

DC-DC Converters MI-J00

10 to 50 Watts

Features & Benefits

Inputs:

28Vpc per MIL-STD-704D/E/F 155Vpc per MIL-STD-1399A 270Vpc per MIL-STD-704D/E/F

• Single output: 2 – 48VDC

Up to 23 W/in³

• MIL-STD-810 environments

Up to 90% efficiency

Remote sense

Current limit

ZCS power architecture

Low noise FM control

 Size: 2.28" x 2.4" x 0.5" (57,9 x 61,0 x 12,7mm)

Product Highlights

The MI-J00 family of DC-DC converters is designed for applications utilizing distributed power architectures. Based on Vicor's VI-200 / VI-J00 family of zero-current switching, component-level DC-DC converters, the MI-J00 family offers exceptional performance in terms of power density, efficiency, noise, ease of use, and reliability.

The MI-J00 family meets the steady-state input voltage requirements of MIL-STD-704D/E/F for the 28Vpc (MI-J2X) and 270Vpc input (MI-J6X). The 155Vpc input (MI-J5X) meets MIL-STD-1399A. When used with the MI-IAM input attenuator module, the 28V or 270V input MI-J00 converter meets the transient and spike requirements of MIL-STD-704, MIL STD-1275, and DO-160. Please refer to the MI-IAM data sheet for details.

The output voltage can be externally trimmed or programmed from 50% to 110% of nominal output. Current limiting, remote sense, and an inhibit pin all combine to offer a high degree of protection, versatility, and reliability for power systems.

Fully encapsulated in Vicor's industry standard package, the MI-J00 family meets MIL-STD-810 environmental testing requirements for humidity, fungus, salt-fog, explosive atmosphere, acceleration, vibration, and shock.

Packaging Options

Standard: Slotted baseplate

SlimMod: Flangeless baseplate, option suffix: - S

Example: MI - JXX - XX - S

FinMod: Finned heat sink, option suffix:

- F1, -F2, -F3 and - F4

Examples:

MI - JXX - XX -F1, 0.25" fins, longitudinal MI - JXX - XX -F2, 0.50" fins, longitudinal MI - JXX - XX -F3, 0.25" fins, transverse MI - JXX - XX -F4, 0.50" fins, transverse

Converter Selection Chart

MI-J | · | | . · |

Semi-custom modules available, consult factory.

Input Voltage

Nominal	Range	Transient ^[a]	Notes
2 = 28V	18 – 50V ^[b]	60V	28Vpc input per MIL-STD 704D/E/F
5 = 155V	100 – 210V	230V	155Vpc input per MIL-STD-1399A
6 = 270V	125 – 400V ^[c]	475V	270Vpc input per MIL-STD-704D/E/F
7 = 165V	100 – 310V	n/a	

[[]a] Transient voltage for 1 second.

[b] 16V operation at 75% load.

Output Voltage

Z = 2.0V	1 = 12V
Y = 3.3V	P = 13.8V
0 = 5.0V	2 = 15V
X = 5.2V	N = 18.5V
W = 5.5V	3 = 24V
V = 5.8V	L = 28V
T = 6.5V	J = 36V
$\mathbf{R} = 7.5 \text{V}$	K = 40V

4 = 48V

Product Grade Temperatures (°C)

Operating	Storage
I = -40 to +100	I = -55 to +125
$\mathbf{M} = -55 \text{ to } +100$	$\mathbf{M} = -65 \text{ to } +125$

Output Power/Current Vout

A = -
$\mathbf{Z} = 5A$
Y = 10A

M = 10V

[[]c] These units rated at 75% load from 125 – 150Vin: MI-J6Z-xY, MI-J6Y-xY, MI-J60-xY

Converter Specifications

(Typical at TBP =25°C, nominal line and 75% load, unless otherwise specified)

INPUT SPECIFICATIONS

Parameter	Min	Тур	Max	Units	Test Conditions
Inrush charge		60 x 10 ⁻⁶	100 x 10 ⁻⁶	Coulombs	Nominal line
Input reflected ripple current – pp		10%		lin	Nominal line, full load
lanut single rejection		$30+20 \log \left(\frac{V_{IN}}{V_{OUT}}\right)$		dB	120Hz, nominal line
Input ripple rejection		20+20 Log (VN / Vout)			2400Hz, nominal line
No load power dissipation		1.35	2	Watts	

OUTPUT CHARACTERISTICS

Parameter	Min	Тур	Max	Units	Test Conditions
Setpoint accuracy		0.5	1	%Vnom	
11/1		0.05	0.2	% V пом	LL to HL, 10% to Full Load
Load/line regulation		0.2	0.5	%Vnом	LL to HL, No Load to 10%
Output temperature drift		0.01	0.02	% / °C	Over rated temperature
Long term drift		0.02		%/1K hours	
Output ripple pp		100	150	mV	Whichever is greater
Output ripple – pp		1.0	1.5	% V пом	20 MHz bandwidth
Trim range ^[a]	50		110	% V пом	
Total remote sense compensation	0.5			Volts	
Current limit	105		125	%INOM	Automatic restart
Short circuit current	105		130	%INOM	

 $^{^{[}a]}$ 10V to 15V outputs, standard trim range $\pm 10\%$. Consult factory for wider trim range.

CONTROL PIN SPECIFICATIONS

Parameter	Min	Тур	Max	Units	Test Conditions
Gate out impedance		50		Ω	
Gate in impedance		1000		Ω	
Gate in high threshold			6	Volts	Use open collector
Gate in low threshold	0.65			Volts	
Gate in low current			6	mA	

Converter Specifications (Cont.)

DIELECTRIC WITHSTAND CHARACTERISTICS

Parameter	Min	Тур	Max	Units	Test Conditions
Input to output	3,000			Vrms	Baseplate earthed
Output to baseplate	500			Vrms	
Input to baseplate	1,500			Vrms	
Input to output capacitance		50	75	pF	

THERMAL CHARACTERISTICS

Parameter	Min	Тур	Max	Units	Test Conditions
Efficiency		80 – 90%			
Baseplate to sink		0.14		°C/Watt	With thermal pads

ENVIRONMENTAL - MIL-STD-810D

Parameter	Min	Тур	Max	Units	Test Conditions
Altitude - method 500.2	70,000			feet	Procedure II
Humidity - method 507.2	88/240			%/hours	Procedure I, cycle 1
Acceleration - method 513.3	9			g	Procedure II
Vibration - method 514.3	20			g	Procedure I, category 6
Shock - method 516.3	40			g	Procedure I

RELIABILITY - MIL-HDBK-217F (MI-J2L-MY)

Parameter	Min	Тур	Max	Units	Test Conditions
25°C Ground Benign: G.B.		3,732		1,000 hours	
50°C Naval Sheltered: N.S.		672		1,000 hours	
65°C Airborne Inhabited Cargo: A.I.C.		526		1,000 hours	

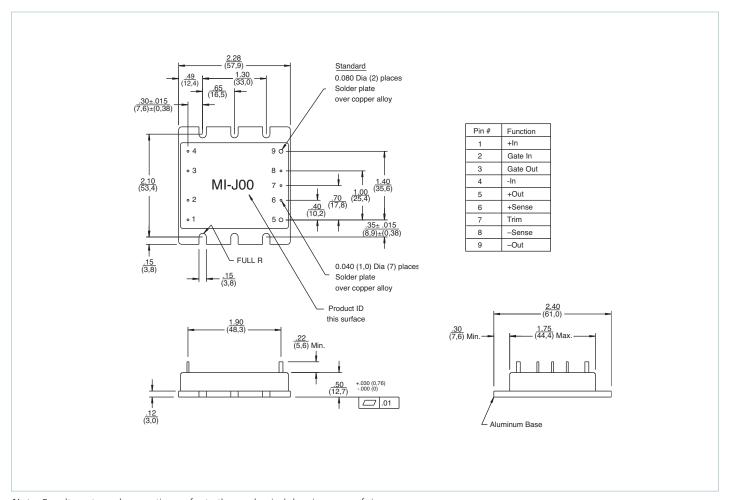
MECHANICAL SPECIFICATIONS

Parameter	Min	Тур	Max	Units	Test Conditions
NA	3.5	3.7	3.8	Ounces	
Weight	101	107	109	Grams	

Converter Specifications (Cont.)

PRODUCT GRADE SPECIFICATIONS

Parameter	I-Grade	M-Grade
Storage temperature	-55°C to +125°C	-65°C to +125°C
Operating temperature (baseplate)	-40°C to +100°C	-55°C to +100°C
Power cycling burn-in	12 hours, 29 cycles	96 hours, 213 cycles
Temperature cycled with power off 17°C per minute rate of change	12 cycles -65°C to +100°C	12 cycles -65°C to +100°C
Test data supplied at these temperatures [a]	-40°C, +80°C	-55°C, +80°C
Warranty	2 years	2 years
Environmental compliance	MIL-STD-810	MIL-STD-810
Derating	NAVMAT P-4855-1A	NAVMAT P-4855-1A


 $^{^{\}hbox{\scriptsize [a]}}$ Test data available for review or download from vicorpower.com

ENVIRONMENTAL QUALIFICATIONS

Parameter	Qualification	
Altitude	MIL-STD-810D, Method 500.2, Procedure III, explosive decompression (40K ft.).	
	MIL-STD-810D, Method 500.2, Procedure II, 40,000 ft., 1000 – 1500 ft./min. to 70,000 ft., unit functioning	
Explosive Atmosphere	MIL-STD-810C, Method 511.1, Procedure I	
Vibration	MIL-STD-810D, Method 514.3, Procedure I, category 6, helicopter, 20g	
	MIL-STD-810D, Method 514.3 random: 10 – 300Hz @ 0.02g²/Hz, 2000Hz @ 0.002g²/Hz, 3.9 total G rms 3 hrs/axis. Sine: 30Hz @ 20 g, 60Hz @ 10 g, 90Hz @ 6.6 g, 120Hz @ 5.0 g, 16.0 total G rms, 3 axes	
	MIL-STD-810E, Method 514.4, Table 514.4-VII, ±6 db/octave, 7.7 G rms, 1hr/axis	
Shock	MIL-STD-810D, Method 516.3, Procedure I, functional shock, 40g	
	MIL-STD-202F, Method 213B, 18 pulses, 60g, 9 msec	
	MIL-STD-202F, Method 213B, 75g, 11ms saw tooth shock	
	MIL-STD-202F, Method 207A, 3 impacts / axis, 1, 3, 5 feet	
Acceleration	MIL-STD-810D, Method 513.3, Procedure II Operational test, 9g for 1 minute along 3 mutually perpendicular axes	
Humidity	MIL-STD-810D, Method 507.2, Procedure I, cycle I, 240hrs, 88% relative humidity	
Solder Test	MIL-STD-202, Method 208, 8hr. aging	
Fungus	MIL-STD-810C, Method 508.1	
Salt-Fog	MIL-STD-810C, Method 509.1	

Mechanical Drawing

Note: For alternate package options refer to the mechanical drawing page of vicorpower.com

Vicor's comprehensive line of power solutions includes high density AC-DC and DC-DC modules and accessory components, fully configurable AC-DC and DC-DC power supplies, and complete custom power systems.

Information furnished by Vicor is believed to be accurate and reliable. However, no responsibility is assumed by Vicor for its use. Vicor makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication. Vicor reserves the right to make changes to any products, specifications, and product descriptions at any time without notice. Information published by Vicor has been checked and is believed to be accurate at the time it was printed; however, Vicor assumes no responsibility for inaccuracies. Testing and other quality controls are used to the extent Vicor deems necessary to support Vicor's product warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Specifications are subject to change without notice.

Vicor's Standard Terms and Conditions

All sales are subject to Vicor's Standard Terms and Conditions of Sale, which are available on Vicor's webpage or upon request.

Product Warranty

In Vicor's standard terms and conditions of sale, Vicor warrants that its products are free from non-conformity to its Standard Specifications (the "Express Limited Warranty"). This warranty is extended only to the original Buyer for the period expiring two (2) years after the date of shipment and is not transferable.

UNLESS OTHERWISE EXPRESSLY STATED IN A WRITTEN SALES AGREEMENT SIGNED BY A DULY AUTHORIZED VICOR SIGNATORY, VICOR DISCLAIMS ALL REPRESENTATIONS, LIABILITIES, AND WARRANTIES OF ANY KIND (WHETHER ARISING BY IMPLICATION OR BY OPERATION OF LAW) WITH RESPECT TO THE PRODUCTS, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OR REPRESENTATIONS AS TO MERCHANTABILITY, FITNESS FOR PARTICULAR PURPOSE, INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER INTELLECTUAL PROPERTY RIGHT, OR ANY OTHER MATTER.

This warranty does not extend to products subjected to misuse, accident, or improper application, maintenance, or storage. Vicor shall not be liable for collateral or consequential damage. Vicor disclaims any and all liability arising out of the application or use of any product or circuit and assumes no liability for applications assistance or buyer product design. Buyers are responsible for their products and applications using Vicor products and components. Prior to using or distributing any products that include Vicor components, buyers should provide adequate design, testing and operating safeguards.

Vicor will repair or replace defective products in accordance with its own best judgment. For service under this warranty, the buyer must contact Vicor to obtain a Return Material Authorization (RMA) number and shipping instructions. Products returned without prior authorization will be returned to the buyer. The buyer will pay all charges incurred in returning the product to the factory. Vicor will pay all reshipment charges if the product was defective within the terms of this warranty.

Life Support Policy

VICOR'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF VICOR CORPORATION. As used herein, life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness. Per Vicor Terms and Conditions of Sale, the user of Vicor products and components in life support applications assumes all risks of such use and indemnifies Vicor against all liability and damages.

Intellectual Property Notice

Vicor and its subsidiaries own Intellectual Property (including issued U.S. and pending patent applications) relating to the products described in this data sheet. No license, whether express, implied, or arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Interested parties should contact Vicor's Intellectual Property Department.

Vicor Corporation

25 Frontage Road Andover, MA, USA 01810 Tel: 800-735-6200 Fax: 978-475-6715

email

Customer Service: <u>custserv@vicorpower.com</u> Technical Support: <u>apps@vicorpower.com</u>

