

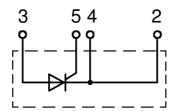
High Voltage Thyristor Module

2200 V

600 A

 V_{T} 1.06 V

Single Thyristor


Part number

MCO600-22io1

Backside: isolated

Features / Advantages:

- Thyristor for line frequency
- Planar passivated chip
- Long-term stability
- Direct Copper Bonded Al2O3-ceramic

Applications:

- Line rectifying 50/60 Hz
- Softstart AC motor control
- DC Motor control
- Power converter
- AC power control
- Lighting and temperature control

Package: Y1

- Isolation Voltage: 3600 V~
- Industry standard outline
- RoHS compliant
- Soldering pins for PCB mounting
- Base plate: Copper internally DCB isolated
- Advanced power cycling

Terms _Conditions of usage:

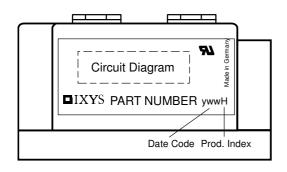
The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application- and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact the sales office, which is responsible for you.

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you.

Should you intend to use the product in aviation, in health or live endangering or life support applications, please notify. For any such application we urgently recommend

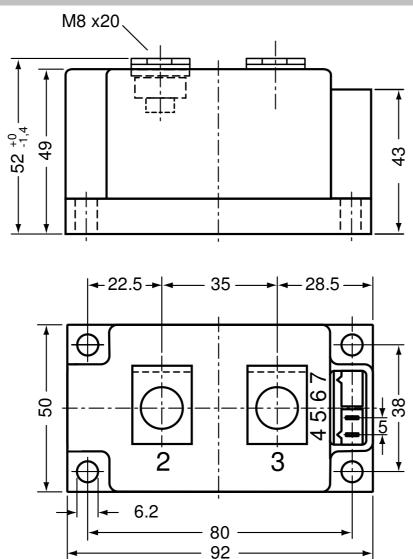
- to perform joint risk and quality assessments; the conclusion of quality agreements;
- to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.

IXYS reserves the right to change limits, conditions and dimensions.


Data according to IEC 60747 and per semiconductor unless otherwise specified

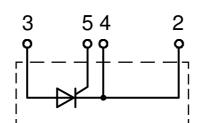
Symbol	Definition	Conditions		min.	ts.m	mar	Uni
			$T_{VJ} = 25^{\circ}C$	mm.	typ.	max. 2300	Un
V _{RSM/DSM}	max. non-repetitive reverse/forwa		$T_{VJ} = 25^{\circ}C$			2200	
V _{RRM/DRM}	max. repetitive reverse/forward bl	V _{R/D} = 2200 V	$T_{VJ} = 25^{\circ}C$			2	<u> </u>
R/D	reverse current, drain current		$T_{VJ} = 25 \text{ C}$ $T_{VJ} = 125 \text{ °C}$			40	į
V _T	forward voltage drop	$V_{R/D} = 2200 \text{ V}$ $I_T = 600 \text{ A}$	$T_{VJ} = 125 \text{ C}$ $T_{VJ} = 25^{\circ}\text{C}$			1.12	m.
V _T	Torward voltage drop	•	1 _{VJ} = 25 C			1.12	
		$I_{T} = 1200 \text{ A}$ $I_{T} = 600 \text{ A}$	T _{vJ} = 125°C			1.06	
		$I_{T} = 600 \text{ A}$ $I_{T} = 1200 \text{ A}$	1 _{VJ} = 125 C			1.33	
<u> </u>	average forward current	$T_{\rm C} = 85^{\circ}{\rm C}$	T _{v1} = 140°C			600	
l _{tav}	RMS forward current	180° sine	1 _{VJ} = 140 O			940	
I _{T(RMS)}		100 Sille	T _{v.i} = 140°C			0.81	
V _{T0}	threshold voltage slope resistance for power lo	oss calculation only	1 _{VJ} = 140 C			0.61	m
r _T		_				0.065	K/V
R _{thJC}	thermal resistance junction to cas thermal resistance case to heatsing				0.02	0.005	K/V
R _{thCH}		in	T _c = 25°C		0.02	1770	V
P _{tot}	total power dissipation max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{\text{c}} = 25 \text{ C}$ $T_{\text{v,i}} = 45^{\circ}\text{C}$			15.0	k
TSM	max. lorward surge current		$V_R = 0 V$			16.2	k
		t = 8.3 ms; (60 Hz), sine t = 10 ms; (50 Hz), sine	$V_R = 0 V$ $T_{V,J} = 140 ^{\circ}C$			12.8	k
			• •				į
124	value for fucing	t = 8,3 ms; (60 Hz), sine	$V_{R} = 0 V$ $T_{VJ} = 45^{\circ}C$			13.8	k MA
l²t	value for fusing	t = 10 ms; (50 Hz), sine				1.13	ł
		t = 8.3 ms; (60 Hz), sine t = 10 ms; (50 Hz), sine	$V_{R} = 0 V$			1.09	
			$T_{VJ} = 140$ °C			812.8	ĺ
^	iunation conscitance	t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$		460	788.8	
C,	junction capacitance	V _R = 700 V f = 1 MHz	$T_{VJ} = 25^{\circ}C$		469	100	p V
P _{GM}	max. gate power dissipation	$t_{P} = 30 \mu s$	$T_{C} = 140^{\circ}C$			120	-
D		$t_{P} = 300 \mu s$				60	V
P _{GAV}	average gate power dissipation	T 44000 f 50 H-				20	۷ ^ / ۰
(di/dt) _{cr}	critical rate of rise of current	$T_{VJ} = 140 ^{\circ}\text{C}; f = 50 \text{Hz}$ re	•			100	Α/μ
		$t_P = 200 \mu s; di_G/dt = 1 A/\mu s;$				F00	A /
		*	on-repet., $I_T = 600 \text{ A}$			500	i
(dv/dt) _{cr}	critical rate of rise of voltage	$V = \frac{2}{3} V_{DRM}$	$T_{VJ} = 140^{\circ}C$			1000	ν/μ
.,	note televisione llevis	R _{GK} = ∞; method 1 (linear voltage					
V_{GT}	gate trigger voltage	$V_D = 6 V$	$T_{VJ} = 25^{\circ}C$			2	į
			$T_{VJ} = -40$ °C			3	,
I _{GT}	gate trigger current	$V_D = 6 V$	$T_{VJ} = 25^{\circ}C$			300	m
			$T_{VJ} = -40$ °C			400	m
V _{GD}	gate non-trigger voltage	$V_D = \frac{2}{3} V_{DRM}$	$T_{VJ} = 140^{\circ}C$			0.25	,
I _{GD}	gate non-trigger current					10	m
I _L	latching current	$t_p = 30 \mu s$ $I_G = 1 A; di_G/dt = 1 A/\mu s$	$T_{VJ} = 25$ °C			400	m
I _H	holding current	V _D = 6 V R _{GK} = ∞	T _{VJ} = 25°C			300	m
t _{gd}	gate controlled delay time	$V_D = \frac{1}{2} V_{DRM}$	T _{VJ} = 25°C			2	μ
-		$I_G = 1 \text{ A}; \text{ di}_G/\text{dt} = 1 \text{ A}/\mu\text{s}$					
t _q	turn-off time	$V_{\rm R} = 100 \text{ V}; \ I_{\rm T} = 600 \text{ A}; \ V = \frac{2}{3}$			350		μ
•		$di/dt = 10 \text{ A/}\mu\text{s} \text{ dv/dt} = 50 \text{ V/}$: ·

Package Y1			Ratings				
Symbol	Definition	Conditions		min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal				600	Α
T _{VJ}	virtual junction temperature			-40		140	°C
T _{op}	operation temperature			-40		125	°C
T _{stg}	storage temperature		-40		125	°C	
Weight					650		g
M _D	mounting torque			4.5		7	Nm
$\mathbf{M}_{_{T}}$	terminal torque			11		13	Nm
d _{Spp/App}	creepage distance on surface striking dis	striking diatanaa through air	terminal to terminal	16.0			mm
$d_{Spb/Apb}$		unking distance through an	terminal to backside	25.0			mm
V _{ISOL}	isolation voltage	t = 1 second	3600				٧
1002		t = 1 minute	50/60 Hz, RMS; IISOL ≤ 1 mA	3000			٧



Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	MCO600-22io1	MCO600-22io1	Box	3	474339

Equivalent Circuits for Simulation			* on die level	$T_{VJ} = 140 ^{\circ}\text{C}$
$I \rightarrow V_0$	$-R_0$	Thyristor		
V _{0 max}	threshold voltage	0.81		V
$R_{0 \; \text{max}}$	slope resistance *	0.22		$m\Omega$



Outlines Y1

Optional accessories for modules

Keyed gate/cathode twin plugs with wire length = 350 mm, gate = white, cathode = red Type ZY 180L (L = Left for pin pair 4/5) Type ZY 180R (R = Right for pin pair 6/7) UL 758, style 3751

Thyristor

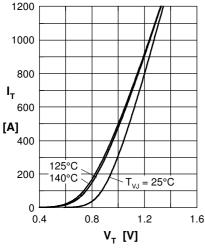


Fig. 1 Forward characteristics

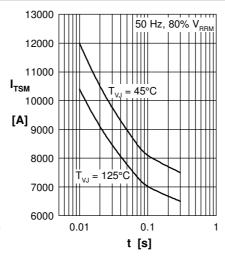


Fig. 2 Surge overload current

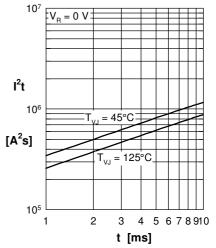


Fig. 3 I²t versus time (1-10 ms)

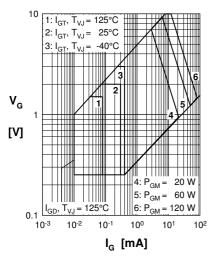


Fig. 4 Gate trigger characteristics

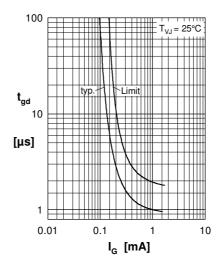


Fig. 5 Gate controlled delay time

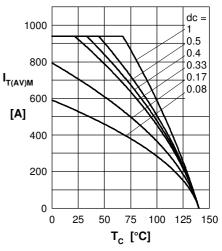


Fig. 6 Max. forward current at case temperature

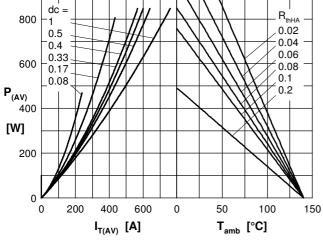


Fig. 7a Power dissipation versus direct output current Fig. 7b and ambient temperature

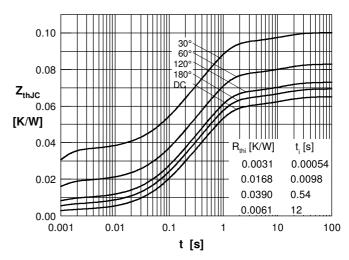


Fig. 8 Transient thermal impedance