Q (LVPECL,LVDS,CML)

6 5


DENOTES PIN 1

0.069 ±0.008

(1.75 ±0.20)

Pad6: Vcc

0.047 (1.20) 11P

9 Pad Option

ACTUAL SIZE

All dimensions

in inches (mm)

0.276 ±0.008

(7.00 ±0.20)

0.197 ±0.008

(5.00 ±0.20)

0.200 (5.08) TYP

0.055 (1.40) TYP

0.047 (1.20) TYP

0.102 (2.60) TYP

PIN 1 ENABLE Pad1: Enable/Disable

Pad2: N/C

Pad3: Ground

Pad4: Output Q (LVPECL,LVDS,CML)

Pad5: Output $\overline{\mathbb{Q}}$ (LVPECL,LVDS,CML)

Pad6: Vcc

PadA: Do not connect!

PadB: Do not connect!

PadC: Do not connect!

PIN 2 ENABLE

Pad1: N/C

Pad2: Enable/Disable

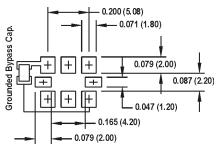
Pad3: Ground

Pad4: Output Q (LVPECL, LVDS, CML)

Pad5: Output Q (LVPECL, LVDS, CML)

Pad6: Vcc

PadA: Do not connect!


PadB: Do not connect!

PadC: Do not connect!

NOTE: These 3 pads must be isolated from any traces or vias appearing beneath this port.

SUGGESTED SOLDER PAD LAYOUT

0.047 (1.20) TYP

0.039 (1.00) TYP

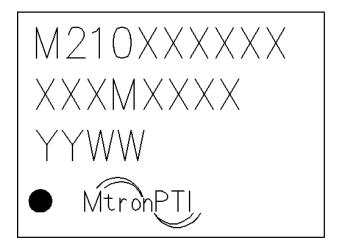
Handling Information

Although protection circuitry has been designed into the M210x oscillator, proper precautions should be taken to avoid exposure to electrostatic discharge (ESD) during handling and mounting. MtronPTI utilizes a human-body model (HBM) and a charged-device model (CDM) for ESD-susceptibility testing and protection design evaluation. ESD voltage thresholds are dependent on the circuit parameters used to define the mode. Although no industry-wide standard has been adopted for the CDM, a standard HBM (resistance = 1500 Ω , capacitance = 100 pF) is widely used and therefore can be used for comparison purposes. The HBM ESD threshold presented here was obtained using these circuit parameters.

Model	ESD Threshold, Minimum	Unit		
Human Body	1500*	V		
Charged Device	1500*	V		

^{*} MIL-STD-833D, Method 3015, Class 1

ATTENTION Static Sensitive Devices Handle only at Static Safe Work Stations

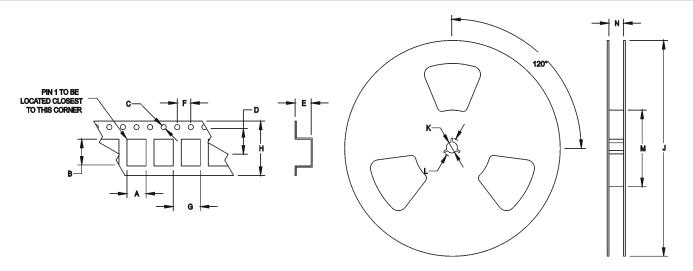

Quality Parameters

Environmental Specifications/Qualification Testing Performed on the M210 Clock Oscillator							
Test	Test Method	Test Condition					
Electrical Characteristics	Internal Specification	Per Specification					
Frequency vs. Temperature	Internal Specification	Per Specification					
Mechanical Shock	MIL-STD-202, Method 213, C	100 g's					
Vibration	MIL-STD-202, Method 201-204	10 g's from 10-2000 Hz					
Thermal Cycle	MIL-STD-883, Method 1010, B	-55 Deg. C to +125 Deg. C, 15 minute Dwell, 10 cycles					
Aging	Internal Specification	168 Hours at 105 Degrees C					
Gross Leak	MIL-STD-202, Method 112	30 Second Immersion					
Fine Leak	MIL-STD-202, Method 112	Must meet 1x10 ⁻⁸					
Solderability	MIL-STD-883, Method 2003	8 Hour Steam Age – Must Exhibit 95% coverage					
Resistance to Solvents	MIL-STD-883, Method 2015	Three 1 minute soaks					
Terminal Pull	MIL-STD-883, Method 2004, A	2 Pounds					
Lead Bend	MIL-STD-883, Method 2004, B1	1 Bending Cycle					
Physical Dimensions	MIL-STD-883, Method 2016	Per Specification					
Internal Visual	Internal Specification	Per Internal Specification					

Part Marking Guide

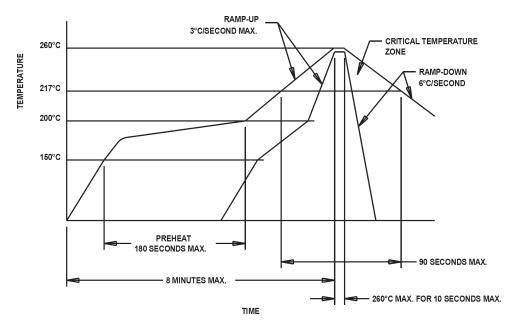
Line 1: Model Number Line 2: Frequency Line 3: Date Code

Line 4: Pin 1 Indicator / MtronPTI



M210x Series

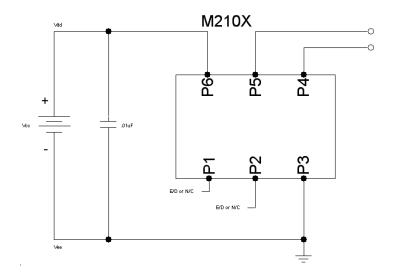
5x7 mm, 3.3/2.5/1.8 Volt, LVPECL/LVDS/CML, Clock Oscillator

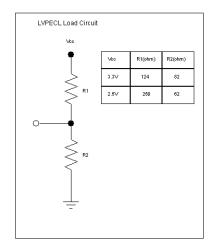

Tape & Reel Specifications

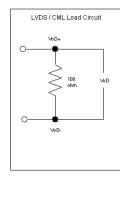
(all measurements are in mm)	Α	В	С	D	E	F	G	Н	I	J	K	L
M210x	6.51	9.29	1.5	7.5	2.8	4	8/12	16	180-330	13	21	60-100

Standard Tape and Reel: 1000 parts per reel

Maximum Soldering Conditions




Solder Conditions


Note: Exceeding these limits may damage the device.

Typical Test Circuit & Load Circuit Diagrams

Product Revision Table

Date	Revision	PCN Number	Details of Revision
7/20/07	А	10118	IC Revision to improve phase noise and electrical performance

For custom products or additional specifications contact our sales team at 800.762.8800 (toll free) or 605.665.9321

For more information on this product visit the MtronPTI website at www.mtronpti.com