

CPC1333 Single-Pole Normally Closed OptoMOS® Relay

Parameters	Ratings	Units
Peak Blocking Voltage	350	V_P
Load Current	130	mA _{rms} / mA _{DC}
On-Resistance (max)	30	Ω
Isolation Voltage, Input to Output	5000	V _{rms}

Features

- $5000V_{rms}$ Input/Output Isolation
- 350V_P Blocking Voltage
- Low Drive Power Requirements
- · Arc-Free With No Snubbing Circuits
- No EMI/RFI Generation
- Small 4-Pin Package

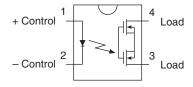
Applications

- · Telephony Switching
- Instrumentation
 - Multiplexers
 - Data Acquisition
 - · Electronic Switching
 - I/O Subsystems
- · Meters (Watt-Hour, Water, Gas)
- · Medical Equipment—Patient/Equipment Isolation
- Security
- Aerospace
- Industrial Controls

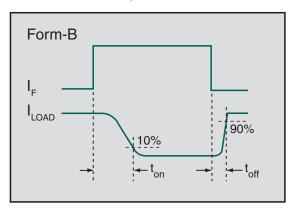
Description

The CPC1333G is a single-pole, normally closed (1-Form-B) Solid State Relay with an enhanced input to output isolation barrier of $5000V_{\rm rms}$.

The relay output is constructed with efficient MOSFET switches that use IXYS Integrated Circuits Division's patented OptoMOS architecture. The input, a highly efficient infrared LED, controls the optically coupled output.


Approvals

- UL Recognized Component: File E76270
- EN/IEC 60950-1 Certified Component: TUV Certificate B 13 12 82667 003


Ordering Information

Part Number	Description
CPC1333G	4-Pin DIP (100/Tube)
CPC1333GR	4-Pin Surface Mount (100/Tube)
CPC1333GRTR	4-Pin Surface Mount (1000/Reel)

Pin Configuration

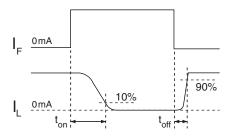
Switching Characteristics of Normally Closed Devices

Absolute Maximum Ratings @ 25°C

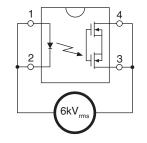
Parameter	Ratings	Units
Peak Blocking Voltage	350	V_P
Reverse Input Voltage	5	V
Input Control Current	50	mA
Peak (10ms)	1	Α
Input Power Dissipation ¹	100	mW
Total Package Dissipation ²	550	mW
Isolation Voltage, Input to Output	5000	V _{rms}
ESD Rating, Human Body Model	8	kV
Operational Temperature	-40 to +85	°C
Storage Temperature	-40 to +125	°C

¹ Derate linearly 1.33mW / °C

Absolute Maximum Ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at conditions beyond those indicated in the operational sections of this data sheet is not implied.


Typical values are characteristic of the device at +25°C, and are the result of engineering evaluations. They are provided for information purposes only, and are not part of the manufacturing testing requirements.

Electrical Characteristics @ 25°C

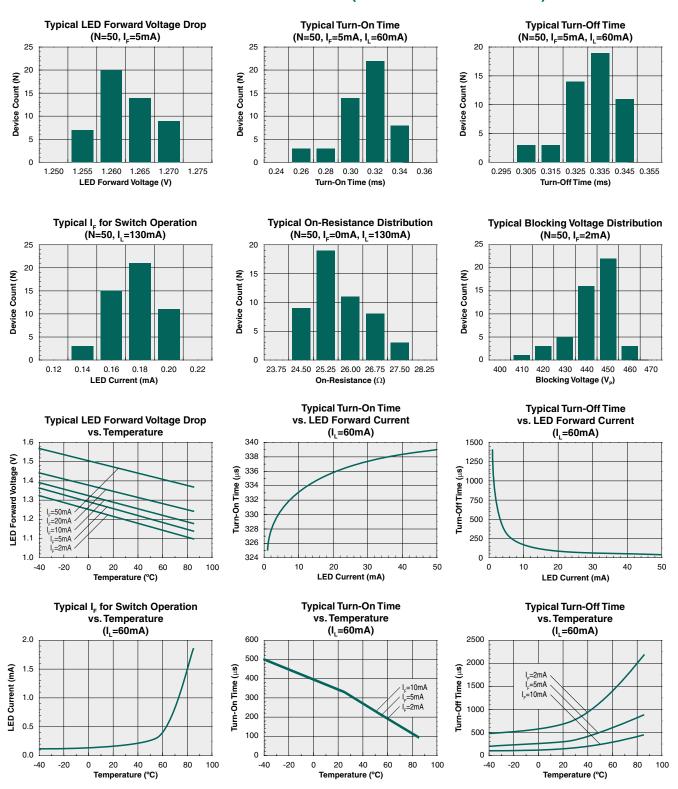

Parameters	Conditions	Symbol	Min	Тур	Max	Units
Output Characteristics						
Load Current						
Continuous	-	IL	-	-	130	mA_{rms} / mA_{DC}
Peak	t=10ms	I _{LPK}	-	-	±350	mA _P
On-Resistance ¹	I _L =130mA	R _{ON}	-	25	30	Ω
Off-State Leakage Current	I _F =2mA, V _L =350V	I _{LEAK}	-	-	1	μА
Switching Speeds						
Turn-On	$I_{\rm F}=5$ mA, $V_{\rm I}=10$ V	t _{on}	-	-	2	- ms
Turn-Off	I _F =SITIA, V _L =10V	t _{off}	-	-	3	1115
Output Capacitance	I _F =2mA, V _L =50V, f=1MHz	C _{OUT}	-	6	-	pF
Input Characteristics	·				•	
Input Control Current to Activate ²	-	I _F	-	0.18	2	mA
Input Control Current to Deactivate	I _L =130mA	I _F	0.1	-	-	mA
Input Voltage Drop	I _F =5mA	V_{F}	0.9	1.26	1.4	V
Reverse Input Current	V _R =5V	I _R	-	-	10	μА
Common Characteristics					•	
Capacitance, Input to Output	V _{IO} =0V, f=1MHz	C _{I/O}	-	3	-	pF

¹ Measurement taken within one second of on-time.

Timing Diagram

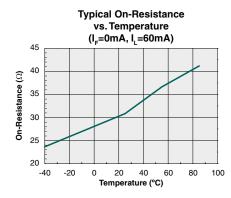
CPC1333G Isolation Test Circuit

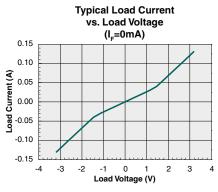
Test Conditions:

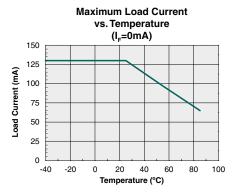

 $\begin{array}{lll} \mbox{Voltage Ramp:} & 2\mbox{V}_{\mu s} \\ \mbox{Test Time:} & 2\mbox{ Seconds} \\ \mbox{I}_{LEAK} \mbox{Threshold:} & 50\mbox{μA} \\ \mbox{Test Voltage:} & 6\mbox{kV}_{rms} \\ \end{array}$

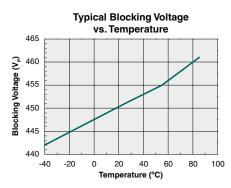
Derate linearly 3mW / °C

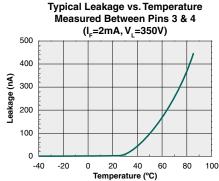
² For high temperature operation (> 60°C), IXYS Integrated Circuits Division recommends a minimum LED drive current of 5mA.

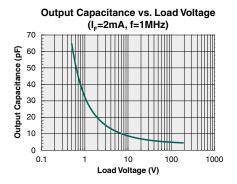

PERFORMANCE DATA @25°C (Unless Otherwise Noted)*

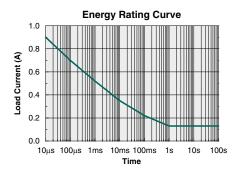



^{*} The Performance data shown in the graphs above is typical of device performance. For guaranteed parameters not indicated in the written specifications, please contact our application department.




PERFORMANCE DATA @25°C (Unless Otherwise Noted)*





^{*} The Performance data shown in the graphs above is typical of device performance. For guaranteed parameters not indicated in the written specifications, please contact our application department.

Manufacturing Information

Moisture Sensitivity

All plastic encapsulated semiconductor packages are susceptible to moisture ingression. IXYS Integrated Circuits Division classified all of its plastic encapsulated devices for moisture sensitivity according to the latest version of the joint industry standard, IPC/JEDEC J-STD-020, in force at the time of product evaluation. We test all of our products to the maximum conditions set forth in the standard, and guarantee proper operation of our devices when handled according to the limitations and information in that standard as well as to any limitations set forth in the information or standards referenced below.

Failure to adhere to the warnings or limitations as established by the listed specifications could result in reduced product performance, reduction of operable life, and/or reduction of overall reliability.

This product carries a **Moisture Sensitivity Level (MSL) rating** as shown below, and should be handled according to the requirements of the latest version of the joint industry standard **IPC/JEDEC J-STD-033**.

Device	Moisture Sensitivity Level (MSL) Rating	
CPC1333G	MSL 1	
CPC1333GR	MSL 3	

ESD Sensitivity

This product is ESD Sensitive, and should be handled according to the industry standard JESD-625.

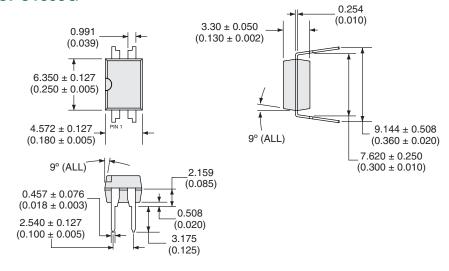
Soldering Profile

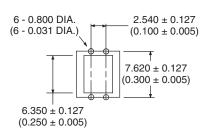
Provided in the table below is the Classification Temperature (T_C) of this product and the maximum dwell time the body temperature of this device may be above (T_C - 5)°C. The classification temperature sets the Maximum Body Temperature allowed for this device during lead-free reflow processes. Additionally, for the CPC1333GR, the solder reflow profile given in Technical Brief TB-200 "Pb-Free Solder Reflow Profile for Select Devices" must be followed. For the through-hole device, CPC1333G, and any other processes, the guidelines of J-STD-020 must be observed.

Device	Maximum Body Temperature (T _c)	Time
CPC1333GR	250°C	15 seconds

Board Wash

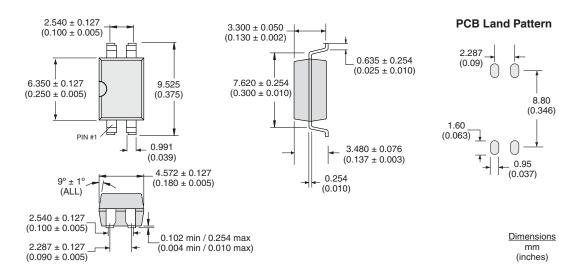
IXYS Integrated Circuits Division recommends the use of no-clean flux formulations. Board washing to reduce or remove flux residue following the solder reflow process is acceptable provided proper precautions are taken to prevent damage to the device. These precautions include, but are not limited to: using a low pressure wash and providing a follow-up bake cycle sufficient to remove any moisture trapped within the device due to the washing process. Due to the variability of the wash parameters used to clean the board, determination of the bake temperature and duration necessary to remove the moisture trapped within the package is the responsibility of the user (assembler). Cleaning or drying methods that employ ultrasonic energy may damage the device, and should not be used. Additionally, the device must not be exposed to flux or solvents that are Chlorine- or Fluorine-based.



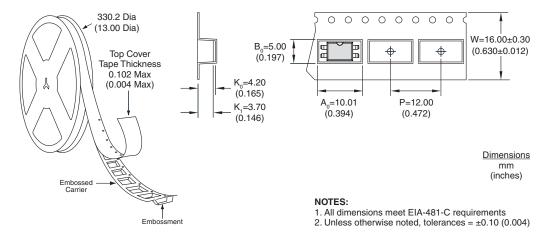


Mechanical Dimensions

CPC1333G



PC Board Pattern (Top View)


Dimensions mm (inches)

CPC1333GR

CPC1333GRTR Tape & Reel

For additional information please visit our website at: www.ixysic.com

IXYS Integrated Circuits Division makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. Neither circuit patent licenses nor indemnity are expressed or implied. Except as set forth in IXYS Integrated Circuits Division's Standard Terms and Conditions of Sale, IXYS Integrated Circuits Division assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.

The products described in this document are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or where malfunction of IXYS Integrated Circuits Division's product may result in direct physical harm, injury, or death to a person or severe property or environmental damage. IXYS Integrated Circuits Division reserves the right to discontinue or make changes to its products at any time without notice.