
TUSB2140B
Data Manual

4-Port Hub With an Embedded Function for the
Universal Serial Bus

SLLS313A
March 1999

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright 1999, Texas Instruments Incorporated

iii

Contents
Section Title Page

1 Introduction 1–1.
1.1 Features 1–1.

1.1.1 Hub 1–1.
1.1.2 Embedded Function 1–2.
1.1.3 General Characteristics 1–2.

1.2 Terminal Assignments 1–2.
1.3 Terminal Functions 1–3.
1.4 Device-Numbering Convention and Ordering Information 1–5.
1.5 Related Documents Referenced 1–5.

2 Functional Description 2–1.
2.1 Functional Block Diagram 2–1.
2.2 USB Transceiver 2–1.
2.3 Clock Generator 2–1.
2.4 Serial Interface Engine (SIE) 2–2.
2.5 SIE Interface Logic 2–2.
2.6 Hub Command Decoder 2–2.
2.7 Frame Timer 2–2.
2.8 Suspend/Resume Logic 2–2.
2.9 Hub Repeater 2–2.
2.10 Port Logic 2–2.
2.11 Power Control Logic 2–2.
2.12 Embedded Function Control Logic 2–3.
2.13 Embedded Function Control/Status Registers 2–3.
2.14 Embedded Function FIFOs 2–3.
2.15 Embedded Function I2C Interface 2–3.

3 Internal Registers 3–1.
3.1 Address Map 3–2.
3.2 Register Functional Description 3–4.

3.2.1 Interrupt Register 3–4.
3.2.2 Interrupt Mask Register 3–5.
3.2.3 Function Address Register 3–5.
3.2.4 Endpoint 0 Transmit FIFO 3–6.
3.2.5 Endpoint 0 Transmit Byte Count Register 3–6.
3.2.6 Endpoint 0 Transmit Control Register 3–7.
3.2.7 Endpoint 0 Transmit Status Register 3–8.
3.2.8 Endpoint 0 Transmit FIFO Flags Register 3–9.
3.2.9 Endpoint 0 Receive FIFO 3–9.
3.2.10 Endpoint 0 Receive Byte Count Register 3–9.

iv

3.2.11 Endpoint 0 Receive Control Register 3–10.
3.2.12 Endpoint 0 Receive Status Register 3–11.
3.2.13 Endpoint 0 Receive FIFO Flags Register 3–12.
3.2.14 Endpoint 1 Transmit FIFO 3–12.
3.2.15 Endpoint 1 Transmit Byte Count Register 3–12.
3.2.16 Endpoint 1 Transmit Control Register 3–13.
3.2.17 Endpoint 1 Transmit Status Register 3–14.
3.2.18 Endpoint 1 Transmit FIFO Flags Register 3–15.
3.2.19 PID Low-Byte Register 3–15.
3.2.20 PID High-Byte Register 3–16.
3.2.21 VID Low-Byte Register 3–16.
3.2.22 VID High-Byte Register 3–16.

4 Device Operation 4–1.
4.1 Device Initialization 4–1.
4.2 Hub 4–1.
4.3 Embedded Function 4–1.

4.3.1 Interrupt Handler 4–1.
4.3.2 Function Reset and USB Reset 4–1.
4.3.3 Enumeration 4–2.
4.3.4 Control Transfers 4–2.
4.3.5 Interrupt Transfers 4–2.
4.3.6 Suspend and Remote Wake-Up 4–3.
4.3.7 I2C Interface 4–3.

4.4 Over-Current Detection and Power Switching 4–5.
4.5 Clock Output Generation 4–5.
4.6 Power Supply Sequencing 4–6.

5 Electrical Specifications 5–1.
5.1 Absolute Maximum Ratings Over Operating Free-air Temperature Range 5–1.
5.2 Recommended Operating Conditions 5–1.
5.3 Electrical Characteristics Over Recommended Ranges of Operating Free-air

Temperature and Supply Voltage 5–2.
5.4 Timing Characteristics 5–3.

5.4.1 Timing Characteristics for USB Transceivers 5–3.
5.4.2 Timing Characteristics for I2C Interface 5–5.
5.4.3 Timing Characteristics for Remote Wake-Up 5–7.

6 USB Overview Description 6–1.
6.1 Application Information 6–2.
6.2 Bus-Powered Hub, Ganged Port Power Management 6–4.
6.3 Self-Powered Hub, Ganged Port Power Management 6–5.
6.4 Self-Powered Hub, Individual Port Power Management 6–6.

Appendix A Firmware Development A–1.

Appendix B Firmware Example B–1.

Appendix C Flow Chart for the Firmware Sample Code C–1.

Appendix D Mechanical Data D–1.

v

List of Illustrations
Figure Title Page

5–1 Differential Driver Switching Load 5–3.
5–2 USB Data Signal Rise and Fall Times 5–4.
5–3 Differential Receiver Input Sensitivity vs Common Mode Input Range 5–4.
5–4 Single-Ended Receiver Input Signal Parameter Definitions 5–5.
5–5 SCL and SDA Timing 5–5.
5–6 Start and Stop Conditions 5–5.
5–7 Output Acknowledge 5–6.
5–8 Single Byte Write Transfer 5–6.
5–9 Multiple Byte Write Transfer 5–6.
5–10 Single Byte Read Transfer 5–7.
5–11 Multiple Byte Read Transfer 5–7.
5–12 Remote Wake-Up 5–7.

6–1 USB Tiered Configuration Example 6–1.
6–2 Typical I2C Interface Connection to a Microcontroller 6–2.
6–3 Resonator Clock Circuit 6–2.
6–4 Crystal Tuning Circuit 6–3.
6–5 TUSB2140B Bus-Powered Hub, Ganged Port Power Management Application 6–4. .
6–6 TUSB2140B Self-Powered Hub, Ganged Port Power Management Application 6–5. .
6–7 TUSB2140B Self-Powered Hub, Individual-Port Power Management

Application 6–6.

A–1 Flow Chart for TUSB2140B Firmware A–2.
A–2 Endpoint 0 Transmit Interrupt Service Routine A–3.
A–3 Endpoint 0 Receive Interrupt Service Routine A–5.
A–4 Endpoint 1 Transmit Interrupt Service Routine A–6.

C–1 Flow Chart for TUSB2140B Firmware (Sample Code) C–1.
C–2 Endpoint 0 Receive Interrupt Service Routine C–2.
C–3 Endpoint 0 Transmit Interrupt Service Routine C–3.

vi

1–1

1 Introduction
The TUSB2140B is a compound USB device that provides an external 4-port hub and an embedded function
that is virtually connected to an internal fifth hub port. The TUSB2140B is fully compatible with the USB,
version 1.0, specification and the embedded function is fully compatible with the USB display-device class
specification. The USB hub has a control endpoint and an interrupt endpoint. The embedded function also
includes a control endpoint and an interrupt endpoint to support USB data transfers. The FIFOs and control
registers associated with the endpoints are fully integrated within the device. An Inter IC(I2C), 2-wire serial
bus provides an interface for any local micro-controller unit (MCU) to access the FIFOs and control registers.

The TUSB2140B hub has the default power-on vendor ID (VID) of 0451H and a product ID (PID) of 2140H
for the hub which will be displayed as General-Purpose USB Hub during enumeration. When custom vendor
and product ID’s are desired for the external 4-port USB hub, the default VID/PID values can be replaced
with custom values that are firmware based. When new VID/PID values are desired, they must be
down-loaded through the I2C interface before the MCU connects the embedded function. The VID and PID
for the embedded functions are always firmware based.

The TUSB2140B hub supports power switching to the downstream ports for either individual or ganged
power management modes. External power-management devices are required to switch power and to
detect over-current conditions. See Application Information in Section 6. The TUSB2140B provides the
required inputs and outputs needed for the power-management devices to control power switching and to
monitor any over-current conditions. In the ganged mode, all PWRON signals switch simultaneously and
all OVRCUR inputs should be tied together and driven by the same signal.

The TUSB2140B requires a 48-MHz clock signal to sample data from the upstream port and to generate
a synchronized 12-MHz USB clock signal. The hub supports the flexibility to use either a 48-MHz oscillator,
a 48-MHz resonator, or a crystal tuned to 48-MHz. When an oscillator is used, the oscillator output must be
connected to the XTAL1 terminal and the XTAL2 terminal should remain open. An oscillator with a TTL level
output may be used if the output does not exceed 3.6-V maximum. When an oscillator is used, the
TUSB2140B device will not be able to go into low-power suspend mode because the oscillator will always
drive a 48-MHz clock signal into the TUSB2140B. A better implementation is to use a passive device such
as a resonator or a crystal because when the TUSB2140B suspends, the resonator and crystal will also stop
operation. For a resonator or crystal implementation, the XTAL1 terminal should be used as the input and
the XTAL2 terminal should be used as the feedback path. See Figure 6–3 for resonator connection. Because
the crystal is required to resonate at 48-MHz, a tuning circuit may be required such as shown in Figure 6–4.

USB-compatible transceivers are provided for all upstream and downstream ports. All external downstream
ports support both full-speed and low-speed connections by automatically setting the slew rate according
to the speed of the device attached to the port.

1.1 Features
The main features of the TUSB2140B hub and embedded function are listed in the following sections.

1.1.1 Hub
• Universal Serial Bus (USB) Version 1.0 Compatible

• Includes Serial Interface Engine (SIE)

• All Four External Downstream Ports Support Full-Speed and Low-Speed Operations

• Integrated USB Transceivers

• Power Switching and Over-Current Conditions are Reported for Per Port or Ganged Modes

• Supports default or custom Product ID (PID) and Vendor ID (VID)

1–2

1.1.2 Embedded Function

• USB Display Class Compatible

• Supports both Control and Interrupt Data Transfers

• Integrated FIFOs and Control/Status Registers

• Supports Interrupt Driven Operation to Minimize Local Micro-Controller Polling

• Supports USB Remote Wake-Up

• Supports Custom Product ID (PID) and Vendor ID (VID)

1.1.3 General Characteristics

• Low-Power CMOS Technology

• Generates a Clock Output With a Frequency of 12 MHz, 8 MHz, 6 MHz, or 4 MHz

• Available in a 40-Pin Dip Package or a 44-Pin LQFP Package

• Requires a 48-MHz Crystal, a 48–MHz Resonator, or 48-MHz Oscillator Input

• Uses a 3.3 V and 5 V Power Supply

1.2 Terminal Assignments

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

WAKEUP
CLKOUT

GND
CLKSEL0
CLKSEL1

OVRCUR5
OVRCUR2
PWRON1

OVRCUR1
DP0
DM0
GND
DP1
DM1

BUSPWR
GANGED

DP2
DM2

VCC3V
DP3

VCC5V
SCL
SDA
IRQ
PWRON5
FUNCSUSP
PWRON2
VCC3V
OVRCUR3
PWRON3
GND
XTAL1
XTAL2
OSCOFF
PWRON4
OVRCUR4
RESET
DM4
DP4
DM3

N PACKAGE
(TOP VIEW)

1–3

22

NC – No internal connection

NC
FUNCSUSP
PWRON2
VCC3V
OVRCUR3
PWRON3
GND
XTAL1
XTAL2
OSCOFF
PWRON4

12 13

1

2

3

4

5

6

7

8

9

10

11

OVRCUR5
OVRCUR2
PWRON1

OVRCUR1
DP0
DM0
GND
DP1
DM1

BUSPWR
NC

14 15 16 17

PGT PACKAGE
(TOP VIEW)

S
C

L
S

D
A

IR
Q

P
W

R
O

N
5

43 42 41 40 3944 38

N
C

C
LK

S
E

L1
C

LK
S

E
L0

G
N

D
C

LK
O

U
T

W
A

K
E

U
P

V

 5
V

D
M

4
R

E
S

E
T

O
V

R
C

U
R

4

G
A

N
G

E
D

D
P

2
D

M
2

V

 3
V

D
P

3
D

M
3

D
P

4

36 35 3437

18 19 20 21

N
C

33

32

31

30

29

28

27

26

25

24

23

C
C

C
C

1.3 Terminal Functions
TERMINAL

NAME
PGT
NO.

N
NO.

I/O DESCRIPTION

BUSPWR 10 15 I Port power indicator. BUSPWR is an active low input that indicates
whether the ports and the hub source power from the USB bus or are
self-powered by the local power supply. When a microcontroller is
connected to the TUSB2140B, the hub must be self-powered and it is
mandatory for this pin to be connected to 3.3 V. This standard TTL input
must not change dynamically during operation.

CLKOUT 40 2 O Clock output. Depending on the configuration of CLKSEL0 and
CLKSEL1, CLKOUT is a selected clock output of 12 MHz, 8 MHz, 6 MHz,
or 4 MHz.

DM1 – DM4 9, 14,
17, 19

14, 18,
21, 23

I/O Data minus USB differential data pairs. DM1 – DM4 support up to four
negative-signal downstream USB ports.

DP1 – DP4 8, 13,
16, 18

13, 17,
20, 22

I/O Data plus USB differential data pairs. DP1 – DP4 support up to four
positive-signal downstream USB ports.

DM0 6 11 I/O Data minus USB differential data. DM0 is used for the upstream USB port
cable pair and negative signal.

DP0 5 10 I/O Data plus USB differential data. DP0 is used for the upstream USB port
cable pair and positive signal.

1–4

1.3 Terminal Functions (continued)
TERMINAL

NAME
PGT
NO.

N
NO.

I/O DESCRIPTION

FUNCSUSP 32 35 O Function port suspend. FUNCSUSP is an active high output that indicates
if the port that connects to the embedded function has been selectively
suspended. See Suspend and Remote Wake-Up in section 4.3.6 for
further information.

GANGED 12 16 I Power switch/over-current detection mode select. GANGED selects
between gang or per port switching for over-current detection of the
downstream ports. This pin should be set dependent upon how the
external power management devices are configured. This standard TTL
input must not change dynamically during operation.

GND 7, 27,
41

3, 12,
30

Ground. All terminals must be tied to ground for proper operation.

IRQ 35 37 O Interrupt. IRQ is an active low output to the micro-controller that indicates
an interrupt condition has occurred.

OSCOFF 24 27 I Oscillator off. OSCOFF disables the internal oscillator for quiescent
current draw (ICCQ) testing. OSCOFF must be tied low for normal
operation.

OVRCUR1 –
OVRCUR5

4, 2, 29,
21, 1

9, 7, 32,
25, 6

I Over-current indicators. OVRCUR1 – OVRCUR5 are active low, standard
TTL inputs. One over-current indicator is available for each of the four
downstream ports. These inputs are internally gated when port power
switching is ganged. The unused terminals must be tied high.

PWRON1 –
PWRON5

3, 31,
28, 23,

34

8, 34,
31, 26,

36

O Power on/off control switches. PWRON1 – PWRON5 are active low,
open-drain outputs. One power on/off control switch is used for each of
the four downstream ports. All outputs are switched together when the
port power switching is ganged.

RESET 20 24 I Reset. RESET is a TTL input with hysteresis and must be asserted at
power up for conformance to USB. RESET is an active low and must be
asserted for at least 250 ns for all logic to be properly re-initialized.
However, asserting the RESET for longer than 5 ms could cause the
TUSB2140B to NAK too long and be ignored by the USB host.

SCL 37 39 I Serial clock. SCL is the clock signal for the I2C serial interface and is 5-V
tolerant.

SDA 36 38 I/O Serial data. SDA is the bidirectional data signal for the I2C serial interface
and is 5-V tolerant. SDA uses an open-drain output driver.

VCC3V 15, 30 19, 33 3.3-V supply voltage

VCC5V 38 40 5-V supply voltage

WAKEUP 39 1 I Function port remote wake-up. WAKEUP is an active high input used by
the micro-controller to initiate a remote wake-up from a suspended mode.
WAKEUP is 5-V tolerant. See Suspend and Remote Wake-Up in section
4.3.6 for further information.

XTAL1 26 29 I Crystal 1. XTAL1 is a 48-MHz clock input. Operation at 48-MHz is four
times the USB full-speed bit rate of 12 Mbps.

XTAL2 25 28 O Crystal 2. XTAL2 is a 48-MHz feedback output for crystals and resonators.
Operation at 48-MHz is four times the USB full-speed bit rate of 12 Mbps.

CLKSEL0,
CLKSEL1

42, 43 4, 5 I Clock select inputs. CLKSEL0 and CLKSEL1 determine the CLKOUT
frequency (See Table 4–2).

1–5

1.4 Device-Numbering Convention and Ordering Information
T USB 2 1 40 B N

Number of Downstream Ports

Hub Generation Type
1 =
0 = Pure Hub

Version Number

40 = 4 Downstream USB Ports

Embedded Function with I C

Hub Device

Universal Serial Bus

Texas Instruments

2

Package Type
PDIP 40 pins N
LQFP 44 pins PGT

1.5 Related Documents Referenced
• Universal Serial Bus Specification version 1.0 dated January 19, 1996.

• Inter IC (I2C) Specification

1–6

2–1

2 Functional Description
The functional block diagram for the TUSB2140B is shown in Section 2.1. The description for the function
blocks follow Section 2.1. For additional information, including USB signaling specifications, packet
protocol, and hub functionality, please refer to the Universal Serial Bus Specification version 1.0 dated
January 19, 1996.

2.1 Functional Block Diagram

Function
Control
Logic

37

Hub Repeater
State Machine and

Signal Router

Suspend/ Resume
Logic and

Frame Timer
SIE

SIE Interface
Logic

Port 1
Logic

Hub / Device
Command
Decoder

Port 4
Logic

USB
Transceiver

Power Control Logic

GANGED

BUSPWR

OVRCUR1 – OVRCUR5

PWRON1 – PWRON5

OSCOFF

XTAL1, XTAL2

27

29, 28

24

16

15

Clock
Generator

USB Transceiver

DP0 DM0

10 11

USB
Transceiver

DP4 DM4 DP1 DM1

22 23 13 14

9, 7, 32, 25, 6

8, 34, 31, 26, 36

RESET

FIFOs
I2C

Slave

Control
Status

Registers

SDA
SCL
IRQ

38
39

Embedded Function

FUNCSUSP
35

CLKSEL0, CLKSEL1

CLKOUT
2

4, 5

WAKEUP
1

NOTE A: Terminal numbers shown are for the N package

2.2 USB Transceiver
The TUSB2140B provides integrated transceivers for all the USB ports. The transceivers include a
differential output driver, a differential input receiver and two single ended inputs. The transceiver for each
port connects to the appropriate DP and DM differential signal pair.

2.3 Clock Generator
Utilizing the 48-MHz input signal, the clock generator logic generates the CLKOUT output signal in addition
to the various internal clock signals. The TUSB2140B internal clocks consist of the 48-MHz clock, a 12-MHz
clock, and a USB clock. The USB clock also has a frequency of 12-MHz. The USB clock is the same as the
12-MHz clock when the TUSB2140B is transmitting data and is derived from the data when the TUSB2140B
is receiving data.

2–2

2.4 Serial Interface Engine (SIE)
The serial interface engine logic manages the USB packet protocol requirements for the packets being
received and transmitted by the TUSB2140B. For packets being received, the SIE decodes the packet
identifier field (PID) to determine the type of packet being received and ensures the PID is valid. For token
packets and data packets being received, the SIE calculates the packet CRC and compares the value to
the CRC contained in the packet to verify that the packet was not corrupted during transmission. For token
packets and data packets being transmitted, the SIE generates the CRC that is transmitted with the packet.
For packets being transmitted, the SIE also generates the synchronization field (SYNC) which is the eight
bit field at the beginning of each packet. In addition, the SIE generates the correct PID for all packets being
transmitted. Another major function of the SIE is the overall serial-to-parallel conversion of the data packets
being received and the parallel-to-serial conversion of the data packets being transmitted.

2.5 SIE Interface Logic
The SIE interface logic provides the control logic that interfaces the SIE to the hub control logic and the
embedded function control logic. One of the major functions of the SIE interface logic is to decode the
function address from the SIE to determine if either the hub or embedded function is being addressed. In
addition, the endpoint address field is decoded to determine which particular endpoint of the hub or
embedded function is being addressed. The SIE interface logic also managers the multiplexing of the
byte-wide transmit data signals and other control signals from the hub control logic and embedded function
control logic.

2.6 Hub Command Decoder
The hub command decoder logic manages the overall control of the hub including the decode and execution
of host initiated control commands, as well as the status change endpoint. During USB interrupt transfers,
the USB host uses the status change endpoint to acquire hub status and port status change information.

2.7 Frame Timer
The frame timer logic generates the end of frame (EOF) signal which is used mainly to ensure that all
downstream traffic is completed during each frame period. In addition, since the frame timer counts 1.0 ms
periods, the EOF signal is used by other logic that needs to time events based on multiples of 1.0 ms periods.
The hub frame timer logic is locked to the host frame timer logic by the host generated Start of Frame (SOF)
packets.

2.8 Suspend/Resume Logic
The suspend/resume logic is used to detect the suspend/resume states and to generate the signals used
to control the overall device during the suspend/resume states. See Suspend and Remote Wake-Up in
section 4.3.6 for further information.

2.9 Hub Repeater
The hub repeater logic manages the connectivity of the root port and the downstream ports on a per-packet
basis. The data flow of the USB packets through the TUSB2140B from the root port to the downstream ports
and vice-a-versa is totally asynchronous.

2.10 Port Logic
The port logic manages the overall state of a particular downstream port. Each downstream port has unique
port logic which controls the connect/disconnect, enable/disable, suspend/resume and reset states of the
port.

2.11 Power Control Logic
The power control logic generates the PWRON1 thru PWRON5 output signals based on the GANGED,
BUSPWR, and OVRCUR input signals.

2–3

2.12 Embedded Function Control Logic
The Function control logic (FCL) manages communication between the local microcontroller Unit (MCU)
and the Serial interface engine (SIE). The local MCU directs the operation of the FCL through the control
and status registers. One of the major functions performed by the FCL is to move data to and from the
internal FIFOs during the control and interrupt endpoint transfer operations.

2.13 Embedded Function Control/Status Registers
The control and status registers allow the local MCU to control and monitor transfer operations done by the
TUSB2140B. A separate set of registers is used to control the transmit and receive operations for the control
endpoint which is endpoint 0. In addition, a separate set of registers is provided for the interrupt endpoint
transmit operations, which is endpoint 1. Also, an interrupt and interrupt mask register is provided to control
the conditions that generate the IRQ output signal.

2.14 Embedded Function FIFOs
The TUSB2140B internal FIFOs provide a buffer between the SIE and the local MCU. There are three
8-byte by 8-bit FIFOs provided. There is a separate transmit and receive FIFO provided for the control
endpoint, which is endpoint 0. In addition, there is a transmit FIFO provided for the interrupt endpoint, which
is endpoint 1.

2.15 Embedded Function I 2C Interface
The I2C Interface logic provides a two-wire serial interface that is used by a local MCU or device needing
serial access to the TUSB2140B control/status registers and FIFOs. The interface allows single byte read
and writes to the registers and multiple byte read and writes to the FIFOs. Note that the transmit FIFOs are
write only and the receive FIFOs are read only from the local MCU side.

2–4

3–1

3 Internal Registers
The TUSB2140B provides a set of control and status registers to be used by the local microcontroller unit
to control the overall operation of the embedded function. The control and status registers allow the local
MCU to control and monitor USB transfers to both the control endpoint and the interrupt endpoint of the
embedded function. There is a separate set of registers provided for the control endpoint transmit and
receive operations. In addition, there is a separate set of registers provided for the transmit operations of
the interrupt endpoint. Also, an interrupt and interrupt mask register is provided to control the conditions that
generate the IRQ output signal.

3–2 3.1 Address Map

ADDRESS
MSB LSB

NAMEADDRESS
7 6 5 4 3 2 1 0

NAME

00h FSUSP FRST EP1TX EP0RX EP0TX Interrupt Register

01h FSUSP FRST EP1TX EP0RX EP0TX Interrupt Mask Register

02h FEN FA6 FA5 FA4 FA3 FA2 FA1 FA0 Function Address Register

03h

04h D7 D6 D5 D4 D3 D2 D1 D0 EP0 TX FIFO

05h BCNT3 BCNT2 BCNT1 BCNT0 EP0 TX Byte Count Register

06h TXCLR TXSTL TXFEN TXEN EP0 TX Control Register

07h TXSEQ STSGE STALL NACK ERROR ACK EP0 TX Status Register

08h EMPT FULL UNDR OVRR EP0 TX FIFO Flags Register

09h D7 D6 D5 D4 D3 D2 D1 D0 EP0 RX FIFO

0Ah BCNT3 BCNT2 BCNT1 BCNT0 EP0 RX Byte Count Register

0Bh RXCLR RXSTL RXFEN RXEN EP0 RX Control Register

0Ch RXSEQ SETUP RXFSW STSGE STALL NACK ERROR ACK EP0 RX Status Register

0Dh EMPT FULL UNDR OVRR EP0 RX FIFO Flags Register

0Eh

0Fh

10h D7 D6 D5 D4 D3 D2 D1 D0 EP1 TX FIFO

11h BCNT3 BCNT2 BCNT1 BCNT0 EP1 TX Byte Count Register

12h TXCLR TXSOW TXSTL TXFEN TXEN EP1 TX Control Register

13h TXSEQ STALL NACK ERROR ACK EP1 TX Status Register

14h EMPT FULL UNDR OVRR EP1 TX FIFO Flags Register

15h PID(7) PID(6) PID(5) PID(4) PID(3) PID(2) PID(1) PID(0) Hub Product ID, Low Byte Register

16h PID(15) PID(14) PID(13) PID(12) PID(11) PID(10) PID(9) PID(8) Hub Product ID, High Byte Register

17h VID(7) VID(6) VID(5) VID(4) VID(3) VID(2) VID(1) VID(0) Hub Vendor ID, Low Byte Register

18h VID(15) VID(14) VID(13) VID(12) VID(11) VID(10) VID(9) VID(8) Hub Vendor ID, High Byte Register

19h

3–3

3.1 Address Map (continued)

ADDRESS
MSB LSB

NAMEADDRESS
7 6 5 4 3 2 1 0

NAME

1Ah

1Bh

1Ch

1Dh

1Eh

1Fh

3–4

3.2 Register Functional Description

The following sections contain the functional descriptions for each register and the individual register bits.
Note that firmware should write a 0 to reserved bits and ignore any value read from reserved bits.

3.2.1 Interrupt Register

The interrupt register bits are used to indicate when an interrupt condition is pending. If one or more of the
interrupt bits are set, the TUSB2140B interrupt output signal (IRQ) will be asserted until the interrupt
condition(s) is cleared. One or more of the interrupt bits can be masked by setting the corresponding bit in
the interrupt mask register. If the interrupt mask bit is set, the corresponding interrupt bit will still be set when
an interrupt condition occurs. However, the IRQ output signal will not be asserted. This feature is provided
for systems that detect pending interrupt conditions with a polling scheme rather than by monitoring the IRQ
output signal.

7 0

– – – FSUSP FRST EP1TX EP0RX EP0TX

BIT MNEMONIC NAME DESCRIPTION

7:5 – Reserved Reserved for future use.

4 FSUSP Function suspend The function suspend interrupt bit is set in response to the hub suspend
logic detecting a global suspend condition or a selective suspend
condition for the embedded function. To enable the TUSB2140B to enter
a low–power suspend state which includes disabling the clocks, this bit
must be cleared by the local MCU. This bit is cleared by writing a 1 to
this register. This bit is read/write and is cleared by power-on reset.

3 FRST Function reset The function reset interrupt bit is set in response to the host initiating a
port reset on the function port. To enable the function reset, this bit must
be cleared by the local MCU. When a function reset occurs, all of the
Function Interface logic within the TUSB2140B will be reset except the
endpoint 0 receive enable bit (RXEN), the endpoint 0 transmit enable
bit (TXEN), the function reset interrupt bit (FRST) and all of the interrupt
mask bits. This bit is cleared by writing a 1 to this register. This bit is
read/write and is cleared by power-on reset.

2 EP1TX Endpoint 1
transmit interrupt

The endpoint 1 transmit interrupt bit is set in response to the endpoint
1 transmit acknowledge status bit (ACK), the endpoint 1 transmit FIFO
over-run flag bit (OVRR), or the endpoint 1 transmit FIFO under-run flag
bit (UNDR) being set. This bit is cleared by clearing the corresponding
status or FIFO flag bit that caused the interrupt. This bit is read-only and
is cleared by power-on reset.

1 EP0RX Endpoint 0
receive interrupt

The endpoint 0 receive interrupt bit is set in response to the endpoint 0
receive acknowledge status bit (ACK), the endpoint 0 receive FIFO
over-run flag bit (OVRR), or the endpoint 0 receive FIFO under-run flag
bit (UNDR) being set. This bit is cleared by clearing the corresponding
status or FIFO flag bit that caused the interrupt. This bit is read-only and
is cleared by power-on reset.

0 EP0TX Endpoint 0
transmit interrupt

The endpoint 0 transmit interrupt bit is set in response to the endpoint
0 transmit acknowledge status bit (ACK), the endpoint 0 transmit FIFO
over-run flag bit (OVRR), or the endpoint 0 transmit FIFO under-run flag
bit (UNDR) being set. This bit is cleared by clearing the corresponding
status or FIFO flag bit that caused the interrupt. This bit is read-only and
is cleared by power-on reset.

3–5

3.2.2 Interrupt Mask Register

The interrupt mask register bits are used to mask the corresponding interrupt bits.

7 0

– – – FSUSP FRST EP1TX EP0RX EP0TX

BIT MNEMONIC NAME DESCRIPTION

7:4 – Reserved Reserved for future use

4 FSUSP Function suspend

interrupt mask

The function suspend interrupt mask bit is set to
enable the function suspend interrupt bit. This bit
is read/write and is cleared by power–on reset.

3 FRST Function reset interrupt mask The function reset interrupt mask bit is set to
enable the function reset interrupt bit. This bit is
read/write and is cleared by power-on reset.

2 EP1TX Endpoint 1 transmit interrupt mask The endpoint 1 transmit interrupt mask bit is set
to enable the endpoint 1 transmit interrupt bit.
This bit is read/write and is cleared by power-on
reset.

1 EP0RX Endpoint 0 receive interrupt mask The endpoint 0 receive interrupt mask bit is set to
enable the endpoint 0 receive interrupt bit. This
bit is read/write and is cleared by power-on reset.

0 EP0TX Endpoint 0 transmit interrupt mask The endpoint 0 transmit interrupt mask bit is set
to enable the endpoint 0 transmit interrupt bit.
This bit is read/write and is cleared by power-on
reset.

3.2.3 Function Address Register

The function address register contains the current setting of the USB device address assigned to the
function. During enumeration of the function, the function address is loaded into this register automatically
by the TUSB2140B Function Control Logic when a Set Address request is received from the USB host. This
register is read only and is used only for diagnostic purposes.

7 0

FEN FA6 FA5 FA4 FA3 FA2 FA1 FA0

BIT MNEMONIC NAME DESCRIPTION

7 FEN Function enabled The function enabled bit is set when the
embedded function port has been enabled by the
host with a set port feature request. This bit is
read-only and is cleared by power-on reset.

6:0 FA(6:0) Function address The function address register value is set to the
current device address assigned to the function.
These bits are read/write-able and are cleared by
power-on reset. The function address is updated
when the MCU receives a set-address control
transfer for the embedded function from the host.
The MCU will then update the function address
from the micro-controller firmware through the
I2C interface.

3–6

3.2.4 Endpoint 0 Transmit FIFO
7 0

D7 D6 D5 D4 D3 D2 D1 D0

BIT MNEMONIC NAME DESCRIPTION

7:0 D(7:0) Transmit
FIFO data

Endpoint 0 transmit FIFO data is written to the transmit FIFO on a byte-to-byte
basis. These bits are write-only.

3.2.5 Endpoint 0 Transmit Byte Count Register
7 0

– – – – BCNT3 BCNT2 BCNT1 BCNT0

BIT MNEMONIC NAME DESCRIPTION

7:4 – Reserved Reserved for future use.

3:0 BCNT(3:0) Transmit
byte count

The transmit byte count register should be loaded with the number of bytes to be
transmitted. The byte count should be the number of bytes in the data packet that
was loaded into the transmit FIFO. When the local MCU writes to the byte count
register, the EP0 transmit FIFO enable bit (TXFEN) will automatically be set.
Also, the byte count register does not decrement as data is transmitted. These
bits are read/write and are cleared by power-on reset.

3–7

3.2.6 Endpoint 0 Transmit Control Register

The transmit control register is used to store bits which control various functions and operating modes of
the function interface logic within the TUSB2140B.

7 0

TXCLR – – – TXSTL – TXFEN TXEN

BIT MNEMONIC NAME DESCRIPTION

7 TXCLR Transmit
clear

The transmit clear bit is set to reset the transmit FIFO pointers and flags. This bit
should be set in response to a transmit FIFO over–run or under-run condition. After
the FIFO pointers are reset, this bit will be automatically cleared. In addition, the
FIFO empty flag will be set and the other FIFO flags will be cleared upon
completion of the FIFO reset. This bit is read/write and is cleared by power-on
reset.

6 – Reserved Reserved for future use

5 – Reserved Reserved for future use

4 – Reserved Reserved for future use

3 TXSTL Transmit
stall

The transmit stall bit is set to enable a STALL handshake to be returned in
response to the next valid In Transaction. This bit is automatically cleared if a new
Setup Stage Transaction is successfully received. This bit is read/write and is
cleared by power-on reset.

2 – Reserved Reserved for future use

1 TXFEN Transmit
FIFO
enable

The transmit FIFO enable bit is set to enable the transmission of data in the
transmit FIFO when the next valid in transaction occurs. This bit is automatically
set when the local MCU writes to the EP0 transmit byte count register and is
automatically cleared when the EP0 transmit acknowledge status bit (ACK) is set.
This bit is also automatically cleared if a new setup stage transaction is
successfully received or the EP0 transmit clear bit (TXCLR) is set. If the transmit
enable bit is not set, the device returns a NACK handshake. If the transmit stall
control bit (TXSTL) is set, a STALL handshake is returned instead of a NACK
handshake. This bit is read/write and is cleared by power-on reset.

0 TXEN Transmit
enable

The transmit enable bit is set to enable the transmit endpoint. For endpoint 0, the
control endpoint, both a receive and transmit endpoint are required. Therefore, the
transmit enable and receive enable bits must both be set before the device will be
enumerated. If either of these bits is not set, the function port will remain in the
disconnected state. This bit is read/write and is cleared by power-on reset.

3–8

3.2.7 Endpoint 0 Transmit Status Register

The transmit status register is used to store bits which report status information about the operating
conditions of the function control logic within the TUSB2140B.

7 0

TXSEQ – – STSGE STALL NACK ERROR ACK

BIT MNEMONIC NAME DESCRIPTION

7 TXSEQ Transmit
sequence

The transmit sequence bit value determines the data packet PID to be
used for the next data packet to be transmitted for the next In data
stage transaction. This bit is automatically set at the end of a
successful setup stage transaction and is automatically toggled at the
end of each successful in data stage transaction. If this bit is a 0, a
DATA0 PID is sent in the data packet. If this bit is a 1, a DATA1 PID
is sent in the data packet. This bit is read only and is cleared by
power-on reset.

6 – Reserved Reserved for future use

5 – Reserved Reserved for future use

4 STSGE In status stage The in status stage bit is set when the function control logic detects the
status stage transaction of a control transfer. This bit will be
automatically cleared at the beginning of the next setup stage
transaction. This bit is read-only and is cleared by power-on reset.

3 STALL Stall The stall status bit is set at the end of an in transaction if a STALL
handshake packet is returned to the host instead of a data packet. The
function control logic will automatically return a STALL handshake to
the host if a valid in transaction is received and the transmit stall control
bit is set. This stall status bit will be automatically updated at the end
of the next valid in transaction. This bit is read-only and is cleared by
power-on reset.

2 NACK No acknowledge The no acknowledge status bit is set at the end of an In Transaction
if a NACK handshake packet is returned to the host instead of a data
packet. The function control logic will automatically return a NACK
handshake to the host if a valid In Transaction is received and there
is not a data packet in the transmit FIFO ready to be transmitted. This
bit will be automatically updated at the end of the next valid in
transaction. This bit is read-only and is cleared by power-on reset.

1 ERROR Error The error status bit is set at the end of an in transaction if a timeout,
bit-stuff, CRC, force transmit or other errors occur. This bit will be
automatically updated at the end of the next valid in transaction. This
bit is read-only and is cleared by power-on reset.

0 ACK Acknowledge The acknowledge status bit is set at the end of an in transaction if the
data packet in the transmit FIFO was sent successfully and an
acknowledge handshake was received from the host. When this bit is
set, the endpoint 0 transmit interrupt bit is also set. The acknowledge
status bit should be cleared by the local MCU in order to clear the
interrupt condition. This bit will be automatically cleared at the
beginning of the next setup stage transaction. This bit is read/write
and is cleared by power-on reset.

3–9

3.2.8 Endpoint 0 Transmit FIFO Flags Register
The transmit FIFO flags register is used to store bits which report status information about the transmit FIFO
operating condition.

7 0

– – – – EMPT FULL UNDR OVRR

BIT MNEMONIC NAME DESCRIPTION

7:4 – Reserved Reserved for future use

3 EMPT Transmit
FIFO
empty

The transmit FIFO empty flag is set when the transmit FIFO is empty. This bit
is cleared when the FIFO is no longer empty. This bit is read-only and is set
by power-on reset.

2 FULL Transmit
FIFO full

The transmit FIFO full flag is set when the transmit FIFO is full. This bit is
cleared when the FIFO is no longer full. This bit is read-only and is cleared by
power-on reset.

1 UNDR Transmit
FIFO
under-run

The transmit FIFO under-run flag is set when the transmit FIFO is empty and
the function control logic attempts to read another byte from the FIFO. This will
happen if the number of bytes actually written to the transmit FIFO is less than
the value loaded into the transmit byte count register. When this bit is set, the
endpoint 0 transmit interrupt bit is also set. To clear the FIFO under-run
condition, the transmit FIFO clear control bit should be set. After the FIFO has
been cleared, this bit and the endpoint 0 transmit interrupt bit will be
automatically cleared. This bit is read-only and is cleared by power-on reset.

0 OVRR Transmit
FIFO
over-run

The transmit FIFO over-run flag is set when the transmit FIFO is full and the
local MCU attempts to write another byte to the FIFO. When this bit is set, the
endpoint 0 transmit interrupt bit is also set. To clear the FIFO over-run
condition, the transmit FIFO clear control bit should be set. After the FIFO has
been cleared, this bit and the endpoint 0 transmit interrupt bit will be
automatically cleared. This bit is read-only and is cleared by power-on reset.

3.2.9 Endpoint 0 Receive FIFO
7 0

D7 D6 D5 D4 D3 D2 D1 D0

BIT MNEMONIC NAME DESCRIPTION

7:0 D(7:0) Receive
FIFO data

Endpoint 0 receive FIFO data is read from the receive FIFO on a byte-to-byte
basis. These bits are read-only.

3.2.10 Endpoint 0 Receive Byte Count Register
7 0

– – – – BCNT3 BCNT2 BCNT1 BCNT0

BIT MNEMONIC NAME DESCRIPTION

7:4 – Reserved Reserved for future use

3:0 BCNT(3:0) Receive
byte count

The receive byte count register is loaded with the number of bytes in the data
packet received into the endpoint 0 receive FIFO for a valid setup stage
transaction or OUT Transaction. The receive FIFO byte count register does not
decrement as data is read from the FIFO. These bits are read-only and are
cleared by power-on reset.

3–10

3.2.11 Endpoint 0 Receive Control Register

The receive control register is used to store bits which control various functions and operating modes of the
function interface logic within the TUSB2140B device.

7 0

RXCLR – – – RXSTL – RXFEN RXEN

BIT MNEMONIC NAME DESCRIPTION

7 RXCLR Receive clear The receive clear bit is set to reset the receive FIFO pointers and flags. This
bit should be set in response to a receive FIFO over–run or under-run
condition. After the FIFO pointers are reset, this bit will be automatically
cleared. In addition, the FIFO empty flag will be set and the other FIFO flags
will be cleared upon completion of the FIFO reset. This bit is read/write and
is cleared by power-on reset.

6 – Reserved Reserved for future use

5 – Reserved Reserved for future use

4 – Reserved Reserved for future use

3 RXSTL Receive stall The receive stall bit is set to enable a STALL handshake to be returned in
response to the next valid out transaction. This bit does not effect a setup
stage transaction. The setup stage transaction must always be accepted,
unless there is a data packet error or a time out error, so that a clear feature
endpoint Stall request can be received from the host. This bit is
automatically cleared if a new setup stage transaction is successfully
received. This bit is read/write and is cleared by power-on reset.

2 – Reserved Reserved for future use

1 RXFEN Receive FIFO
enable

The receive FIFO enable bit is set to enable the reception of data into the
receive FIFO when the next valid out transaction occurs. This bit is
automatically cleared when the local EP0 receive acknowledge status bit
(ACK) is set. This bit is also automatically cleared if a new setup stage
transaction is successfully received or the EP0 receive clear bit (RXCLR)
is set. If the receive enable bit is not set, the device returns a NACK
handshake. If the receive stall control bit (RXSTL) is set, a STALL
handshake is returned instead of a NACK handshake. This bit does not
effect a setup stage transaction. The setup stage transaction must always
be accepted, unless there is a data packet error or a time-out error. This bit
is read/write and is cleared by power-on reset.

0 RXEN Receive
enable

The receive enable bit is set to enable the receive endpoint. For endpoint
0, the control endpoint, both a receive and transmit endpoint are required.
Therefore, the transmit enable and receive enable bits must both be set
before the device will be enumerated. If either of these bits is not set, the
function port will remain in the disconnected state. This bit is read/write and
is cleared by power-on reset.

3–11

3.2.12 Endpoint 0 Receive Status Register

The receive status register is used to store bits which report status information about the operating
conditions of the function control logic within the TUSB2140B device.

7 0

RXSEQ SETUP RXFSW STSGE STALL NACK ERROR ACK

BIT MNEMONIC NAME DESCRIPTION

7 RXSEQ Receive
sequence

The receive sequence bit is toggled by the function control logic at the end of
an out data stage transaction if a valid data packet is received and the data
packet PID matches the expected PID. The receive sequence bit is initialized
to a 1 at the end of a successful setup stage transaction. This bit is read-only
and is cleared by power-on reset.

6 SETUP Setup stage
transaction

The setup stage transaction bit is set at the end of a successful Setup Stage
Transaction to indicate that the data packet in the receive FIFO is a setup stage
transaction data packet. This bit is cleared by writing a 1 to this register. To read
the receive FIFO, the local MCU must first clear the setup stage transaction bit
(SETUP). This bit is read/write and is cleared by power-on reset.

5 RXFSW Receive FIFO
setup stage
transaction
data packet
write

The receive FIFO setup stage transaction data packet write bit is set at the
beginning of a setup stage transaction and is cleared at the end of setup stage
transaction. This bit indicates that the receive FIFO is being over-written with
data from the setup stage transaction data packet. This bit, in conjunction with
the setup stage bit (SETUP), is used to indicate when a new setup stage
transaction has occurred and data in the receive FIFO from a previous out data
stage transaction may have been over-written. This bit is read-only and is
cleared by power-on reset.

4 STSGE In status
stage

The in status stage bit is set when the function control logic detects the status
stage transaction of a control transfer. This bit will be automatically cleared at
the beginning of the next setup stage transaction. This bit is read-only and is
cleared by power-on reset.

3 STALL Stall The stall status bit is set at the end of an out transaction if a STALL handshake
packet is returned to the host. The function control logic will automatically return
a STALL handshake to the host if a valid out transaction is received and the
receive stall control bit is set. This stall status bit will automatically be updated
at the end of the next valid out transaction. This bit is read-only and is cleared
by power-on reset.

2 NACK No
acknowledge

The no acknowledge status bit is set at the end of an out transaction if a NACK
handshake packet is returned to the host. The Function Control Logic will
automatically return a NACK handshake to the host if a valid out transaction is
received and the receive FIFO enable bit has not been set. This bit will be
automatically updated at the end of the next valid out transaction. This bit is
read-only and is cleared by power-on reset.

1 ERROR Error The error status bit is set at the end of an out transaction if a timeout, bit-stuff,
CRC, force receive or other errors occur. This bit will be automatically updated
at the end of the next valid out transaction. This bit is read-only and is cleared
by power-on reset.

0 ACK Acknowledge The acknowledge status bit is set at the end of an out transaction if the data
packet was received successfully and an acknowledge handshake was sent
to the host. When this bit is set, the endpoint 0 receive interrupt bit is also set.
The acknowledge status bit should be cleared by the local MCU in order to clear
the interrupt condition. This bit will be automatically cleared at the beginning of
the next setup stage transaction. This bit is read/write and is cleared by
power-on reset.

3–12

3.2.13 Endpoint 0 Receive FIFO Flags Register
The receive FIFO flags register is used to store bits which report status information about the receive FIFO
operating condition.

7 0

– – – – EMPT FULL UNDR OVRR

BIT MNEMONIC NAME DESCRIPTION

7:4 – Reserved Reserved for future use.

3 EMPT Receive
FIFO
empty

The receive FIFO empty flag is set when the receive FIFO is empty. This bit
is cleared when the FIFO is no longer empty. This bit is read-only and is set
by power-on reset.

2 FULL Receive
FIFO full

The receive FIFO full flag is set when the receive FIFO is full. This bit is cleared
when the FIFO is no longer full. This bit is read-only and is cleared by power-on
reset.

1 UNDR Receive
FIFO
under-run

The receive FIFO under-run flag is set when the receive FIFO is empty and
when the local MCU attempts to read a byte from the FIFO. When this bit is set,
the endpoint 0 receive interrupt bit is also set. To clear the FIFO under-run
condition, the receive FIFO clear control bit should be set. After the FIFO has
been cleared, this bit and the endpoint 0 receive interrupt bit will be
automatically cleared. This bit is read-only and is cleared by power-on reset.

0 OVRR Receive
FIFO
over-run

The receive FIFO over-run flag is set when the receive FIFO is full and the
function control Logic attempts to write another byte to the FIFO. When this bit
is set, the endpoint 0 receive interrupt bit is also set. To clear the FIFO over-run
condition, the receive FIFO clear control bit should be set. After the FIFO has
been cleared, this bit and the endpoint 0 receive interrupt bit will be
automatically cleared. This bit is read-only and is cleared by power-on reset.

3.2.14 Endpoint 1 Transmit FIFO
7 0

D7 D6 D5 D4 D3 D2 D1 D0

BIT MNEMONIC NAME DESCRIPTION

7:0 D(7:0) Transmit
FIFO data

Endpoint 1 transmit FIFO data is written to the transmit FIFO on a byte-to-byte
basis. These bits are write-only.

3.2.15 Endpoint 1 Transmit Byte Count Register
7 0

– – – – BCNT3 BCNT2 BCNT1 BCNT0

BIT MNEMONIC NAME DESCRIPTION

7:4 – Reserved Reserved for future use.

3:0 BCNT(3:0) Transmit
byte count

The transmit byte count register should be loaded with the number of bytes to
be transmitted. The byte count should be the number of bytes in the data packet
that was loaded into the transmit FIFO. When the local MCU writes to the byte
count register, the EP1 transmit FIFO enable bit (TXFEN) will automatically be
set. Also, the byte count register does not decrement as data is transmitted.
These bits are read/write and are cleared by power-on reset.

3–13

3.2.16 Endpoint 1 Transmit Control Register

The transmit control register is used to store bits which control various functions and operating modes of
the function interface logic within the TUSB2140B device.

7 0

TXCLR TXSOW – – TXSTL – TXFEN TXEN

BIT MNEMONIC NAME DESCRIPTION

7 TXCLR Transmit clear The transmit clear bit is set to reset the transmit FIFO pointers and
flags. This bit should be set in response to a transmit FIFO over–run
or under-run condition. After the FIFO pointers are reset, this bit will
be automatically cleared. In addition, the FIFO empty flag will be set
and the other FIFO flags will be cleared upon completion of the FIFO
reset. This bit is read/write and is cleared by power-on reset.

6 TXSOW Transmit sequence
bit over-write

The transmit sequence bit over-write bit is set to enable the local MCU
to write to the transmit sequence bit (TXSEQ). See the EP1TX
Transmit Status Register. This bit is read/write and is cleared by
power-on reset.

5 – Reserved Reserved for future use

4 – Reserved Reserved for future use

3 TXSTL Transmit stall The transmit stall bit is set to enable a STALL handshake to be
returned in response to the next valid in transaction. This bit is
read/write and is cleared by power-on reset.

2 – Reserved Reserved for future use

1 TXFEN Transmit FIFO
enable

The transmit FIFO enable bit is set to enable the transmission of data
in the transmit FIFO when the next valid in transaction occurs. This bit
is automatically set when the local MCU writes to the EP1 transmit
byte count register and is automatically cleared when the EP1 transmit
acknowledge status bit (ACK) is set. This bit is also automatically
cleared if the EP1 transmit clear bit (TXCLR) is set. If the transmit
enable bit is not set, the device returns a NACK handshake. If the
transmit stall control bit (TXSTL) is set, a STALL handshake is
returned instead of a NACK handshake. This bit is read/write and is
cleared by power-on reset.

0 TXEN Transmit enable The transmit enable bit is set to enable the transmit endpoint. This bit
is read/write and is cleared by power-on reset.

3–14

3.2.17 Endpoint 1 Transmit Status Register

The transmit status register is used to store bits which report status information about the operating
conditions of the Function Control Logic within the TUSB2140B device.

7 0

TXSEQ – – – STALL NACK ERROR ACK

BIT MNEMONIC NAME DESCRIPTION

7 TXSEQ Transmit sequence The transmit sequence bit value determines the data packet PID to
be used for the next data packet to be transmitted during the next in
data stage transaction. This bit is automatically toggled at the end
of a successful In Transaction. If this bit is a 0, a DATA0 PID is sent
in the data packet. If this bit is a 1, a DATA1 PID is sent in the data
packet. The local MCU can write to this bit if the transmit sequence
bit over-write (TXSOW) is set. This bit is read/write and is cleared by
power-on reset.

6 – Reserved Reserved for future use

5 – Reserved Reserved for future use

4 – Reserved Reserved for future use

3 STALL Stall The stall status bit is set at the end of an in transaction if a STALL
handshake packet is returned to the host instead of a data packet.
The function control logic will automatically return a STALL
handshake to the host if a valid in transaction is received and the
transmit stall control bit is set. This stall status bit will be
automatically updated at the end of the next valid in transaction. This
bit is read-only and is cleared by power-on reset.

2 NACK No acknowledge The no acknowledge status bit is set at the end of an In Transaction
if a NACK handshake packet is returned to the host instead of a data
packet. The function control logic will automatically return a NACK
handshake to the host if a valid In Transaction is received and there
is not a data packet in the transmit FIFO ready to be transmitted. This
bit will be automatically updated at the end of the next valid In
Transaction. This bit is read-only and is cleared by power-on reset.

1 ERROR Error The error status bit is set at the end of an in transaction if a timeout,
bit-stuff, CRC, force transmit or other errors occur. This bit will be
automatically updated at the end of the next valid in transaction. This
bit is read-only and is cleared by power-on reset.

0 ACK Acknowledge The acknowledge status bit is set at the end of an in transaction if the
data packet in the transmit FIFO was sent successfully and an
acknowledge handshake was received from the host. When this bit
is set, the endpoint 1 transmit interrupt bit is also set. The
acknowledge status bit should be cleared by the local MCU in order
to clear the interrupt condition. This bit is read/write and is cleared
by power-on reset.

3–15

3.2.18 Endpoint 1 Transmit FIFO Flags Register

The transmit FIFO flags register is used to store bits which report status information about the transmit FIFO
operating condition.

7 0

– – – – EMPT FULL UNDR OVRR

BIT MNEMONIC NAME DESCRIPTION

7:4 – Reserved Reserved for future use

3 EMPT Transmit FIFO empty The transmit FIFO empty flag is set when the transmit FIFO is
empty. This bit is cleared when the FIFO is no longer empty.
This bit is read-only and is set by power-on reset.

2 FULL Transmit FIFO full The transmit FIFO full flag is set when the transmit FIFO is full.
This bit is cleared when the FIFO is no longer full. This bit is
read-only and is cleared by power-on reset.

1 UNDR Transmit FIFO under-run The transmit FIFO under-run flag is set when the transmit FIFO
is empty and the function control logic attempts to read another
byte from the FIFO. This will happen if the number of bytes
actually written to the transmit FIFO is less than the value
loaded into the transmit byte count register. When this bit is set,
the endpoint 1 transmit interrupt bit is also set. To clear the
FIFO under-run condition, the transmit FIFO clear control bit
should be set. After the FIFO has been cleared, this bit and the
endpoint 1 transmit interrupt bit will be automatically cleared.
This bit is read-only and is cleared by power-on reset.

0 OVRR Transmit FIFO over-run The transmit FIFO over-run flag is set when the transmit FIFO
is full and the local MCU attempts to write another byte to the
FIFO. When this bit is set, the endpoint 1 transmit interrupt bit
is also set. To clear the FIFO over-run condition, the transmit
FIFO clear control bit should be set. After the FIFO has been
cleared, this bit and the endpoint 1 transmit interrupt bit will be
automatically cleared. This bit is read-only and is cleared by
power-on reset.

3.2.19 PID Low-Byte Register

The PID low-byte register is used to store the lower eight bits of the PID information for the USB hub. This
register has the power-up default value of 40h, but can be replaced by any custom value downloaded
through the I2C interface from the firmware that resides on the local microcontroller.

7 0

PID(7) PID(6) PID(5) PID(4) PID(3) PID(2) PID(1) PID(0)

3–16

3.2.20 PID High-Byte Register

The PID high-byte register is used to store the higher eight bits of the PID information for the USB hub. This
register has the power-up default value of 21h, but can be replaced by any custom value downloaded
through the I2C interface from the firmware that resides on the local microcontroller.

7 0

PID(15) PID(14) PID(13) PID(12) PID(11) PID(10) PID(9) PID(8)

3.2.21 VID Low-Byte Register

The VID low-byte register is used to store the lower eight bits of the VID information for the USB hub. This
register has the power-up default value of 51h, but can be replaced by any custom value downloaded
through the I2C interface from the firmware that resides on the local microcontroller.

7 0

VID(7) VID(6) VID(5) VID(4) VID(3) VID(2) VID(1) VID(0)

3.2.22 VID High-Byte Register

The VID high-byte register is used to store the higher eight bits of the VID information for the USB hub. This
register has the power-up default value of 04h, but can be replaced by any custom value downloaded
through the I2C interface from the firmware that resides on the local microcontroller.

7 0

VID(15) VID(14) VID(13) VID(12) VID(11) VID(10) VID(9) VID(8)

NOTE: The default VID = 0451h and PID = 2140h will be displayed as General Purpose USB Hub during enumeration.
Section 4.3 explains the order of operation for downloading the custom IDs in more detail.

4–1

4 Device Operation
The operation of the TUSB2140B is explained in the following sections. For additional information on USB,
please refer to the Universal Serial Bus Specification version 1.0 dated January 19, 1996. Chapter 11 of the
specification contains very detailed information on the hub operations.

4.1 Device Initialization
When a power-on reset is applied to the TUSB2140B, the device is automatically configured as a
stand-alone hub with five downstream ports. In addition, all of the registers associated with the embedded
function are initialized as defined in Section 3.2, Register Functional Descriptions. Both the hub and the
embedded function power-up with a default function address of zero, and the embedded function is
disconnected. To connect the embedded function to the downstream port 5 of the hub, the MCU must set
the receive enable bit (RXEN) to 1 and the transmit enable bit (TXEN) to a 1.

4.2 Hub
The hub within the TUSB2140B supports a maximum of 4 external downstream ports and the embedded
function. The embedded function must be connected to downstream port 5 before the hub begins
functioning. The hub is a separate logical device and contains a separate control endpoint and interrupt
endpoint from the embedded function. The hub automatically handles all USB standard device commands
addressed to the hub function address. Because the hub is a state machine approach instead of being based
on a microcontroller, the only software required to support the hub function is the generic USB driver, on the
host side, that supports the hub-class.

4.3 Embedded Function
The embedded function within the TUSB2140B supports USB control and interrupt data transfers by
providing FIFOs, control/status registers, and the USB bus interface to be used by a local MCU. The
embedded function is a separate logical device, and therefore, the embedded function requires a unique
function address. To enumerate the embedded function, the TUSB2140B hub must first be enumerated and
configured. In addition, the embedded function must be connected to downstream port 5 of the hub, which
is accomplished by setting the embedded function endpoint 0 receive enable bit (RXEN) and transmit enable
bit (TXEN) to a 1. After power-on reset, the device will NAK and wait for the embedded function to be
connected by the MCU. When new VIDs/PIDs are desired for the USB hub, they must be loaded through
the I2C interface before the MCU is connected to the embedded function by enabling the TXEN bit and the
RXEN bit.

4.3.1 Interrupt Handler

The interrupt handler monitors the various conditions that can cause interrupts and asserts the appropriate
interrupt bit when an interrupt condition is pending. If one or more of the interrupt bits is set, the TUSB2140B
interrupt output signal (IRQ) will be asserted until the interrupt condition(s) is cleared. The interrupt bits are
enabled by setting the corresponding bit in the interrupt mask register. If the interrupt mask bit is cleared,
the corresponding interrupt bit will still be set when an interrupt condition occurs. However, the IRQ output
signal will not be asserted. This feature is provided for systems that detect pending interrupt conditions with
a polling scheme rather than monitoring the IRQ output signal.

4.3.2 Function Reset and USB Reset

To reset the embedded function, the host initiates a port reset on the function port which sets the function
reset interrupt bit. The function reset will not be enabled unless the MCU clears the function reset interrupt
bit (FRST). When a function reset occurs, all of the function interface logic within the TUSB2140B will be
reset except the endpoint 0 receive enable bit (RXEN), the endpoint 0 transmit enable bit (TXEN), the FRST,
and all of the interrupt mask bits. In addition, the local MCU should respond by setting the default

4–2

configuration, and then should clear the FRST interrupt bit. The USB RESET will only reset the hub logic
and not the embedded function logic.

4.3.3 Enumeration

After enumeration of the hub and the connection of the embedded function, the host should enable, reset,
and set the function address of the embedded function. To enable the port, the host should first power-on
the port, which should result in the PWRON5 output signal being asserted. When the embedded function
has been enabled, the function enabled bit (FEN), bit 7 of the function address register, will also be set. When
the host initiates the port reset for the embedded function, the function reset bit (FRST), bit 3 of the interrupt
register, will be set. If the corresponding mask bit is a 1, then the IRQ output signal will be asserted. The
local MCU should respond to the FRST by setting the default configuration for the device and then clearing
the FRST interrupt bit. To set the function address, the host should initiate the set address command. The
embedded function will automatically decode the set address command and set the function address within
the embedded function to the address requested by the host.

4.3.4 Control Transfers

Control transfers to the embedded function require multiple transactions which use both the embedded
function endpoint 0 receive and transmit endpoints. The three types of control transfers are control write,
control write with no-data stage and control read. All USB commands, except the set address command,
are passed by the embedded function logic to the local MCU which does the decoding. The set address
command is handled completely by the embedded function. After the set address command is complete,
the function address can be read by the local MCU from the function address register (see Firmware
Development Flow Diagram in Appendix A).

4.3.4.1 Control Read Transfers

A control read transfer is used by the host to read data from the embedded function. A control read transfer
requires a setup stage transaction, at least one in data stage transaction, and an out status stage
transaction. As a result, the setup stage transaction and the out status stage transaction use the endpoint
0 receive endpoint and the in data stage transactions use the endpoint 0 transmit endpoint.

4.3.4.2 Control Write Transfers

A control write transfer is used by the host to write data to the embedded function. A control write transfer
requires a setup stage transaction, at least one out data stage transaction, and an in status stage
transaction. As a result, the setup stage transaction and the out data stage transactions use the endpoint
0 receive endpoint and the in status stage transaction uses the endpoint 0 transmit endpoint.

4.3.4.3 Control Write Transfers with No-Data Stages

A control write transfer with no-data stages is used by the host to write data to the embedded function. A
control write transfer with no-data stages requires a setup stage transaction, no data stage transactions,
and an in status stage transaction. As a result, the setup stage transaction uses the endpoint 0 receive
endpoint and the in status stage transaction uses the endpoint 0 transmit endpoint. The data written to the
function by the host is contained in the setup stage transaction data packet and is limited to two bytes.

4.3.5 Interrupt Transfers

The transfer of interrupt type data is accomplished by the TUSB2140B using the interrupt endpoint, which
is transmit endpoint 1. In addition to the endpoint 1 transmit FIFO, the operation of transmit endpoint 1
requires the use of 4 registers, which are the endpoint 1 TX byte count register, TX control register, TX status
register and TX FIFO flags register.

The steps to be followed to transfer interrupt data are as follows:

1. The local MCU loads the data packet to be transmitted into the endpoint 1 transmit FIFO. The
endpoint 1 transmit FIFO is 8 bytes deep, and therefore, the maximum data packet size is 8 bytes.

4–3

If a FIFO over-run occurs while loading the data packet, the MCU sets the FIFO clear bit (TXCLR)
to clear the FIFO. After the over-run condition is cleared, the MCU loads the data packet into the
FIFO again. The FIFO over-run condition results in the FIFO over-run bit (OVRR) being set and
the endpoint 1 transmit interrupt bit (EP1TX) being set. The FIFO clear bit (TXCLR) is cleared
automatically after the FIFO clear is complete. The MCU should poll the FIFO clear bit to
determine when the FIFO clear is complete. After the FIFO clear is complete, the MCU should
clear the FIFO over-run bit (OVRR), which automatically clears the endpoint 1 transmit interrupt
bit (EP1TX).

2. Next, the local MCU loads the data packet byte count into the endpoint 1 transmit byte count
register. Writing the byte count automatically sets the transmit FIFO enable bit (TXFEN) to enable
the FCL to send the data packet when the next endpoint 1 In Transaction occurs.

3. At the end of the In Transaction, if the data packet was sent successfully and an acknowledge
(ACK) handshake was received from the host, the acknowledge status bit (ACK) and the
endpoint 1 transmit interrupt bit (EP1TX) are set. First the interrupt register is read to determine
that an endpoint 1 transmit interrupt (EP1TX) has occurred. Then the status register is read to
determine that the source of the interrupt was the acknowledge bit (ACK). Note that the transmit
FIFO enable bit (TXFEN) is automatically cleared when the ACK bit is set. Finally, the MCU clears
the acknowledge status bit (ACK), which automatically clears the interrupt bit (EP1TX).

4.3.6 Suspend and Remote Wake-Up
The TUSB2140B embedded function supports both suspend and remote wake-up. The ability to support
remote wake-up should be reported by the function to the host in the configuration descriptor for the
embedded function. In addition, the host should be able to enable and disable the remote wake-up feature
using the set feature device and clear feature device commands.

The TUSB2140B will assert the function suspend interrupt bit (FSUSP) if either a global suspend of the
entire bus or a selective suspend of the embedded function is detected by the hub. In order for the
TUSB2140B to enter a low power suspend state, the local MCU must clear the FSUSP bit. In the low power
suspend state, the power control logic within the TUSB2140B will assert the function suspend output signal,
FUNCSUSP. In addition, to reduce power consumption to a minimum, the TUSB2140B will disable all clocks
including the CLKOUT output signal. The hub logic will shut off the clock only when the MCU enables the
logic by clearing the FUNCSUSP interrupt bit.

The remote wake-up function allows the local MCU or other logic to initiate a wake-up telling the host to
resume USB operations. To initiate the remote wake-up, the active high WAKEUP input signal to the
TUSB2140B should be asserted as shown in Figure 5–12. The WAKEUP input to the device will be ignored
unless the embedded function is enabled.

4.3.7 I2C Interface
The TUSB2140B uses a bidirectional two-wire serial interface to access the internal registers and FIFOs
used for the embedded function operations. This serial interface is compatible with the I2C (Inter IC) bus
protocol and supports both 100 kbps and 400 kbps data transfer rates. The TUSB2140B is a slave only
device on the bus with an assigned I2C device address as shown below in Table 4–1.

Table 4–1. I2C Device Address

A6 A5 A4 A3 A2 A1 A0 R/W

0 1 0 1 1 1 0

4.3.7.1 Data Transfers
The two-wire serial interface uses the serial clock signal, SCL, and the serial data signal, SDA. As stated
above, the TUSB2140B is a slave only device, and therefore, the SCL signal is an input only. The SDA signal
is a bidirectional signal that uses an open-drain output to allow the TUSB2140B to be wire-ORed with other
devices that use open-drain or open-collector outputs.

4–4

All read and write data transfers on the serial bus are initiated by a master device. The master device is also
responsible for generating the clock signal used by the TUSB2140B for all data transfers. The data is
transferred on the bus serially one bit at a time. However, the protocol requires that the address and data
information be transferred in byte (8-bit) format with the most-significant bit (MSB) transferred first. In
addition, each byte transferred on the bus is acknowledged by the receiving device with an acknowledge
bit. Each transfer operation begins with the master device driving a start condition on the bus and ends with
the master device driving a stop condition on the bus.

The timing relationship between the SCL and SDA signals for each bit transferred on the bus is shown in
Figure 5–5. As shown, the SDA signal must be stable while the SCL signal is high, which also means that
the SDA signal can only change states while the SCL signal is low.

The timing relationship between the SCL and SDA signals for the start and stop conditions is shown in
Figure 5–6. As shown, the start condition is defined as a high-to-low transition of the SDA signal while the
SCL signal is high. Also, as shown, the stop condition is defined as a low-to-high transition of the SDA signal
while the SCL signal is high.

When the TUSB2140B is the device receiving address or data information, the TUSB2140B will
acknowledge each byte received by driving the SDA signal low during the acknowledge SCL period. During
the acknowledge SCL period, the master device must stop driving the SDA signal. If the TUSB2140B is
unable to receive a byte, the SDA signal will not be driven low and should be pulled high external to the
TUSB2140B device. A high during the SCL period indicates a not-acknowledge to the master device. After
receiving a not-acknowledge from the TUSB2140B, the master device should generate a stop condition.
The output acknowledge timing is shown in Figure 5–7.

Read and write data transfers to the TUSB2140B internal registers are done using single byte data transfers.
However, read and write data transfers to the TUSB2140B internal FIFOs can be done with either single
or multiple byte data transfers.

4.3.7.2 Single Byte Write

As shown in Figure 5–8, a single byte data write transfer begins with the master device transmitting a start
condition followed by the I2C device address and the read/write bit (refer to Table 4–1). The read/write bit
determines the direction of the data transfer. For a write data transfer, the read/write bit should be a 0. After
receiving the correct I2C device address and the read/write bit, the TUSB2140B should respond with an
acknowledge bit. Next, the master device should transmit the address byte corresponding to the
TUSB2140B internal register or FIFO being accessed (see Section 3.1). After receiving the address byte,
the TUSB2140B should again respond with an acknowledge bit. Next, the master device should transmit
the data byte to be written to the register or FIFO being addressed. After receiving the data byte, the
TUSB2140B should again respond with an acknowledge bit. Finally, the master device should transmit a
stop condition to complete the single byte data write transfer.

4.3.7.3 Multiple Byte Write

A multiple byte data write transfer is identical to a single byte data write transfer except that multiple data
bytes are transmitted by the master device to the TUSB2140B as shown in Figure 5–9. After receiving each
data byte, the TUSB2140B should respond with an acknowledge bit.

4–5

4.3.7.4 Single Byte Read

As shown in Figure 5–10, a single byte data read transfer begins with the master device transmitting a start
condition followed by the I2C device address and the read/write bit (refer to Table 4–1). For the data read
transfer, both a write and a read are actually done. Initially, a write is done to transfer the address byte of
the internal register or FIFO to be read. As a result, the read/write bit should be a 0. After receiving the I2C
device address and the read/write bit the TUSB2140B should respond with an acknowledge bit. Also, after
sending the address byte, the master device should transmit another start condition followed by the I2C
device address and the read/write bit again. This time the read/write bit should be a 1 indicating a read
transfer. After receiving the I2C device address and the read/write bit the TUSB2140B should again respond
with an acknowledge bit. Next, the TUSB2140B should transmit the data byte from the register or FIFO being
addressed. After receiving the data byte, the master device should transmit a not-acknowledge followed by
a stop condition to complete the single byte data read transfer.

4.3.7.5 Multiple Byte Read

A multiple byte data read transfer is identical to a single byte data read transfer except that multiple data
bytes are transmitted by the TUSB2140B to the master device as shown in Figure 5–11. Except for the last
data byte, the master device should respond with an acknowledge bit after receiving each data byte.

4.4 Over-Current Detection and Power Switching
The TUSB2140B provides an active low over-current input signal for each downstream port including the
embedded function. External circuitry is required to detect an over-current condition for each port and to
assert the appropriate over-current input. When an over-current input is asserted using individual port power
management, the TUSB2140B will de-assert the power-on output signal corresponding to the over-current
input. The external circuitry should remove power from the appropriate downstream port when the power-on
output is de-asserted. In addition, the over-current condition will be reported to the host by the TUSB2140B
hub controller. If the ganged port power management mode is used, the GANGED input to the TUSB2140B
is set to a 1, then the power-on outputs are all de-asserted at the same time, when any of the over-current
inputs are asserted.

4.5 Clock Output Generation
The TUSB2140B generates a clock output signal, CLKOUT, that is synchronous to the 48 MHz crystal input.
The CLKOUT signal frequency is selected using the two clock select inputs, CLKSEL0 and CLKSEL1. As
shown in Table 4–2, the CLKOUT frequency can be selected to be 12 MHz, 8 MHz, 6 MHz or 4 MHz.

Table 4–2. Clock Output Signal Frequency

CLKSEL1 CLKSEL0 CLKOUT FREQUENCY

0 0 12 MHz

0 1 8 MHz

1 0 6 MHz

1 1 4 MHz

The TUSB2140B will only shut off the clock only when the MCU enables it to do so by clearing the
FUNCSUSP interrupt bit. See Suspend and Remote Wake-Up in section 4.3.6 for further information.

4–6

4.6 Power Supply Sequencing
Turning power supplies on and off with a mixed 5-V/3.3-V system is an important consideration. To avoid
possible damage to the TUSB2140B device, proper power sequencing is required. The basic turn on
requirement is that the 5-V and 3.3-V power supplies should start ramping from 0 V and reach 95 percent
of the final voltage values within 25 ms of each other. The turn-off requirement is that the 5-V and 3.3-V power
supplies should start ramping from the steady-state voltage and reach 5 percent of these values with 25 ms
of each other. In addition, the difference between the two voltages should never exceed 3.6 V while turning
on or off. Normally, in a mixed voltage system, the 3.3-V supply is generated from a voltage regulator running
from the 5-V supply. A voltage regulator, such as TI’s TPS7133, can be used to meet these power
sequencing requirements.

5–1

5 Electrical Specifications
5.1 Absolute Maximum Ratings Over Operating Free-Air Temperature Range

(Unless Otherwise Noted) †

Supply voltage range, VCC3V (see Note 1) –0.5 V to 3.8 V.
Supply voltage range, VCC5V (see Note 1) –0.5 V to 5.5 V.
Input voltage range, VI: (3.3 VCC3V) –0.5 V to VCC3V + 0.5 V.

(5 VCC5V) –0.5 V to VCC5V + 0.5 V.
Output voltage range, VO (3.3 VCC3V) –0.5 V to VCC3V + 0.5 V.
Input clamp current, IIK, (VI < 0 V or VI > VCC3V) ±20 mA.
Output clamp current, IOK, (VO < 0 V or VO > VCC3V) ±20 mA.
Storage temperature range, Tstg –65°C to 150°C.
Operating free-air temperature range, TA 0°C to 70°C.

† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These
are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated
under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for
extended periods may affect device reliability.

NOTE 1: All voltage levels are with respect to GND.

5.2 Recommended Operating Conditions
MIN NOM MAX UNIT

Supply voltage, VCC3V 3 3.3 3.6 V

Supply voltage, VCC5V 4.75 5 5.25 V

Input voltage, TTL/LVCMOS, VI 0 VCC3V V

Input voltage, 5-V tolerant TTL, VI 0 VCC5V V

Output voltage, TTL/LVCMOS, VO 0 VCC3V V

High-level input voltage, signal-ended receiver, VIH(REC) 2 VCC3V V

Low-level input voltage, signal-ended receiver, VIL(REC) 0 0.8 V

High-level input voltage, TTL/LVCMOS, VIH(TTL) 2 VCC3V V

High-level input voltage, 5-V tolerant TTL, VIH(TTL) 2 VCC5V V

Low-level input voltage, TTL/LVCMOS, VIL(TTL) 0 0.8 V

Low-level input voltage, 5-V tolerant TTL, VIL(TTL) 0 0.8 V

Operating junction temperature, TJ 0 115 °C

External series, differential driver resistor, R(DRV) 27 Ω

Operating (dc differential driver) high speed mode, f(OPRH) 12 Mb/s

Operating (dc differential driver) low speed mode, f(OPRL) 1.5 Mb/s

Common mode, input range, differential receiver, V(ICR) 0.8 2.5 V

Input transition times, tt, TTL/LVCMOS 0 6 ns

5–2

5.3 Electrical Characteristics Over Recommended Ranges of Operating
Free-Air Temperature and Supply Voltage (Unless Otherwise Noted)

PARAMETER TEST CONDITIONS MIN MAX UNIT

TTL/LVCMOS IOH = –4 mA VCC3V – 0.6

VOH High-level output voltage
USB data lines

R(DRV) = 15 kΩ to
GND

2.8
V

USB data lines
IOH = –12 mA (with-
out R(DRV))

VCC – 0.5

TTL/LVCMOS IOL = 4 mA 0.5

VOL Low-level output voltage
USB data lines

R(DRV) = 1.5 k Ω to
3.6 V

0.3
V

USB data lines
IOL = 12 mA (without
R(DRV))

0.5

VIT
Positive input threshold TTL/LVCMOS 2 V

VIT+ voltage Single-ended 0.8 V ≤ VICR ≤ 2.5 V 1.8 V

VIT
Negative-input threshold TTL/LVCMOS 0.8 V

VIT–
g

voltage Single-ended 0.8 V ≤ VICR ≤ 2.5 V 1 V

Vh
Input hysteresis† TTL/LVCMOS 0.25 0.7 V

Vhys
y

(VT+ – VT–) Single-ended 0.8 V ≤ VICR ≤ 2.5 V 300 500 mV

IOZ
High-impedance output TTL/LVCMOS V = VCC or GND‡ ±10 µA

IOZ
g

current USB data lines 0 V ≤ VO ≤ VCC ±10 µA

IOZH

5–V tolerant, 3-state output,
high-impedance state
current

VO = 5.5 V 85 µA

IIL Low-level input current TTL/LVCMOS VI = GND –1 µA

IIH High-level input current TTL/LVCMOS VI = VCC 1 µA

zo(DRV) Driver output impedance USB data lines Static VOH or VOL 7.1 19.9 Ω

VID Differential input voltage USB data lines 0.8 V ≤ VICR ≤ 2.5 V 0.2 V

ICC Input supply current
Normal operation 100 mA

ICC Input supply current
Suspend mode 1 µA

† Applies for input buffers with hysteresis
‡ Applies for open drain buffers

5–3

5.4 Timing Characteristics
5.4.1 Timing Characteristics for USB Transceivers

Full Speed Mode
PARAMETER TEST CONDITIONS MIN MAX UNIT

tr Transition rise time for DP or DM See Figure 5–1 and Figure 5–2 4 20 ns

tf Transition fall time for DP or DM See Figure 5–1 and Figure 5–2 4 20 ns

t(RFM) Rise/fall time matching at crossing point (tr/tf) x 100 90 110 %

VO(CRS) Signal crossover output voltage 1.3 2.0 V

Low Speed Mode
PARAMETER TEST CONDITIONS MIN MAX UNIT

tr Transition rise time for DP or DM
CL = 50 pF to 350 pF,
See Figure 1 and Figure 2

75 300 ns

tf Transition fall time for DP or DM
CL = 50 pF to 350 pF,
See Figure 1 and Figure 2

75 300 ns

t(RFM) Rise/fall time matching at crossing point (tr/tf) x 100 80 120 %

VO(CRS) Signal crossover output voltage CL = 50 pF to 350 pF 1.3 2.0 V

 CL
15 kΩ

15 kΩ
 CL

Full

Low

V(TERM) = 2.8 V

1.5 kΩ

DP

DM

22 Ω

22 Ω

Characterization
Measurement Point

Figure 5–1. Differential Driver Switching Load

5–4

tr(DP)

90%

10%

VOH

VOL

DM

DP

90%

tf(DP)

10%

tf(DM)

90%

10%

VOH

VOL

DM

DP

90%

tr(DM)

10%

(a) DP Rise and Fall Time

(b) DM Fall and Rise Time

NOTE: Figures (a) and (b) represent the same waveform but have been separated for clarity. The tr/tf ratio is measured
as tr(DP)/tf(DM) and tr(DM)/tf(DP) at each crossover point.

Figure 5–2. USB Data Signal Rise and Fall Times

0.5

0
0 1 2

–
D

iff
er

en
tia

l R
ec

ei
ve

r
In

pu
t S

en
si

tiv
ity

 –
 V

1

1.5

3 4

V
ID

VICR – Common Mode Input Range – V
0.8 3.6

0.2

1.3

2.5

Figure 5–3. Differential Receiver Input Sensitivity vs Common Mode Input Range

5–5

Vhys

VIT+

VIT–

VCC

VIH

VIL

0 V

Logic high

Logic low

Figure 5–4. Single-Ended Receiver Input Signal Parameter Definitions

5.4.2 Timing Characteristics for I 2C Interface

PARAMETER
STANDARD

MODE FAST MODE
UNITS

MIN MAX MIN MAX

fSCL Clock frequency, SCL 0 100 0 400 kHz

tw(H) Pulse duration, SCL high 4 0.6 µs

tw(L) Pulse duration, SCL low 4.7 1.3 µs

tr Rise time, SCL and SDA 1000 300 ns

tf Fall time, SCL and SDA 300 300 ns

tsu1 Setup time, SDA to SCL 250 100 ns

th1 Hold time, SCL to SDA 0 0 ns

tbuf Bus free time between stop and start condition 4.7 1.3 µs

tsu2 Setup time, SCL to start condition 4.7 0.6 µs

th2 Hold time, start condition to SCL 4 0.6 µs

tsu3 Setup time, SCL to stop condition 4 0.6 µs

tw(H) tw(L) tr tf

tsu1 th1

SCL

SDA

Figure 5–5. SCL and SDA Timing

tsu2 th2 tsu3 tbuf

SCL

SDA

Start Condition Stop Condition

Figure 5–6. Start and Stop Conditions

5–6

1 2 8 9SCL

SDA IN

SDA OUT

Figure 5–7. Output Acknowledge

A6 A5 A4 A3 A2 A1 A0 R/W ACK * * * A4 A3 A2 A1 A0 ACK D7 D6 D5 D4 D3 D2 D1 D0 ACK

Start
Condition

Stop
Condition

Acknowledge Acknowledge Acknowledge

I2C Device Address and
Read/Write Bit

FIFO or Register Address Data Byte

SDA

* Don’t Care Bits

Figure 5–8. Single Byte Write Transfer

D7 D6 D1 D0 ACK

Stop
Condition

Acknowledge

I2C Device Address and
Read/Write Bit

FIFO or Register Address Last Data Byte

* Don’t Care Bits

A6 A5 A1 A0 R/W ACK * * A1 A0 ACK D7 D6 D1 D0 ACK

Start
Condition Acknowledge Acknowledge Acknowledge

SDA

First Data Byte

A4 A3*

Other
Data Bytes

Figure 5–9. Multiple Byte Write Transfer

5–7

A6 A5 A0 R/W ACK * * * A4 A0 ACK A6 A5 A0 ACK

Start
Condition

Stop
Condition

Acknowledge Acknowledge Acknowledge

I2C Device Address and
Read/Write Bit

FIFO or Register Address Data Byte

SDA

* Don’t Care Bits

D7 D6 D1 D0 ACK

I2C Device Address and
Read/Write Bit

Repeat Start
Condition

Not
Acknowledge

R/WA1 A1

Figure 5–10. Single Byte Read Transfer

A6 A0 ACK

Acknowledge

I2C Device Address and
Read/Write Bit

R/WA6 A0 R/W ACK A4 A0 ACK D7 D0 ACK

Start
Condition

Stop
Condition

Acknowledge Acknowledge Acknowledge

Last Data Byte

SDA

* Don’t Care Bits

D7 D6 D1 D0 ACK

First Data Byte

Repeat Start
Condition

Not
Acknowledge

I2C Device Address and
Read/Write Bit

FIFO or Register Address Other
Data Bytes

* * *

Figure 5–11. Multiple Byte Read Transfer

5.4.3 Timing Characteristics for Remote Wake-Up
PARAMETER TEST CONDITIONS MIN MAX UNITS

tw(H) Pulse duration, WAKEUP high 0.6 10 µs

WAKEUP

tw(H)

Figure 5–12. Remote Wake-Up

5–8

6–1

6 USB Overview Description

A major advantage of USB is the ability to connect 127 functions configured in up to 6 logical layers (tiers)
to a single personal computer (see Figure 6–1).

Figure 6–1. USB Tiered Configuration Example

PC
With Root Hub

Monitor
With 4-Port Hub (Self-Powered)

Keyboard
With 4-Port Hub
(Bus-Powered)

Printer
With 4-Port Hub
(Self-Powered)

Modem Telephone

MouseLeft
Speaker

Right
Speaker

Digital
Scanner

Scanner

Another advantage of USB is that all peripherals are connected using a standardized 4-wire cable which
provides both communication and power distribution. The three power configurations are bus-powered,
self-power and high-power mode. For all three configurations, 100 mA is the maximum current that may be
drawn from the USB 5 V line during power-up. For bus-power mode, a hub can draw a maximum of 500 mA
from the 5 V line of the USB cable. A bus-powered hub must always be connected downstream to a
self-powered hub unless it is the only hub connected to the PC and there are no high-powered functions
connected downstream. In the self-power mode, the hub is connected to its own power supply and can
supply up to 500 mA to each downstream port. High-powered functions may draw a maximum of 500 mA
and may only be connected downstream to self-powered hubs. Per USB Specification, in the bus-powered
mode, each downstream port can provide a maximum of 100 mA of current, and in the self-powered mode,
each downstream port can provide a maximum of 500 mA of current.

Both bus-powered and self-powered hubs require over-current protection for all downstream ports. The two
types of protection are individual port management (individual port basis) or ganged port management
(multiple port basis). Individual port management requires power management devices for each individual
downstream port, but adds robustness to your USB system because, in the event of an over-current
condition, the USB host will only power-down the port that has the condition. The ganged configuration uses
fewer power management devices and thus has lower system costs, but in the event of an over-current
condition on any of the downstream ports, all the ganged ports will be disabled by the USB host.

Using a combination of the BUSPWR and GANGED inputs, the TUSB2140B supports four modes of power
management: Bus-pPowered hub with either individual port power management or ganged port power
management and the self-powered hub with either individual port power management or ganged port power
management. When a local micro-controller is connected to the TUSB2140B, the BUSPWR terminal must
be pulled to 3.3 V, thus only allowing the self-powered mode with either individual-port or ganged-port power
management modes. Texas Instruments supplies complete hub solutions that include this TUSB2140B, the
TUSB2043 (4–port), and the TUSB2073 (7-port) hubs along with the power management chips needed to
implement a fully USB Specification 1.0 compliant system. See Figure 6–4, 6–5 and 6–6 for example
configurations.

6–2

6.1 Application Information
The following sections provide examples of how to connect the TUSB2140B chip for different working
modes. The terminal number assigned for Figures 6–2, 6–4, 6–5 and 6–6 are for the TUSB2140BN DIP
package. Figure 6–2 shows a typical application for the I2C pin-out portion of the TUSB2140B. Depending
on the clock rate needed for the MCU, the specific pin configuration for CLKSEL0 and CLKSEL1 is listed
on Table 4–2.

The 2140B requires a 48-MHz clock signal for correct operation. Figures 6–3 and 6–4 are two examples
of how to generate the required 48-MHz signal.

Figures 6–4, 6–5 and 6–6 show typical applications for the hub pin-out portion of the TUSB2140B.

‡ Depending on the application, connect as shown in Figures 6–4, 6–5, or 6–6.
NOTE: The CLKSEL1 and CLKSEL0 pins are configured for a 4.0 MHz output at the

CLKOUT pin (see Table 4.2) Terminal numbers shown are for the N package

2

1

TUSB2140B
I2C Interface

Power Management Chips ‡OVRCUR5

PWRON5

29
6

36XTAL1

GND

5 V
XTAL2

28

39

38

37

CLKOUT

CLKSEL0

CLKSEL1
4

5

VCC 5V
40

35
Any Micro-Controller

Unit (MCU)

SDA

SCL

IRQ

FUNCSUSP

WAKEUP

48–MHz Clock
Signal †

3

1.5 kΩ

3.3 V

5.1 kΩ 5.1 kΩ

† See Figures 6–3 and 6–4.

Figure 6–2. Typical I 2C Interface Connection to a Microcontroller

XTAL1 XTAL2
Ceralock

Resonator

C2C1

NOTES: A. A simple way to achieve the required 48-MHz clock signal is to use a resonator such as the Ceralock
resonator in Figure 6–3. MuRata Electronics, Inc. manufactures a surface mount version, P/N
CSACV48.00MXJ4XXXX–TC20, and two dip versions, P/N CSA48.00MXZ4XXXX and P/N
CST48.00MXW4XXXX. To meet the ±0.25% total frequency tolerance defined by USB specifications,
MuRata will make special sorting available with customers actual PCB, using the TUSB2140B. The above
XXXX in the part number determined with the customers PCB. MuRata will assign a full part number when
sorting is complete. Please contact the local MuRata sales office for assistance.

B. The exact values of the load capacitors C1 and C2 are dependant on the capacitance of the board layout.
Increasing the capacitance decreases the amplitude of the clock signal. If the capacitors are too large, the
amplitude of the clock signal will not be large enough for the successful numeration of the TUSB2140B by
the USB host. Below are the recommended part numbers with the load capacitor values:
CSACV48.00MXJ4XXXX–TC20 (without a built-in load capacitor): C1 = C2 = Open;
CSA48.00MXZ4XXXX (without a built-in load capacitor): C1 = C2 = 5 pF;
CST48.00MXW4XXXX (with built-in load capacitor): C1 = C2 = Open.

Ceralock is a trademark of MuRata Electronics Incorporated.

Figure 6–3. Resonator Clock Circuit

6–3

6.1 Application Information (continued)

Figure 6–4. Crystal Tuning Circuit

Y1

XTAL1

2.2 kΩ

R70

C66
47 pF

C68
1000 pF

XTAL2

L1 5.6 µH C67
12 pF

NOTE A: This application shows a third harmonic 48-MHz crystal, P/N HC-18/U 48-MHz, manufactured by US Crystal,
Inc. Since the first harmonic of most crystals is not 48-MHz, a tuning circuit such as this must be used to tune
the crystal to the required 48-MHz clock signal. When tuning the crystal (Y1) for different board
implementations, the capacitor (C67) and the resistor (R70) are subject to change and the other components
should remain the same.

6–4

6.2 Bus-Powered Hub, Ganged Port Power Management
When used in bus-powered mode, the TUSB2140B supports up to four downstream ports by controlling a
TPS2041 device which is capable of supplying 100 mA of current to each downstream port. Bus-powered
hubs must implement power switching to ensure current demand is held below 100 mA when the hub is
hot-plugged into the system. Utliizing the TPS2041 for ganged power management provides overcurrent
protection for the downstream ports. The SN75240 transient suppressors reduce inrush current and voltage
spikes on the data lines. The OVRCUR signals should be tied together for a ganged operation. operation.

Figure 6–5. TUSB2140B Bus-Powered Hub, Ganged Port Power Management Application

† TPS2041 and SN75240 are Texas Instruments devices. The TPS2041 is a single enable, single out
power distribution switch device. The TPS2042 is its dual version and the TPS2044 is the quad version.

‡ See Figures 6–3 and 6–4.
§ 120 µF per hub is the minimum required per the USB specification, version 1.1. However, TI recommends

a 100 µF low ESR tantulum capacitor per port for immunity to voltage droop.

DP1

DM1

DP2

DM2

DP3

DM3

DP4

PWRON1

PWRON2

PWRON3

PWRON4

OVRCUR1

OVRCUR2

OVRCUR3

OVRCUR4

DM4

DP0

DM0

VCC

XTAL1

XTAL21

OCSOFF

RESET

SN75240†

EN

IN

OC

OUT

D +

D –

 5 V

GND

D +

D –

 5 V

D +

D –

 5 V

D +

D –

 5 V

48-MHz
Clock

Signal‡

Downstream
Ports

TPS2041

A
B

C
D

100 µF§

SN75240†

A
B

C
D

GND

GND

GND

1 µF

100 µF§

100 µF§

100 µF§

5 V

3.3 V

GND

D +

D –

Upstream
Port

3.3 V LDO

SN75240†

A
B

5 V

GND

C
D

4.7 µF
0.1 µF

4.7 µF

GND

Ferrite Beads

Ferrite Beads

Ferrite Beads

Ferrite Beads

BUSPWR

GANGED 3.3 V

TUSB2140B
HUB Portion

System
Power-On Reset

OUT

NOTES: A. Terminal numbers shown are for the N package.

IN

3.3 V

B. LDS is a 5 V to 3.3 V voltage regulator.

3.3 V

1.5 kΩ

15 kΩ

15 kΩ
15 kΩ

15 kΩ
15 kΩ

15 kΩ
15 kΩ

15 kΩ
15 kΩ

6–5

6.3 Self-Powered Hub, Ganged Port Power Management
The TUSB2140B can also be implemented for ganged port power management in a self-powered
configuration. The implementation is very similar to the bus-powered example with the exception that a
self-powered port supplies 500 mA of current to each downstream port. The over-current protection can be
provided by a TPS2044 quad device.

Figure 6–6. TUSB2140B Self-Powered Hub, Ganged Port Power Management Application

† TPS2044 and SN75240 are Texas Instruments devices.
‡ See Figures 6–3 and 6–4.
§ 120 µF per hub is the minimum required per the USB specification, version 1.1. However, TI recommends a 100 µF

low ESR tantulum capacitor per port for immunity to voltage droop.

DP1

DM1

DP2

DM2

GND

XTAL1

XTAL2

OCSOFF

RESET

D +

D –

 5 V

GND

D +

D –

 5 V

Downstream
Ports

TUSB2140B
HUB Portion

DP3

DM3

DP4

DM4

SN75240†

A

B

C

D

100 µF§

GND

100 µF§

DP0

DM0

VCC

5 V

3.3 V

GND

D +

D –

Upstream
Port

3.3 V LDO

SN75240†

A

B
5 V

GND

C

D

4.7 µF0.1 µF

4.7 µF

Ferrite Beads

5-V Board Power
Supply

Ferrite Beads

D +

D –

 5 V

GND

D +

D –

 5 V

GND

100 µF§

Ferrite Beads

SN75240†

A
B

C
D

100 µF§

BUSPWR

GANGED

3.3 V

Ferrite Beads

48-MHz
Clock

Signal‡

System
Power-On Reset

PWRON1

PWRON2

PWRON3

PWRON4

OVRCUR1
OVRCUR2

OVRCUR3

OVRCUR4

TPS2044†

IN1EN1

OUT1

OC1

EN2

EN3

EN4

OC2

OC3

OC4

OUT2

OUT3
OUT4

IN2

3.3 V

15 kΩ

NOTES: A. Terminal numbers shown are for the N package.
B. LDS is a 5 V to 3.3 V voltage regulator.

3.3 V

15 kΩ
15 kΩ

15 kΩ
15 kΩ

15 kΩ
15 kΩ

15 kΩ
15 kΩ

1.5 kΩ

6–6

6.4 Self-Powered Hub, Individual Port Power Management
In a self-powered configuration, the TUSB2140B can be implemented for individual port-power
management when used with the TPS2044 because it is capable of supplying 500 mA of current to each
downstream port and can provide current limiting on a per port basis. When the hub detects a fault on a
downstream port, power is removed from only the port with the fault and the remaining ports continue to
operate normally. Self-powered hubs are required to implement overcurrent protection and report
overcurrent conditions. The SN75240 transient suppressors reduce inrush current and voltage spikes on
the data lines.

Figure 6–7. TUSB2140B Self-Powered Hub, Individual-Port Power Management Application

† TPS2044 and SN75240 are Texas Instruments devices. Two TPS2042 devices
can be substituted for the TPS2044.

‡ See Figures 6–3 and 6–4.
§ 120 µF per hub is the minimum required per the USB specification, version 1.1. However, TI recommends a 100 µF

low ESR tantulum capacitor per port for immunity to voltage droop.

BUSPWR

GANGED

DP1
DM1

DP2
DM2

DP3
DM3

DP4

PWRON1

PWRON2

PWRON3

PWRON4

OVRCUR1

OVRCUR2

OVRCUR3

OVRCUR4

DM4

DP0

DM0

VCC

GND

XTAL1

XTAL2

OCSOFF

RESET

5 V

3.3 V

GND

D +

D –

Upstream
Port

3.3 V LDO

SN75240†

D +
D –

 5 V

GND

D +

D –

 5 V

D +

D –

 5 V

D +
D –

 5 V

3.3 V
Downstream

Ports

5-V Board Power
Supply

TUSB2140B
HUB Portion

A

B

C

D

100 µF§

SN75240†

A

B

C

D

GND

GND

GND

EN4

IN2

TPS2044†

0.1 µF

100 µF§

100 µF§

100 µF§

SN75240†

A

B
5 V

GND

C

D

4.7 µF0.1 µF

4.7 µF

48-MHz
Clock

Signal‡

EN3

EN2

EN1

OC1

OC2

OC3

OC4

OUT4

OUT3

OUT2

OUT1

IN1

System
Power-On Reset

3.3 V

15 kΩ

3.3 V

15 kΩ

3.3 V

15 kΩ

3.3 V

15 kΩ

NOTES: A. Terminal numbers shown are for the N package.
B. LDS is a 5 V to 3.3 V voltage regulator.

3.3 V

15 kΩ
15 kΩ

15 kΩ
15 kΩ

15 kΩ
15 kΩ

15 kΩ
15 kΩ

1.5 kΩ

A–1

Appendix A
Firmware Development

Overview of Firmware
The flowchart for the main structure of the software program is depicted in Figure A-1. Power up causes all
bits in the interrupt register to be set to zeros which then sets the pin IRQ = 1 (no interrupt). After power up,
the embedded function must then be enabled (connected logically) to the hub. Enabling the embedded
function results from enabling endpoint 0. Endpoint 0 is enabled by setting the EP0 TXEN and EP0 RXEN
bits to 1. The interrupt mask register bits then need to be set to 1 in order to allow the corresponding bits
of the interrupt register to assert the IRQ signal. Each bit of the interrupt register corresponds to a different
interrupt that could occur. The interrupt routines are EP0 transmit, EP0 receive, EP1 transmit, function reset,
and function suspend. If any of the five interrupt routines are not desired, the corresponding bit in the
interrupt mask register should remain a 0, thus disabling the interrupt bit from asserting the IRQ signal. If
the interrupt endpoint (endpoint 1) functionality is desired, the endpoint 1 enable bit (EP1EN) should be set.

Now that the proper bits have been set per the above paragraph, the microcontroller will then be in idle state
and ready for an occurrence of an interrupt. Upon an interrupt (IRQ=0), the MCU will read the value stored
in the interrupt register and based on the value, it will execute one of the five interrupt routines. However,
the host controller may decide to initiate a reset or another setup transaction before the current interrupt
routine has been completed. The reset or setup transaction will cause hardware to write 0 to all the bits in
the interrupt register and the IRQ bit will be set to 1. Then, the hardware will set a bit in the interrupt register
that signals the new interrupt conditions.

If an error occurs, the ACK handshake may become corrupted which will cause the device to hang because
the host and function may disagree on whether the transaction was completed successfully. (Please see
the Error Handling on the Last Data Transaction section of the USB Specification for further explanation of
error handling by the USB host.) In order to deal with errors, the software must implement a timeout timer
which is used to tell the micro-controller when to check the STSGE bit of the EP0 TX status register. If the
timer times out, the microcontroller should set the RXFEN bit to 1 in the EP0 RX control register. This will
enable the FIFO to receive the data from the host once again.

A–2

Enable Endpoint 0
Set Interrupt Mask Register Bits

If Endpoint 1 is Needed, Set EP1EN

IRQ = 1 Time Out
Yes

No

STSGE
YesNo

Error
Enable Stall

Enable
RX FIFO

Identify Interrupt By Reading
Interrupt Register

FRST
Function Reset
Service Routine

Yes

EP0RX
EP0 Receive

Service Routine

Yes

No

EP0TX
EP0 Transmit

Service Routine

Yes

No

EP1TX
EP1 Transmit

Service Routine

Yes

No

FSUSP
Clear Function

Suspend Interrupt

Yes

No

No

No

Yes

Figure A–1. Flow Chart for TUSB2140B Firmware

A–3

Endpoint 0 Transmit Service Routine

The flow diagram for the endpoint 0 transmit service routine is shown in Figure A-2. After detecting that the
endpoint 0 transmit interrupt bit (EP0TX) has been set, the MCU should branch to the endpoint 0 transmit
service routine. First, the endpoint 0 transmit status register should be read to determine the source of the
interrupt. If a successful transmit transaction has occurred, the endpoint 0 transmit acknowledge bit (ACK)
will be set. The MCU should clear the interrupt condition by clearing the ACK bit. If the next transaction
should be an in data stage, the MCU should load the endpoint 0 transmit FIFO with the next data packet,
write the new byte count value to the endpoint 0 transmit byte count register, and reset the timeout timer.
However, if the next transaction should be an out status stage, the MCU should set the endpoint 0 receive
FIFO enable bit (RXFEN) to allow the status stage to be successfully acknowledged.

If the EP0TX interrupt resulted from an endpoint 0 transmit FIFO under-run or over-run condition, the
endpoint 0 transmit FIFO under-run (UNDR) or over-run (OVRR) bit will be set, respectively. The under-run
or over-run condition should be cleared by setting the endpoint 0 transmit clear bit (TXCLR).

Check Transmit Status by
Reading TX Status Register

ACK

Stop Timeout
Timer

Next Transaction
Stage For EP0

RETURN

Clear Interrupt by Writing
ACK = 0 in TX Status RegisterUNDR

YesNo

EP0TX = 1

No

Out StatusIn Data

SETUP
EMPT

Load New Data to
Transmit FIFO

Write The Number of Data
Bytes to TX Byte Count

Register Which Also
Enables Transmit FIFO

Reset Timeout Timer
Enable EP0

Receive FIFO

Clear Transmit FIFO
and Interrupt by

Writing TXCLR = 1 in
TX Control Register

NoOVRR
Yes

Error
Stall EP0

No

Yes

Figure A–2. Endpoint 0 Transmit Interrupt Service Routine

A–4

Endpoint 0 Receive Service Routine
The flow diagram for the endpoint 0 receive service routine is shown in Figure A-3. After detecting that the
endpoint 0 receive interrupt bit (EP0RX) has been set, the MCU should branch to the endpoint 0 receive
service routine. First, the endpoint 0 receive status register should be read to determine the source of the
interrupt. If a receive transaction has occurred, the endpoint 0 receive acknowledge bit (ACK) will be set.
In addition, if the transaction was a setup stage transaction, the endpoint 0 receive setup stage transaction
bit (SETUP) will also be set. The MCU should clear the ACK and SETUP bits to clear the interrupt. Note that
the SETUP bit must be cleared to enable reading the endpoint 0 receive FIFO. Next, the endpoint 0 receive
byte count should be read to determine the number of bytes in the FIFO. Then the FIFO data should be read
based on the byte count value.

If a FIFO under-run occurs while reading the FIFO, the endpoint 0 receive FIFO under-run bit (UNDR) will
be set to indicate the condition. To clear an under-run condition, the MCU should set the endpoint 0 receive
clear bit (RXCLR). After successfully reading the data packet from the receive FIFO, the MCU should branch
to either the setup stage, out data stage, or out status stage routine based on the current transaction stage
flags.

In the out data stage routine, the MCU should set the endpoint 0 receive FIFO enable bit (RXFEN) to allow
the next data stage data packet to be received. However, if the last data stage is detected, then the MCU
should write a value of zero to the endpoint 0 transmit byte count register, which will automatically set the
endpoint 0 transmit FIFO enable bit (TXFEN). As a result, the TUSB2140B will acknowledge the next In
status stage transaction from the host.

In the setup stage routine, the MCU should decode the received data to determine the request type. In
addition, the data stage length, direction of data transfer, and direction of status stage should be determined.
The MCU should take the appropriate action for each control transfer based on this information. A control
read for instance, requires the MCU to load data into the endpoint 0 transmit FIFO for each In data stage.
The transmit FIFO can hold a maximum of eight bytes per in data stage transaction. Also, the MCU must
enable the endpoint 0 receive FIFO to allow the control read out status stage to be successfully
acknowledged.

During endpoint 0 receive operations, a receive FIFO over-run condition could occur, which is indicated by
an endpoint 0 receive interrupt being generated and the endpoint 0 receive FIFO over-run bit (OVRR) being
set. The over-run condition can be cleared by setting the endpoint 0 receive clear bit (RXCLR) in the control
register.

Once in the endpoint 0 service routine, if the MCU determines that neither the ACK bit or OVRR bit has been
set, then the MCU should return to the main program. This scenario can occur when a new setup stage
transaction is received while the MCU is branching from the main program to the receive service routine.
When the new setup stage is received, the ACK bit will automatically be cleared.

A–5

Check Receive Status by
Reading Receive Status Register

ACK

Current Transaction Stage

Yes

OVRR
No

No

Setup Stage
Clear Interrupt
and Set Flag

SETUP or STSGE

No

EP0RX = 1

Check Overrun by
Reading RX Flag Register

Yes

Yes
Status Stage

Clear Interrupt
and Set Flag

Data Stage
Clear Interrupt

SETUP = 0
STSGE = 0

Read The Number of Bytes of
Data From RX Byte Count Register

Read Data From RXFIFO

UNDR
Clear RX FIFO by Enabling

RX CLR in RX Control Register

No

Reset Timeout TimerStop Timer Stop Timer

OUT DataOUT Status

SETUP

Decode Command
Next Stage Status Yes

Load TX FIFO
and Write to TX
Byte Count Reg.

Write 0 to
TX Byte

Count Reg.

Enable
RX FIFO

Enable
RX FIFO

Enable
TX FIFO

No-Data
CTL WriteCTL Write

RETURN

STSGE = 1SETUP = 1

CTL Read

Figure A–3. Endpoint 0 Receive Interrupt Service Routine

A–6

Endpoint 1 Transmit Service Routine
The flow diagram for the endpoint 1 transmit service routine is shown in Figure A-4. After detecting the
endpoint 1 transmit interrupt bit (EP1TX) has been set, the MCU should branch to the endpoint 1 transmit
service routine. First, the endpoint 1 transmit status register should be read to determine the source of the
interrupt. If a successful transmit transaction has occurred, the endpoint 1 transmit acknowledge bit (ACK)
will be set. The MCU should clear the interrupt condition by clearing the ACK bit. Next, the MCU should load
the endpoint 1 transmit FIFO with the next data packet and write the new byte count value to the endpoint
1 transmit byte count register. If the EP1TX interrupt resulted from an endpoint 1 transmit FIFO under-run
or over-run condition, the endpoint 1 transmit FIFO under-run (UNDR) or over-run (OVRR) bit will be set,
respectively. The under-run or over-run condition should be cleared by setting the endpoint 1 transmit clear
bit (TXCLR).

Check Transmit Status by
Reading TX Status Register

ACK

RETURN

Clear Interrupt by Writing
ACK = 0 in TX Status RegisterUNDR

YesNo

EP1TX = 1

No

EMPT

Load New Data to
Transmit FIFO

Write The Number of
Data Bytes to TX

Byte Count Register and
Enable Transmit FIFO

Clear Transmit FIFO
and Interrupt by

Writing TXCLR = 1 in
TX Control Register

NoOVRR
Yes

Error
Stall EP1

No Yes

Yes

Figure A–4. Endpoint 1 Transmit Interrupt Service Routine

A–7

Function Reset Service Routine
After detecting the function reset interrupt bit (FRST) has been set, the MCU should branch to the function
reset service routine. As a result of the TUSB2140B device receiving the USB function reset, all control and
status registers will be cleared except the interrupt mask register bits, the endpoint 0 receive enable bit
(RXEN), the endpoint 0 transmit enable bit (TXEN) and the function reset interrupt bit (FRST). To clear the
function reset interrupt, the MCU should write 08h to the interrupt register.

Function Suspend Service Routine
When a global or selective suspend condition is detected by the TUSB2140B device, the function suspend
interrupt bit (FSUSP) will be set. After detecting the FSUSP bit has been set, the MCU should complete the
current routine being processed then write 10h to the interrupt register in order to clear the function suspend
interrupt. As a result of the FSUSP bit being cleared by the MCU, the TUSB2140B device will enter the
low-power suspend mode and will disable the device clocks.

A–8

B–1

Appendix B
Firmware Example

const BYTE DeviceDescriptor[SIZEOF_DEVICE_DESCRIPTOR] =
{

SIZEOF_DEVICE_DESCRIPTOR, /*bLength*/
DESC_TYPE_DEVICE, /*bDescriptorType*/
0x00, 0x01, /*bcdUsb*/
USB_MONITOR_CLASS, /*bDeviceClass*/
USB_MONITOR_SUBCLASS, /*bDeviceSubClass*/
USB_MONITOR_PROTOCOL, /*bDeviceProtocol*/
EP0_MAX_PACKET_SIZE, /*bMaxPacketSize0*/
VENDOR_ID_L, VENDOR_ID_H, /*idVendor*/
PRODUCT_ID_L, PRODUCT_ID_H, /*idProduct*/
MINOR_DEVICE_VER, MAJOR_DEVICE_VER, /*bcdDevice*/
0x00, /*iManufacturer*/
0x00, /*iProduct*/
0x00, /*iSerialNumber*/
0x01 /*bNumConfigurations*/

};

#define SIZEOF_CONFIG_DESC_GROUP SIZEOF_CONFIG_DESCRIPTOR +
SIZEOF_INTERFACE_DESCRIPTOR + SIZEOF_HID_DESCRIPTOR + SIZEOF_ENDPOINT_DESCRIPTOR

const BYTE ConfigDescriptorGroup[SIZEOF_CONFIG_DESC_GROUP] =
{

/* Configuration Descriptor*/
SIZEOF_CONFIG_DESCRIPTOR, /*bLength*/
DESC_TYPE_CONFIG, /*bDescriptorType*/
SIZEOF_CONFIG_DESC_GROUP, 0x00, /*wTotalLength*/
0x01, /*bNumInterfaces*/
0x01, /*bConfigurationValue*/
0x00, /*iConfiguration*/
CFG_DESC_ATTR_SELF_POWERED, /*bmAttributes*/
0x00, /*MaxPower*/

/* Interface Descriptor*/
SIZEOF_INTERFACE_DESCRIPTOR, /*bLength*/
DESC_TYPE_INTERFACE, /*bDescriptorType*/
0x00, /*bInterfaceNumber*/
0x00, /*bAlternateSetting*/
0x01, /*bNumEndpoints*/
USB_MONITOR_CLASS, /*bInterfaceClass*/
USB_MONITOR_SUBCLASS, /*bInterfaceSubClass*/
USB_MONITOR_PROTOCOL, /*bInterfaceProtocol*/
0x00, /*iInterface*/

/* HID Descriptor*/
SIZEOF_HID_DESCRIPTOR, /*bLength*/
DESC_TYPE_HID, /*bDescriptorType*/
0x00, 0x01, /*bcdHid*/
0x00, /*bCountryCode*/
0x01, /*bNumDescriptors*/
DESC_TYPE_REPORT, /*bSubDescriptorType*/
SIZEOF_REPORT_DESCRIPTOR, 0x00, /*wSubDescriptorLength*/

/* Endpoint Descriptor*/
SIZEOF_ENDPOINT_DESCRIPTOR, /*bLength*/
DESC_TYPE_ENDPOINT, /*bDescriptorType*/
0x01 | EP_DESC_ADDR_DIR_IN, /*bEndpointAddress*/
EP_DESC_ATTR_TYPE_INT, /*bmAttributes*/
0x08, 0x00, /*wMaxPacketSize*/
0xFF /*bInterval*/

};

#define INT_DESC_OFFSET SIZEOF_CONFIG_DESCRIPTOR
#define HID_DESC_OFFSET INT_DESC_OFFSET + SIZEOF_INTERFACE_DESCRIPTOR
#define ENDP_DESC_OFFSET HID_DESC_OFFSET + SIZEOF_HID_DESCRIPTOR

B–2

/* ––––––––––––––– Global Variables –––––––––––––––*/

DEVICE_REQUEST DeviceRequest; /*Holds last 8 byte device request*/
/* received by endpoint 0*/

BYTE UtilBuf[EP0_MAX_PACKET_SIZE]; /*Holds DataIn/DataOut stage packets*/
/* received or transmitted by endpoint 0*/

BYTE Ep0TxBytesRemaining; /*Holds count of bytes remaining to be*/
/* transmitted by endpoint 0. A value*/
/* of 0 means that a 0 length data packet*/
/* should be transmitted. A value of 0xFF*/
/* means that transfer is complete.*/

BYTE Ep0RxCount; /*Holds number of bytes to be read from EP0 Rx FIFO
*/

BYTE far * Ep0TxBufferPtr; /*Pointer to buffer of bytes remaining*/
/* to be transmitted by endpoint 0*/

BYTE ConfiguredFlag; /*Set to 1 when USB device has been*/
/* configured, set to 0 when unconfigured*/

BYTE RemoteWakeupEnabledFlag; /*Set to 1 when remote wakeup is enable,*/
/* set to 0 when not enabled*/

BYTE Endpoint1StallFlag; /*Set to 1 when endpoint 1 is stalled,*/
/* set to 0 when not stalled*/

BYTE IdleDuration; /*Contains the value sent in the last*/
/* SetIdle command to any ReportId*/

BYTE ActiveProtocol; /*Set to 0 when boot protocol is active,*/
/* set to 1 when report protocol is active*/

/* =================================== Code ===================================*/

void main (void)
/*––*
 | This function initializes the TUSB2140 part and then enters the main |
 | program loop. |
 | |
 | Input: Nothing |
 | |
 | Uses: Nothing |
 | |
 | Output: Nothing |
 | |
 | Modifies: Nothing |
 ––/
{

WORD LoopCount;
BYTE temp;

SetLedState (3, 0); /* Signal start of firmware execution */
UsbDataInitialize(); /* Init global variables */
I2CInitialize(); /* Init CPU / platform I2C modules */
VirtualControlInitialize(); /* Reset and init monitor / DDC */
UsbInitialize(); /* Init TUSB2140 registers */

LoopCount = 0;
while (TRUE)
{

CheckUsbInterrupt();

++LoopCount;
if (((LoopCount > 20000) && (ConfiguredFlag == 0)) ||
 ((LoopCount > 5000) && (ConfiguredFlag == 1)))

{

LoopCount = 0;
SetLedState (3, !GetLedState (3));

}
}

}

B–3

void UsbDataInitialize (void)
/*––*
 | This function initializes global variables to a know state. |
 | |
 | Input: Nothing |
 | |
 | Uses: Nothing |
 | |
 | Output: Nothing |
 | |
 | Modifies: Ep0TxBytesRemaining = Set to 0xFF to indicate no data is pending |
 | on the endpoint 0 transmit FIFO |
 | Ep0TxBufferPtr = Set to NULL |
 | ConfiguredFlag = Set to 0x00 |
 | RemoteWakeupEnabledFlag = Set to 0x00 |
 | Endpoint1StallFlag = Set to 0x00 |
 | IdleDuration = Set to 0x00 |
 | ActiveProtocol = Set to 0x00 |
 ––/
{

/* Clear any bytes remaining to be tranmitted on endpoint 0*/
Ep0TxBytesRemaining = 0xFF;
Ep0TxBufferPtr = NULL;

/* Set device state to unconfigured*/
ConfiguredFlag = 0x00;

/* Set remote wakeup to disabled*/
RemoteWakeupEnabledFlag = 0x00;

/* Set endpoint 1 to not stalled*/
Endpoint1StallFlag = 0x00;

/* Set idle time to infinite*/
IdleDuration = 0x00;

/* Set current protocol to boot*/
ActiveProtocol = 0x00;

}

void UsbInitialize (void)
/*––*
 | This function initializes the TUSB2140 internal registers allowing the |
 | device to be enumerated. Relevant global variables are also cleared. |
 | |
 | Input: Nothing |
 | |
 | Uses: Nothing |
 | |
 | Output: Nothing |
 | |
 | Modifies: Nothing |
 ––/
{

BYTE i;

Delay (2000);
WakeupTusb2140();
Delay (5);

/* Perform register read / write test on the interrupt mask register
 to ensure the I2C connection to the TUSB2140 is working properly */

for (i=0; i<=0x1F; i++)
{

WriteTusb2140Reg (REG_INTERRUPT_MASK, i);
if (ReadTusb2140Reg (REG_INTERRUPT_MASK) != i)
{

SetLedState (5, 1);
while(TRUE);

}
}

B–4

/* Program the 2140A’s hub vendor and product ID registers */
WriteTusb2140Reg (REG_HUB_PRODUCT_ID_L, HUB_PRODUCT_ID_L);
WriteTusb2140Reg (REG_HUB_PRODUCT_ID_H, HUB_PRODUCT_ID_H);
WriteTusb2140Reg (REG_HUB_VENDOR_ID_L, HUB_VENDOR_ID_L);
WriteTusb2140Reg (REG_HUB_VENDOR_ID_H, HUB_VENDOR_ID_H);

/* Disable the EP0 transmit and receive FIFOs*/
ClearTusb2140RegBits (REG_EP0_TX_CONTROL, BIT_EN);
ClearTusb2140RegBits (REG_EP0_RX_CONTROL, BIT_EN);

/* Clear all three FIFOs*/
SetTusb2140RegBits (REG_EP0_TX_CONTROL, BIT_CLR);
SetTusb2140RegBits (REG_EP0_RX_CONTROL, BIT_CLR);
SetTusb2140RegBits (REG_EP1_TX_CONTROL, BIT_CLR);

/* Delay 100ms */
Delay (100);

/* Enable USB interrupts due to USB reset, EP0 Tx, EP0 Rx, and EP1 Tx */
WriteTusb2140Reg (REG_INTERRUPT_MASK, (BIT_FRST |

 BIT_EP1TX |
 BIT_EP0RX |
 BIT_EP0TX));

/* Enable the EP0 transmit and receive FIFOs*/
SetTusb2140RegBits (REG_EP0_TX_CONTROL, BIT_EN);
SetTusb2140RegBits (REG_EP0_RX_CONTROL, BIT_EN);

}

void UsbInterruptHandler (void)
/*––*
 | This function handles an interrupt generated by the TUSB2140 device. There |
 | are five possible interrupt sources: |
 | |
 | 1. Function reset: The device has been reset by a USB bus reset |
 | 2. Function suspend: The device has been suspended by the USB bus |
 | 3. Endpoint 0 receive: A packet has been received by endpoint 0, can be a |
 | Setup or a DataOut transaction |
 | 4. Endpoint 0 transmit: Endpoint 0 has just transmitted a data packet in |
 | response to a DataIn transaction |
 | 5. Endpoint 1 transmit: Endpoint 1 has just transmitted a data packet in |
 | response to a DataIn transaction |
 | |
 | In cases 1 and 2, the interrupt is explicitly cleared in this function. In |
 | cases 3, 4, and 5, the interrupt is cleared by calling lower level routines|
 | that remove the cause of the interrupt. |
 | |
 | Input: Nothing |
 | |
 | Uses: Nothing |
 | |
 | Output: Nothing |
 | |
 | Modifies: Nothing |
 ––/
{

BYTE IntStatus;

/* Get active interrupt condition(s)*/
IntStatus = ReadTusb2140Reg (REG_INTERRUPT);

/* Check for and handle Function Reset interrupt*/
if (IntStatus & BIT_FRST)

{
/* Clear the Function Reset interrupt*/
WriteTusb2140Reg (REG_INTERRUPT, BIT_FRST);

/* Reinitialize global variables*/
UsbDataInitialize();

}

/* Check for and handle Function Suspend interrupt*/
if (IntStatus & BIT_FSUSP)
{

B–5

/* Clear the Function Suspend interrupt to enter low power mode*/
WriteTusb2140Reg (REG_INTERRUPT, BIT_FSUSP);
UsbSuspendHandler();

}

/* Check for and handle Endpoint 0 Receive interrupt*/
if (IntStatus & BIT_EP0RX)
{

Ep0ReceiveHandler();
}

/* Check for and handle Endpoint 0 Transmit interrupt*/
if (IntStatus & BIT_EP0TX)
{

Ep0TransmitHandler();
}

/* Check for and handle Endpoint 1 Transmit interrupt*/
if (IntStatus & BIT_EP1TX)
{

Ep1TransmitHandler();
}

}

void Ep0ReceiveHandler (void)
/*––*
 | This function handles the reception of a packet into the endpoint 0 receive|
 | FIFO. The packet may have caused an Rx FIFO over–run condition, and |
 | in this case the EP0 Rx FIFO is cleared. If a packet was received without |
 | error, it may have come from a Setup, DataOut or Status stage transaction. |
 | This routine takes the appropriate action to clear the condition that |
 | caused the endpoint 0 receive interrupt. |
 | |
 | Input: Nothing |
 | |
 | Uses: Nothing |
 | |
 | Output: Nothing |
 | |
 | Modifies: Nothing |
 ––/
{

BYTE RxStatus;

/* First make sure a data packet was successfully received.*/
RxStatus = ReadTusb2140Reg (REG_EP0_RX_STATUS);
if ((RxStatus & BIT_ACK) == 0)
{

/* Data packet was not received successfully, so check for Rx FIFO*/
/* over–run condition. If an over–run has occurred, then clear the*/
/* Rx FIFO.*/
if (ReadTusb2140Reg(REG_EP0_RX_FIFO_FLAGS) & BIT_OVRR)
{

SetTusb2140RegBits (REG_EP0_RX_CONTROL, BIT_CLR);
}
return;

}

/* A data packet was received successfully, so clear any bytes*/
/* remaining to be tranmitted on endpoint 0.*/
Ep0TxBytesRemaining = 0xFF;
Ep0TxBufferPtr = NULL;

/* Clear the interrupt by clearing the ACK bit. This must*/
/* be done before the Rx FIFO can be read.*/
ClearTusb2140RegBits (REG_EP0_RX_STATUS, BIT_ACK);

/* Next check the number of bytes in the EP0 Rx FIFO. If 0 bytes have*/
/* been recieved, then the transaction is Status stage.*/
Ep0RxCount = ReadTusb2140Reg (REG_EP0_RX_BYTE_COUNT) & BIT_BCNT;
if (Ep0RxCount == 0)
{

/* There is nothing to do for status stage*/
return;

}

B–6

/* Next check if the received data packet was part of a Setup,*/
/* stage transaction.*/
if (Ep0RxCount == SIZEOF_DEVICE_REQUEST)
{

/* The packet was a Setup stage, clear the SETUP bit. This*/
/* must be done before the Rx FIFO can be read.*/
WriteTusb2140Reg (REG_EP0_RX_STATUS, BIT_SETUP);

/* Read the received data into the DeviceRequest buffer.*/
ReadEp0RxFifoIntoBuffer ((BYTE *)&DeviceRequest);

/* If an Rx FIFO under–run occurred, then clear the FIFO and*/
/* exit, otherwise decode the Setup stage data.*/
if (ReadTusb2140Reg(REG_EP0_RX_FIFO_FLAGS) & BIT_UNDR)
{

SetTusb2140RegBits (REG_EP0_RX_CONTROL, BIT_CLR);
return;

}

ProcessSetupTransaction();

/* Enable the EP0 Rx FIFO in order to receive a DataOut or Status*/
/* stage packet.*/
SetTusb2140RegBits (REG_EP0_RX_CONTROL, BIT_FEN);

}
else /* Data packet was a DataOut transaction.*/
{

/* Get number of bytes received in DataOut stage and read the*/
/* received data into the UtilBuf buffer.*/
Ep0RxCount = ReadTusb2140Reg (REG_EP0_RX_BYTE_COUNT) & BIT_BCNT;
ReadEp0RxFifoIntoBuffer (&UtilBuf[0]);

/* If an Rx FIFO under–run occurred, then clear the FIFO and exit.*/
if (ReadTusb2140Reg(REG_EP0_RX_FIFO_FLAGS) & BIT_UNDR)
{

SetTusb2140RegBits (REG_EP0_RX_CONTROL, BIT_CLR);
return;

}

ProcessDataOutTransaction (Ep0RxCount);

/* Enable the EP0 Rx FIFO in order to receive a DataOut or Status*/
/* stage packet.*/
SetTusb2140RegBits (REG_EP0_RX_CONTROL, BIT_FEN);

}
}

void ProcessSetupTransaction (void)
/*––*
 | This function handles a new Setup transaction. The global structure |
 | DeviceRequest contains the new device request data that was just received |
 | by endpoint 0 during a Setup stage transaction. |
 | |
 | Input: Nothing |
 | |
 | Uses: DeviceRequest = Contains data received by endpoint 0 during a |
 | Setup stage transaction |
 | |
 | Output: Nothing |
 | |
 | Modifies: Nothing |
 ––/
{

BYTE TempBuf[2];

TempBuf[0] = 0x00;
TempBuf[1] = 0x00;

switch (DeviceRequest.bmRequestType & USB_REQ_TYPE_MASK)
{

case USB_REQ_TYPE_STANDARD:
switch (DeviceRequest.bRequest)
{

case USB_RQ_GET_STATUS:
switch (DeviceRequest.bmRequestType & USB_REQ_TYPE_RECIP_MASK)

B–7

{
case USB_REQ_TYPE_DEVICE:

/* Return remote wakeup state and always self powered*/
TempBuf[0] = (RemoteWakeupEnabledFlag << 1) | 0x01;
Ep0TxBytesRemaining = 2;
TransmitBufferOnEp0 (&TempBuf[0]);
break;

case USB_REQ_TYPE_INTERFACE:
Ep0TxBytesRemaining = 2;
TransmitBufferOnEp0 (&TempBuf[0]);
break;

case USB_REQ_TYPE_ENDPOINT:
/* Endpoint number is in low byte of wIndex*/
if (DeviceRequest.wIndexL == 0x81)

TempBuf[0] = Endpoint1StallFlag;
Ep0TxBytesRemaining = 2;
TransmitBufferOnEp0 (&TempBuf[0]);
break;

case USB_REQ_TYPE_OTHER:
default:

TransmitNullResponseOnEp0();
break;

}
break;

case USB_RQ_CLEAR_FEATURE:
switch (DeviceRequest.bmRequestType & USB_REQ_TYPE_RECIP_MASK)
{

/* Feature selector is in wValue*/
case USB_REQ_TYPE_DEVICE:

if (DeviceRequest.wValueL == FEATURE_REMOTE_WAKEUP)
RemoteWakeupEnabledFlag = 0x00;

TransmitNullResponseOnEp0();
break;

case USB_REQ_TYPE_INTERFACE:
TransmitNullResponseOnEp0();
break;

case USB_REQ_TYPE_ENDPOINT:
/* Endpoint number is in low byte of wIndex*/
if ((DeviceRequest.wValueL == FEATURE_ENDPOINT_STALL) &&
 (DeviceRequest.wIndexL == 0x81))

Endpoint1StallFlag = 0x00;
TransmitNullResponseOnEp0();
break;

case USB_REQ_TYPE_OTHER:
default:

TransmitNullResponseOnEp0();
break;

}
break;

case USB_RQ_SET_FEATURE:
switch (DeviceRequest.bmRequestType & USB_REQ_TYPE_RECIP_MASK)
{

/* Feature selector is in wValue*/
case USB_REQ_TYPE_DEVICE:

if (DeviceRequest.wValueL == FEATURE_REMOTE_WAKEUP)
RemoteWakeupEnabledFlag = 0x01;

TransmitNullResponseOnEp0();
break;

case USB_REQ_TYPE_INTERFACE:
TransmitNullResponseOnEp0();
break;

case USB_REQ_TYPE_ENDPOINT:
/* Endpoint number is in low byte of wIndex*/
if ((DeviceRequest.wValueL == FEATURE_ENDPOINT_STALL) &&
 (DeviceRequest.wIndexL == 0x81))

Endpoint1StallFlag = 0x01;
TransmitNullResponseOnEp0();
break;

case USB_REQ_TYPE_OTHER:
default:

TransmitNullResponseOnEp0();

B–8

break;
}
break;

case USB_RQ_SET_ADDRESS:
/* The following write will not take effect in hardware */
/* until the handshake phase completes with an ACK. */
WriteTusb2140Reg (REG_FUNCTION_ADDR, DeviceRequest.wValueL);
TransmitNullResponseOnEp0();
break;

case USB_RQ_GET_DESCRIPTOR:
switch (DeviceRequest.wValueH)
{

case DESC_TYPE_DEVICE:
Ep0TxBytesRemaining = SIZEOF_DEVICE_DESCRIPTOR;
TransmitBufferOnEp0 ((BYTE *)&DeviceDescriptor);
break;

case DESC_TYPE_CONFIG:
Ep0TxBytesRemaining = SIZEOF_CONFIG_DESC_GROUP;
TransmitBufferOnEp0 (&ConfigDescriptorGroup[0]);
break;

case DESC_TYPE_STRING:
TransmitNullResponseOnEp0();
break;

case DESC_TYPE_INTERFACE:
Ep0TxBytesRemaining = SIZEOF_INTERFACE_DESCRIPTOR;
TransmitBufferOnEp0

(&ConfigDescriptorGroup[INT_DESC_OFFSET]);
break;

case DESC_TYPE_ENDPOINT:
Ep0TxBytesRemaining = SIZEOF_ENDPOINT_DESCRIPTOR;
TransmitBufferOnEp0

(&ConfigDescriptorGroup[ENDP_DESC_OFFSET]);
break;

case DESC_TYPE_HID:
Ep0TxBytesRemaining = SIZEOF_HID_DESCRIPTOR;
TransmitBufferOnEp0

(&ConfigDescriptorGroup[HID_DESC_OFFSET]);
break;

case DESC_TYPE_REPORT:
Ep0TxBytesRemaining = SIZEOF_REPORT_DESCRIPTOR;
TransmitBufferOnEp0 (&ReportDescriptor[0]);
break;

case DESC_TYPE_DESIGNATOR:
TransmitNullResponseOnEp0();
break;

default:
TransmitNullResponseOnEp0();
break;

}
break;

case USB_RQ_SET_DESCRIPTOR:
TransmitNullResponseOnEp0();
break;

case USB_RQ_GET_CONFIGURATION:
Ep0TxBytesRemaining = 1;
TransmitBufferOnEp0 (&ConfiguredFlag);

break;
case USB_RQ_SET_CONFIGURATION:

ConfiguredFlag = (DeviceRequest.wValueL == 0) ? 0x00 : 0x01;
/* Enable/disable the endpoint 1 TX FIFO based on ConfiguredFlag*/
if (ConfiguredFlag)

SetTusb2140RegBits (REG_EP1_TX_CONTROL, BIT_EN);
else

ClearTusb2140RegBits (REG_EP1_TX_CONTROL, BIT_EN);
TransmitNullResponseOnEp0();
break;

case USB_RQ_GET_INTERFACE:
/* Device suports no alternate interfaces, so always return 0*/
Ep0TxBytesRemaining = 1;
TransmitBufferOnEp0 (&TempBuf[0]);
break;

B–9

case USB_RQ_SET_INTERFACE:
TransmitNullResponseOnEp0();
break;

case USB_RQ_SYNCH_FRAME:
TransmitNullResponseOnEp0();
break;

default:
TransmitNullResponseOnEp0();
break;

 }
break;

case USB_REQ_TYPE_CLASS:
switch (DeviceRequest.bRequest)
{

case HID_RQ_GET_REPORT:
ProcessGetReport ();
break;

case HID_RQ_GET_IDLE:
Ep0TxBytesRemaining = 1;
TransmitBufferOnEp0 (&IdleDuration);

break;
case HID_RQ_GET_PROTOCOL:

Ep0TxBytesRemaining = 1;
TransmitBufferOnEp0 (&ActiveProtocol);

break;
case HID_RQ_SET_REPORT:

/* Nothing to do now, must wait until we get a*/
/* DataOut stage packet.*/
break;

case HID_RQ_SET_IDLE:
IdleDuration = DeviceRequest.wValueH;
TransmitNullResponseOnEp0();
break;

case HID_RQ_SET_PROTOCOL:
ActiveProtocol = DeviceRequest.wValueL;
TransmitNullResponseOnEp0();
break;

default:
TransmitNullResponseOnEp0();
break;

}
break;

case USB_REQ_TYPE_VENDOR:
TransmitNullResponseOnEp0();
break;

default:
TransmitNullResponseOnEp0();
break;

}

}

B–10

C–1

Appendix C
Flow Chart for the Firmware Sample Code

The flow chart in Appendix A describes the generic firmware coding guideline. For reference purpose, the
below flow chart is included to reflect the code structure of the firmware sample code in Appendix B.

Initialize (Firmware Variables, I 2C,
Communication Channel With Monitor)

Initialize (2140 Registers)

Successful No

Yes

Enable Interrupt and Embedded Function

Interrupt (IRQ = 0)

System Idle

Time Out

LED ToggleIdentify Interrupt by Reading 2140 Interrupt Register

No

Yes

Reset

Clear Reset Bit and
Initialize Firmware Variables

Yes

Suspend

No

Yes
Clear Suspend Bit

EP0 Rx

No

Yes EP0 Receive
Service Routine

No

Yes EP0 Transmit
Service Routine

No

Yes EP1 Transmit
Service Routine

Yes

No

EP0 Tx

EP1 Tx

No

Figure C–1. Flow Chart for TUSB2140B Firmware (Sample Code)

C–2

Check Rx Status by Reading 2140 Rx Status Register

Check Overrun by Reading
2140 EP0 RxFIFO Flag Register

ACK
No

Yes

Clear ACK Bit and Bytes Remaining
to Be Transmitted on EP0

Overrun

Clear the Setup Bit of 2140 EP0 Rx Status Register
Read the Received Data Into a Device Request Buffer

EP0 Rx = 1

Check The Bytes of Data by Reading
2140 EP0 RxFIFO Byte Counter Register

Byte Count = 0 (Status Stage) Return Return
Yes

Byte Count = 8 (Status Stage)
Yes

No
Clear EP0 RxFIFO

Yes
No

Return

No

Check Underrun by Reading 2140 EP0 RxFIFO Flag Register

Underrun

Clear EP0 RxFIFO

Yes

No

Return

Get Number of Bytes Received in Data Out Stage
Read the Received Data Into a Buffer

Check underrun by reading 2140 EP0 RxFIFO Flag Register

Underrun

Clear EP0 RxFIFO

Yes

No

Return

Process Data Out Transaction

Enable EP0 RxFIFO

Return

Process Setup Transaction

Figure C–2. Endpoint 0 Receive Interrupt Service Routine

C–3

Check Transmit Status by Reading 2140 Tx Status Register

Check Overrun /Underrun by Reading
2140 EP0 TxFIFO Flag Register

ACK
No

Yes

Clear Interrupt by Clearing the ACK
Bit in 2140 Tx Status Register

Overrun
or

Underrun

EP0 Tx = 1

Check Empty by Reading
2140 EP0 TxFIFO Flag Register

Yes Yes

No

Return

Clear EP0 TxFIFO

Return

EMPT

Fill 2140 EP0 TxFIFO Register
With Next Data Package

Return

No

Figure C–3. Endpoint 0 Transmit Interrupt Service Routine

C–4

D–1

Appendix D
Mechanical Data

N (R-PDIP-T**) PLASTIC DUAL-IN-LINE PACKAGE

24 PIN SHOWN

12

Seating
Plane

0.560 (14,22)
0.520 (13,21)

13

0.610 (15,49)
0.590 (14,99)

524840

0.125 (3,18) MIN

2.390
(60,71)

(62,23)(53,09)

(51,82)
2.040

2.090 2.450 2.650
(67,31)

(65,79)
2.590

0.010 (0,25) NOM

4040053/B 04/95

A

0.060 (1,52) TYP

1

24

322824

1.230
(31,24)

(32,26) (36,83)

(35,81)
1.410

1.4501.270

PINS **
DIM

0.015 (0,38)
0.021 (0,53)

A MIN

A MAX
1.650

(41,91)

(40,89)
1.610

0.020 (0,51) MIN

0.200 (5,08) MAX

0.100 (2,54)

M0.010 (0,25)

0°–15°

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-011
D. Falls within JEDEC MS-015 (32 pin only)

D–2

PGT (S-PQFP-G44) PLASTIC QUAD FLATPACK

0,13 NOM

Gage Plane

0,75

0,25

0,45

0,15
0,05

Seating Plane

4147708/A 01/98

23

0,30

11

SQ

33

1

10,20

8,00 TYP

0,40

34

44

SQ

0,95
1,05

11,85
12,15

1,20 MAX

9,80

22

12

0,10

0,80 M0,20

0°–7°

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MO-136

