

- High Accuracy Temperature Sensor
- 16 bit Resolution
- High Speed, low Response Time
- Low Power Consumption
- I²C Interface
- Small TDFN8 Package

DESCRIPTION

The TSYS02D is a single chip, temperature sensor.

It provides factory calibrated data corresponding to the measured temperature.

The data is provided via **I**²**C** interface.

The temperature range is -40°C ... +125°C while the resolution is 0.01°C.

The TSYS02D can be interfaced to any microcontroller by an I²C interface.

The TDFN8 package provides smallest size and very fast time response.

FEATURES APPLICATIONS

High Accuracy ±0.2°C @ Temp.: -5°C ... +50°C

Adjustment of high accuracy temperature range on request

Low Supply Current < 420μA (standby < 0.14μA)

I²C Interface up to 400kHz

Small IC-Package TDFN8 2.5mm x 2.5mm

Operating Temperature Range: -40°C ... +125°C

Industrial Control Replacement of Precision RTDs, Thermistors and NTCs Heating / Cooling Systems HVAC

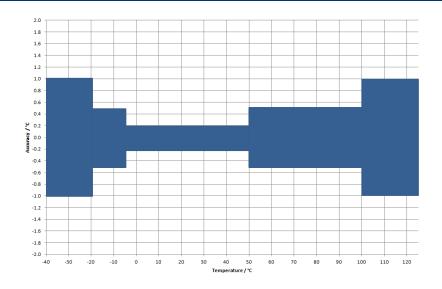
ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are limiting values of permitted operation and should never be exceeded under the worst possible conditions either initially or consequently. If exceeded by even the smallest amount, instantaneous catastrophic failure can occur. And even if the device continues to operate satisfactorily, its life may be considerably shortened.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Supply Voltage	VDD		-0.3		+3.6	V
Operating Temperature	Тор		-40		+125	°C
Storage temperature	Tstor		-55		+150	°C
ESD rating	ESD	Human Body Model (HBM) pin to pin incl. VDD & GND	-2		+2	kV
Humidity	Hum		Non	conder	nsing	

OPERATING CONDITIONS

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Operating Supply Voltage	V_{DD}	stabilized	1.5		3.6	V
Supply Current	I _{DD}	1 sample per second		18		μA
Standby current	IS	No conversion, VDD = 3V T = 25°C T = 85°C		0.02 0.70	0.14 1.40	μΑ μΑ
Peak Supply Current	I _{DD}	During conversion		420		μΑ
Conversion time	T _{CONV}			43		ms
Serial Data Clock I ² C	F _{SCL}				400	kHz
VDD Capacitor		Place close to the chip	100nF			


OPERATIONAL CHARACTERISTICS

If not otherwise noted, 3.3V supply voltage is applied.

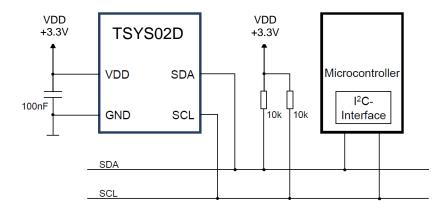
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Temp. Measurement Range	T _{RANG}		-40		125	°C
Accuracy 1	T _{ACC1}	-5° C < T < $+50^{\circ}$ C V _{DD} = 3.2V - 3.4V	-0.2		+0.2	ů
Accuracy 2	T _{ACC2}	-20°C < T < $+100$ °C V _{DD} = 3.2 V -3.4 V	-0.5		+0.5	°C
Accuracy 3	T _{ACC2}	-40°C < T < $+125$ °C V _{DD} = 3.2V -3.4 V	-1.0		+1.0	°C
PSRR Power Supply Reject Ratio		$V_{DD} = 2.7 - 3.6$ T = 25°C, C = 100nF			0.1	°C
Temperature Resolution	T _{RES}				0.01	°C
Self Heating	SH₁	10 samples/s, 60s, still air			0.1	°C

ACCURACY

ANALOGUE TO DIGITAL CONVERTER

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Resolution				16		bit
Conversion Time	t _c			43		ms

DIGITAL INPUTS (SCLK, SDA)


Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Input High Voltage	V_{IH}	$V_{DD} = 1.53.6V$	$0.7~V_{DD}$		V_{DD}	V
Input Low Voltage	V_{IL}	$V_{DD} = 1.53.6V$	$0.0~V_{DD}$		$0.3 V_{DD}$	V
Input leakage Current	I _{leak_25} I _{leak_85}	T = 25°C T = 85°C		0.01 0.25	0.14 1.40	μA
Input Capacitance	C _{IN}				6	pF

DIGITAL OUTPUTS (SDA)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output High Voltage	V _{OH}	I _{Source} = 1mA	$0.8 V_{DD}$		V_{DD}	V
Output Low Voltage	V_{OL}	$I_{Sink} = 1mA$	$0.0~V_{DD}$		$0.2~V_{DD}$	V

CONNECTION DIAGRAM

PIN FUNCTION TABLE

Pin	Name	Туре	Function
1	VDD	Power	Supply Voltage
2	SCL	Digital Input	I ² C: Serial Data Clock
3	SDA	Digital Input/Output	I ² C Data Input / Output
4	VSS	Power	Ground
5 – 8	NC		Not connected / Do not connect

INTERFACE DESCRIPTION

I²C INTERFACE

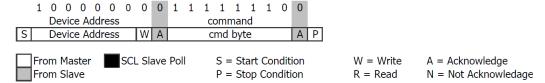
An I²C communication message starts with a start condition and it is ended by a stop condition. Each command consists of two bytes: the address byte and command byte.

I²C ADDRESS

The I²C address is 0b1000000x.

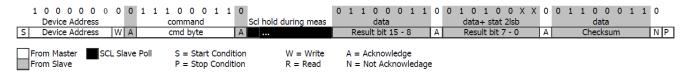
COMMANDS

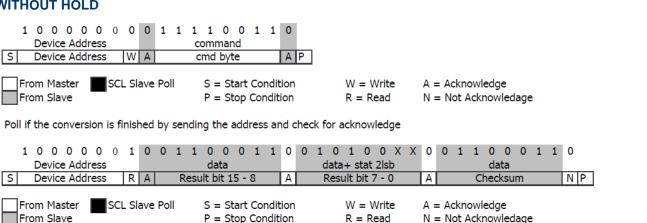
There are four commands:


- Reset
- Read PROM (serial number)
- Read ADC16 Temperature Data (with SCL hold)
- Read ADC16 Temperature Data (without SCL hold)

Command	Hex Value
Reset	0x7E
Read ADC16 Temperature Data (with SCL hold)	0x E3
Read ADC16 Temperature Data (without SCL hold)	0x F3
Read first 8 bytes of Serial Number	0x FA0F
Read last 6 bytes of Serial Number	0x FCC9

RESET SEQUENCE


The reset of TSYS02D can be sent at any time. When SDA line is blocked by an undefined state the only way to get the TSYS02D to work is to send a power on reset or several SCL cycles. This is not needed when the last command was not a conversion.


CONVERSION AND ADC READ

A conversion can be started by sending this command to TSYS02D. When the command is sent to the sensor it stays busy until conversion is done. All other commands except the reset command will not be executed during this time. When conversion is finished the data can be accessed by sending a Read command. If an acknowledge appears from the TSYS02D, you may then send 24 SCLK cycles to get all result bits. Every 9th bit the system waits for acknowledge. If the acknowledge is not sent the data clocking out of the chip stops. Two types of conversion commands for temperature reading are possible. If the "hold" command is issued, the SCL is held low during conversion, indicating when the conversion is finished. If the "no hold" is issued, the SCL line is not controlled by the TSYS02D.

WITH HOLD

WITHOUT HOLD

READ SERIAL NUMBER FIRST 8 BYTES

READ SERIAL NUMBER LAST 6 BYTES

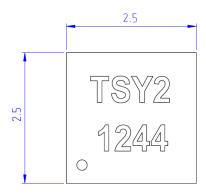
TEMPERATURE CALCULATION

TEMPERATURE POLYNOMAL

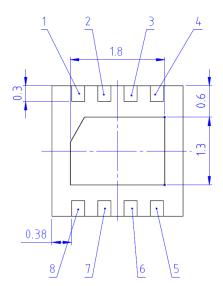
ADC16: ADC Result 16 bits

T / °C = ADC16 / $2^{16} \times 175.72 - 46.85$

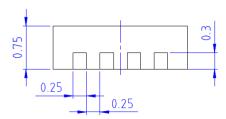
EXAMPLE


ADC16: 36636T / °C = 36636 / 2^{16} x 175.72 - 46.85

T / °C = 51.38 °C



DIMENSIONS


TOP VIEW

BOTTOM VIEW

SIDE VIEW

MARKING

Line	Description	Example
1	Product Name	TSY2
2	Pin 1 Dot, Date Code YYWW	1244

ORDER INFORMATION

The TSYS02 temperature sensor family compromises currently three different solutions.

Further customer specific adaptations are available on request.

Please refer to the table below for part name, description and order information.

Part Name	Description	Order Number
TSYS02D	Digital Temperature Sensor, TDFN8, I2C Interface	G-NIMO-003
TSYS02P	Digital Temperature Sensor, TDFN8, PWM Interface	G-NIMO-004
TSYS02S	Digital Temperature Sensor, TDFN8, SDM Interface	G-NIMO-005

EMC

Due to the use of these modules for OEM application no CE declaration is done. Especially line coupled disturbances like surge, burst, HF etc. cannot be removed by the module due to the small board area and low price feature. There is no protection circuit against reverse polarity or over voltage implemented. The module will be designed using capacitors for blocking and ground plane areas in order to prevent wireless coupled disturbances as good as possible.

DEFINITIONS AND DISCLAIMERS

- Application information Applications that are described herein for any of these products are for illustrative purpose only. MEAS Deutschland GmbH makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
- Life support applications These products are not designed for use in life support appliances, devices, or systems where malfunctions of these products can reasonably be expected to result in personal injury. MEAS Deutschland GmbH customers using or selling this product for use in such applications do so at their own risk and agree to fully indemnify MEAS Deutschland GmbH for any damages resulting from such improper use or sale.

TECHNICAL CONTACT INFORMATION

NORTH AMERICA EUROPE ASIA

Measurement Specialties, Inc. 910 Turnpike Road Shrewsbury, MA 01545 Tel: 1-508-842-0516

Fax: 1-508-842-0342

Sales email: temperature.sales.amer@measspec.com MEAS Deutschland GmbH Hauert 13 44277 Dortmund Tel: +49 (0) 231/9740-0 Fax: +49 (0) 231/9740-20

Sales email: info.de@meas-spec.com

Measurement Specialties (China) Ltd. No. 26 Langshan Road Shenzhen High-Tech Park (North) Nanshan District, Shenzhen 518057, China

Tel: +86 (0) 755 33305088 Fax: +86 (0) 755 33305099

Sales email:

temperature.sales.asia@meas-spec.com

The information in this sheet has been carefully reviewed and is believed to be accurate; however, no responsibility is assumed for inaccuracies. Furthermore, this information does not convey to the purchaser of such devices any license under the patent rights to the manufacturer. Measurement Specialties, Inc. reserves the right to make changes without further notice to any product herein. Measurement Specialties, Inc. makes no warranty, representation or guarantee regarding the suitability of its product for any particular purpose, nor does Measurement Specialties, Inc. assume any liability arising out of the application or use of any product or circuit and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Typical parameters can and do vary in different applications. All operating parameters must be validated for each customer application by customer's technical experts. Measurement Specialties, Inc. does not convey any license under its patent rights nor the rights of others.