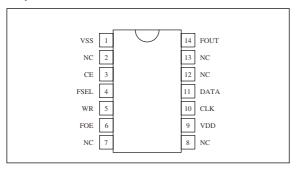
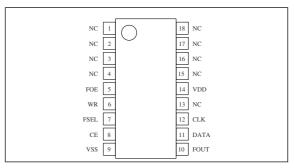


OVERVIEW

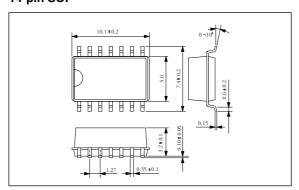

The NR8576 series devices are serial-interface type real-time clock module ICs with built-in crystal oscillator elements. They feature timer counter circuits that keep track of time from the current second to the current year, automatic leap-year adjustment, and a supply voltage detect function. Also, a 32.768kHz/1Hz select output function is incorporated for independent hardware control. They are available in compact 14-pin SOPs (NR8576A×) and miniature 18-pin SOPs (NR8576B×).

FEATURES

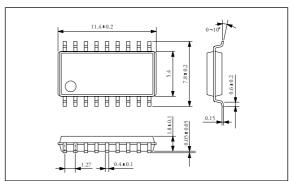

- Crystal oscillator element built-in for adjustment-free use
- Timer counters for second, minute, hour, day, day of the week, month, and year
- 2.5 to 5.5V operating voltage range
- 1.7 ± 0.3 V supply voltage detection threshold
- 1.0µA at 3.0V (typ) current consumption
- Automatic leap-year calendar adjustment
- 32.768kHz and 1Hz output selectable
- Package
 - 14-pin SOP (NR8576A×)
 - 18-pin SOP (NR8576B×)

PINOUTS

14-pin SOP

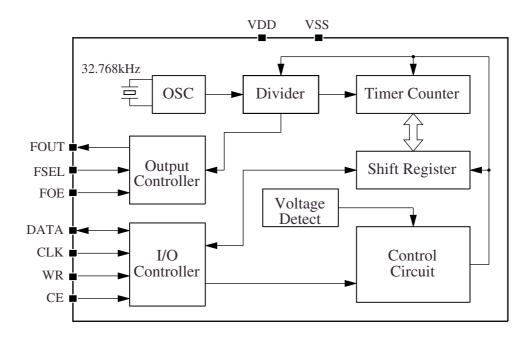


18-pin SOP



PACKAGE DIMENSIONS (Unit: mm)

14-pin SOP


18-pin SOP

SERIES CONFIGURATION

Device	Package	Frequency deviation
NR8576AA	14-pin SOP	5 ± 12 ppm
NR8576AB	14-pin SOP	5 ± 23 ppm
NR8576BA	18-pin SOP	5 ± 12 ppm
NR8576BB	18-pin SOP	5 ± 23 ppm

BLOCK DIAGRAM

PIN DESCRIPTION

Name	I/O	Description
VSS	-	Ground Connect a $\geq 0.1 \mu F$ capacitor between VDD and VSS.
CE	1	Chip enable. HIGH: Enable LOW: DATA goes high impedance; input on WR, CLK, and DATA stops; and the TM bit is cleared.
FSEL	I	FOUT output frequency select. HIGH: 1Hz LOW: 32.768kHz
WR	I	DATA input/output control switch. HIGH: Data input mode (RTC write) LOW: Data output mode (RTC read)
FOE	ı	FOUT output enable control. HIGH: The frequency selected by FSEL is output on FOUT. LOW: FOUT goes high impedance.
VDD	-	Supply voltage. Connect a ≥ 0.1µF capacitor between VDD and VSS.
CLK	ı	System clock input. Data is input (RTC write mode) and output (RTC read mode) on the rising edge of CLK.
DATA	I/O	Data read and write input/output
FOUT	0	Frequency output (output controlled by FOE and frequency selected by FSEL). In 1Hz output mode, the 1Hz signal is synchronized to the internal 1 second signal. FOUT output is not affected by the CE signal.
NC	-	No connection. Leave open for normal use.

SPECIFICATIONS

Absolute Maximum Ratings

 $V_{SS} = 0V$ unless otherwise noted.

Parameter	Symbol	Condition	Rating	Unit
Supply voltage range	V _{DD}	Ta = 25°C	-0.3 to 7.0	V
Input voltage range	V _{IN}	Ta = 25°C	$V_{SS} - 0.3 \text{ to } V_{DD} + 0.3$	V
Output voltage range	V _{OUT}	Ta = 25°C	$V_{SS} - 0.3 \text{ to } V_{DD} + 0.3$	V
Storage temperature range	T _{STG}		-55 to 125	°C

Recommended Operating Conditions

 $V_{SS} = 0V$ unless otherwise noted.

Parameter	Symbol	Condition	Rating	Unit
Supply voltage range	V _{DD}		2.5 to 5.5	V
Clock supply voltage range	V _{CLK}		1.4 to 5.5	V
Operating temperature range	T _{OPR}		-40 to 85	°C

Oscillator Characteristics

 $V_{SS} = 0V$ unless otherwise noted.

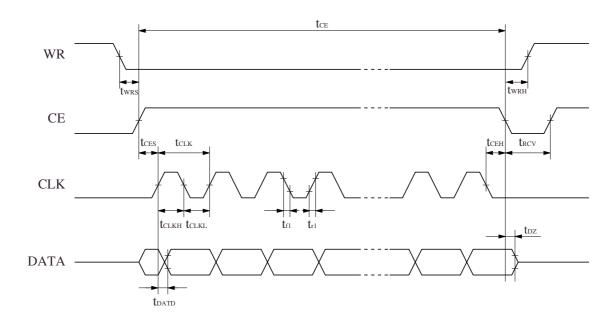
Parameter	Symbol	Condition		Rating	Unit		
Fraguency deviation	Δf/f _O	Ta = 25°C,	NR8576×A	5 ± 12	ppm		
Frequency deviation		V _{DD} = 5.0V	NR8576×B	5 ± 23	ppm		
Frequency temperature characteristic	T _{OP}	Ta = -10 to 70°C, V _{DD} = 5.0V, 25°C std		1		+10/–120	ppm
Frequency voltage characteristic	f/V	Ta = 25°C, V _{DD} = 2.0 to 5.5V				±2 max	ppm/V
Oscillator start time	t _{STA}	Ta = 25°C, V _{DD} = 2.5V		Ta = 25°C, V _{DD} = 2.5V		3 max	sec
Aging	f _A	Ta = 25°C, V _{DD} = 5.0V, first year		55		±5 max	ppm/year

NR8576 series

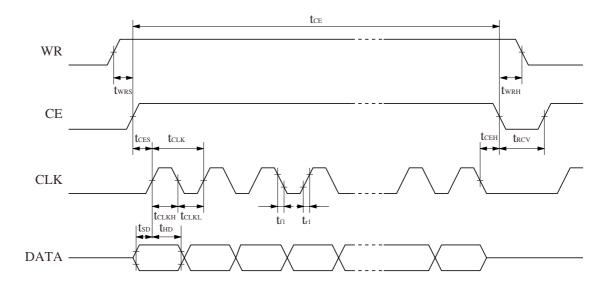
DC Electrical Characteristics

 V_{SS} = 0V, V_{DD} = 5.0V ± 10%, Ta = -40 to 85°C unless otherwise noted.

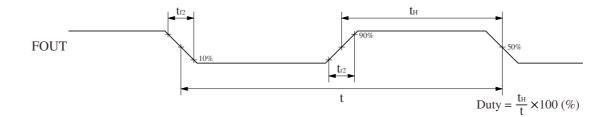
Parameter	Cumbal	Symbol Condition		Rating			Unit
raianietei	Syllibol		Condition	min	typ	max	Oilit
	I _{DD1}	V _{DD} = 5.0V	CE = V _{SS} , FOE = V _{SS} ,	-	1.5	3.0	μΑ
	I _{DD2}	V _{DD} = 3.0V	FSEL = V _{DD} ,	_	1.0	2.0	μΑ
Current consumption	I _{DD3}	V _{DD} = 2.0V	FOUT: floating	_	0.5	1.0	μΑ
Current consumption	I _{DD4}	V _{DD} = 5.0V	CE = V _{SS} , FOE = V _{DD} ,	_	4.0	10.0	μΑ
	I _{DD5}	V _{DD} = 3.0V	FSEL = V _{SS} ,	_	2.5	6.5	μA
	I _{DD6}	V _{DD} = 2.0V	FOUT: 32kHz output	-	1.5	4.0	μΑ
HIGH-level input voltage	V _{IH}	CE, FSEL, WI	R, FOE, CLK, DATA	0.8V _{DD}	-	-	V
LOW-level input voltage	V _{IL}	CE, FSEL, WI	CE, FSEL, WR, FOE, CLK, DATA		-	0.2V _{DD}	V
Input OFF leakage current	I _{OFF}		CE, FSEL, WR, FOE, CLK; V _{IN} = V _{DD} or V _{SS}		_	0.5	μА
LUCII laval avitavit valta sa	V _{OH1}	V _{DD} = 5.0V	I _{OH} = -1.0mA;	4.5	-	-	V
HIGH-level output voltage	V _{OH2}	V _{DD} = 3.0V	DATA, FOUT	2.0	-	-	V
LOW level system to reltance	V _{OL1}	V _{DD} = 5.0V	I _{OI} = 1.0mA;	_	-	0.5	V
LOW-level output voltage	V _{OL2}	V _{DD} = 3.0V	DATA, FOUT	-	-	0.8	V
Output load fanout	N/CL	FOUT		2	LSTTL/30pF m	ax	
Output leakage current	l _{ozh}	V _{OUT} = 5.5V; DATA, FOUT		-1.0	-	1.0	μΑ
	I _{OZL}	V _{OUT} = 0V; DA	V _{OUT} = 0V; DATA, FOUT		-	1.0	μΑ
Supply voltage detect threshold voltage	V _{DT}			1.4	1.7	2.0	V

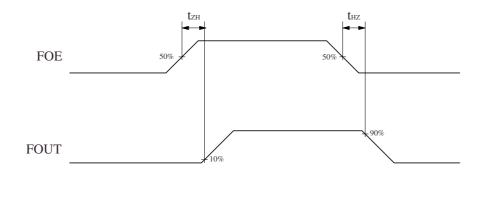

AC Characteristics

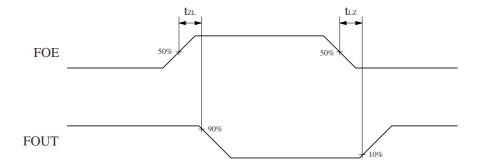
Ta = -40 to 85°C, CL = 50pF unless otherwise noted.


Parameter	Symbol	V _{DD} = 5	V _{DD} = 5V ± 10%		V _{DD} = 3V ± 10%	
		min	min max		min max	
CLK clock period	t _{CLK}	0.75	7800	1.5	7800	μs
CLK LOW-level pulsewidth	t _{CLKL}	0.375	3900	0.75	3900	μs
CLK HIGH-level pulsewidth	t _{CLKH}	0.375	3900	0.75	3900	μs
CE setup time	t _{CES}	0.375	3900	0.75	3900	μs
CE hold time	t _{CEH}	0.375	-	0.75	-	μs
CE enable time	t _{CE}	-	0.9	-	0.9	sec
Write data setup time	t _{SD}	0.1	_	0.2	-	μs
Write data hold time	t _{HD}	0.1	-	0.1	-	μs
WR setup time	t _{WRS}	100	-	100	-	ns
WR hold time	t _{WRH}	100	_	100	-	ns
DATA output delay time	t _{DATD}	-	0.2	-	0.4	μs
DATA output floating time	t _{DZ}	-	0.1	-	0.2	μs
Clock rise time	t _{r1}	-	50	-	100	ns
Clock fall time	t _{f1}	-	50	-	100	ns
FOUT rise time (CL = 30pF)	t _{r2}	-	100	-	200	ns
FOUT fall time (CL = 30pF)	t _{f2}	-	100	-	200	ns
Disable time (Cl. 2005)	t _{HZ}	-	100	-	200	ns
Disable time (CL = 30pF)	t _{LZ}	-	100	-	200	ns
Enable time (CL 20nE)	t _{ZH}	-	100	-	200	ns
Enable time (CL = 30pF)	t _{ZL}	-	100	-	200	ns
FOUT duty cycle (CL = 30pF)	Duty	40	60	40	60	%
Wait time	t _{RCV}	0.95	-	1.9	-	μs

Timing Diagrams


Data read

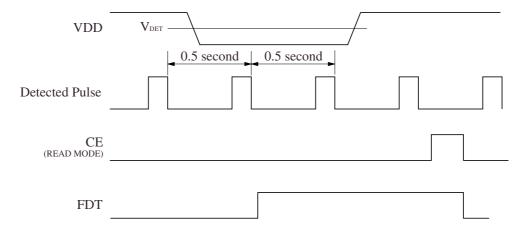

Data write



FOUT

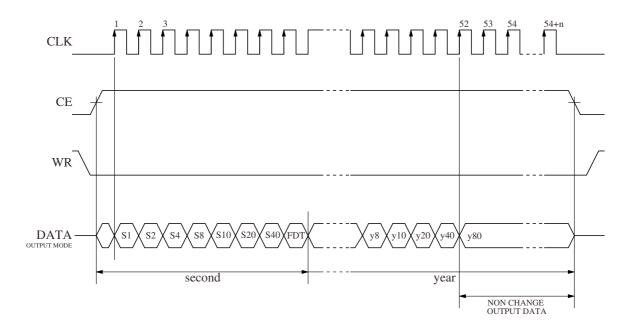
Disable/Enable

Note that FOE and FSEL do not have chatter elimination circuits. Consequently, switching either FOE or FSEL during 32kHz mode operation may generate chatter noise on the FOUT output. Also, note that the 1Hz and 32kHz oscillators are not synchronized to each other, so switching intervals shortens the duty cycle. Accordingly, a wait time (≥ chattering time + output frequency period) should be incorporated when switching intervals.


FUNCTIONAL DESCRIPTION

Timer data configuration

- Counter data in BCD code format
- Automatic long/short month and leap-year adjustment
- 24-hour time display
- LSB first write and read data


	MSB							LSB
Second (0 to 59)	FDT	S40	S20	S10	S8	S4	S2	S1
Minute (0 to 59)	*	mi40	mi20	mi10	mi8	mi4	mi2	mi1
							1	
Hour (0 to 23)	*	*	h20	h10	h8	h4	h2	h1
							1	
Week (1 to 7)					*	w4	w2	w1
				'			,	
Day (1 to 31)	*	*	d20	d10	d8	d4	d2	d1
			<u> </u>					
Month (1 to 12)	TM	*	*	mo10	mo8	mo4	mo2	mo1
			1			1		
Year (0 to 99)	y80	y40	y20	y10	у8	y4	y2	y1

- 1. * bit: Optional write bits.
- 2. FDT bit: Supply voltage detect bit
 - The FDT bit is set to 1 when the voltage between VDD and VSS falls below 1.7 ± 0.3 V.
 - The FDT bit is reset to 0 for data reads longer than 48 bits. Note that the FDT bit is not reset to 0 for data reads of 47 bits or less.
 - The read/write data bits should be should be set to 0. After the supply voltage is applied, the FDT bit should be set to 0.

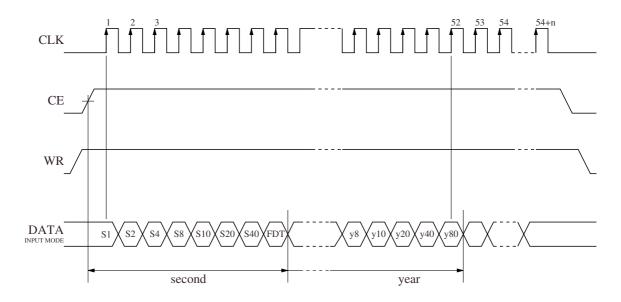
3. TM bit: Factory test bit. Should be set to 0 for normal use.

Data Read

Data is output when WR is LOW and CE is HIGH.

Time and calendar data is loaded into shift registers on the first rising edge of the clock CLK, and the seconds' digit LSB is output on DATA.

The data is then loaded and shifted in the sequence second, minute, hour, week, day, and month on the rising edge of CLK, and output on DATA. The output data is valid after 52 rising edges of the clock; data input after 52 cycles does not alter the first 52 bits of valid data.


Within the 52 cycles of valid data, data already input can be output if there is a falling edge of CE after the corresponding number of cycles. For example, the data comprising the second-to-week is output is CE goes LOW after 28 clock cycles.

For continuous data reads, a wait time (t_{RCV}) is required before the next data cycle if CE has gone LOW.

Note that if an update operation (a 1s carry) occurs during a data read, an error of -1s in the read data is generated.

The data read time should be completed after $t_{CE} \le 0.9s$.

Data Write

Data is input when WR is HIGH and CE is HIGH.

The seconds' digit signal to the timer counter stops on the first falling edge of CLK and the counter remains stopped until the next rising edge of CE. The 1Hz to 128Hz frequency divider step counters are reset during the interval between the first and second rising edges of CLK.

The data is then input on DATA into the shift register, starting with seconds' digit LSB synchronized with the rising edge of CLK.

After the final data is input into the shift register following 52 cycles, the shift register contents are transferred to the timer counters. Note that a data write must contain 52 bits of input data. If CE goes LOW before 52 bits are input, the input data is invalid. If the input data exceeds 52 bits, data from the 53rd bit is ignored (the first 52 bits remain valid).

The data write time should be completed after $t_{CE} \le 0.9s$.

If a data read occurs immediately after a data write, a wait time (t_{RCV}) is required if CE has gone LOW.

Note that writing null data will cause incorrect operation. All bits must be valid data bits.

Please pay your attention to the following points at time of using the products shown in this document.

The products shown in this document (hereinafter "Products") are not intended to be used for the apparatus that exerts harmful influence on human lives due to the defects, failure or malfunction of the Products. Customers are requested to obtain prior written agreement for such use from SEIKO NPC CORPORATION (hereinafter "NPC"). Customers shall be solely responsible for, and indemnify and hold NPC free and harmless from, any and all claims, damages, losses, expenses or lawsuits, due to such use without such agreement. NPC reserves the right to change the specifications of the Products in order to improve the characteristic or reliability thereof. NPC makes no claim or warranty that the contents described in this document dose not infringe any intellectual property right or other similar right owned by third parties. Therefore, NPC shall not be responsible for such problems, even if the use is in accordance with the descriptions provided in this document. Any descriptions including applications, circuits, and the parameters of the Products in this document are for reference to use the Products, and shall not be guaranteed free from defect, inapplicability to the design for the mass-production products without further testing or modification. Customers are requested not to export or re-export, directly or indirectly, the Products to any country or any entity not in compliance with or in violation of the national export administration laws, treaties, orders and regulations. Customers are requested appropriately take steps to obtain required permissions or approvals from appropriate government agencies.

SEIKO NPC CORPORATION

15-6, Nihombashi-kabutocho, Chuo-ku, Tokyo 103-0026, Japan Telephone: +81-3-6667-6601 Facsimile: +81-3-6667-6611 http://www.npc.co.jp/ Email: sales@npc.co.jp

NC9603DE 2006.08