

Analog Devices Welcomes Hittite Microwave Corporation

NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

HMC407* Product Page Quick Links

Last Content Update: 11/01/2016

Comparable Parts

View a parametric search of comparable parts

Evaluation Kits <a> □

• HMC407MS8G Evaluation Board

Documentation <a>□

Application Notes

- AN-1363: Meeting Biasing Requirements of Externally Biased RF/Microwave Amplifiers with Active Bias Controllers
- Broadband Biasing of Amplifiers General Application Note
- MMIC Amplifier Biasing Procedure Application Note
- Thermal Management for Surface Mount Components General Application Note

Data Sheet

• HMC407 Data Sheet

Tools and Simulations

• HMC407 S-Parameter

Reference Materials

Quality Documentation

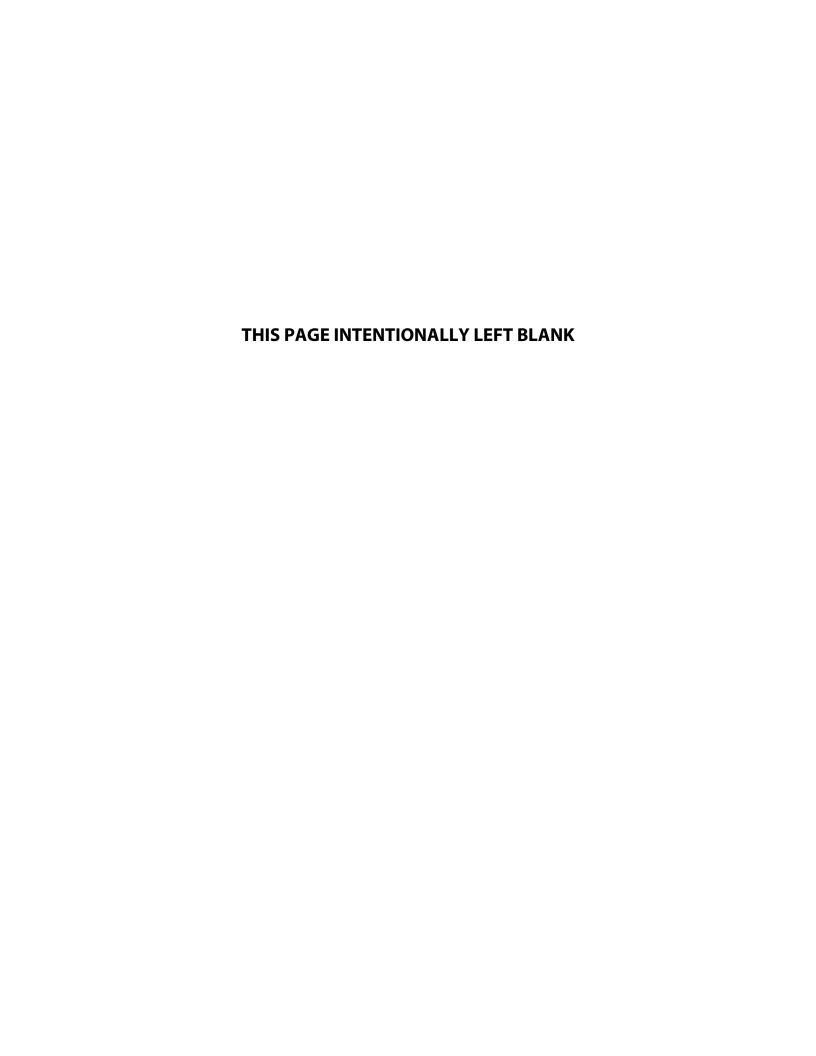
- HMC Legacy PCN: MS##, MS##E and MS##G,MS##GE packages - Relocation of pre-existing production equipment to new building
- Package/Assembly Qualification Test Report: MS8G (QTR: 2014-00393)
- PCN: MS, QS, SOT, SOIC packages Sn/Pb plating vendor change
- Semiconductor Qualification Test Report: GaAs HBT-B (QTR: 2013-00229)

Design Resources -

- HMC407 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- · Symbols and Footprints

Discussions <a>□

View all HMC407 EngineerZone Discussions


Sample and Buy 🖳

Visit the product page to see pricing options

Technical Support <a>

Submit a technical question or find your regional support number

^{*} This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet. Note: Dynamic changes to the content on this page does not constitute a change to the revision number of the product data sheet. This content may be frequently modified.

HMC407MS8G / 407MS8GE

GaAs InGaP HBT MMIC POWER AMPLIFIER, 5 - 7 GHz

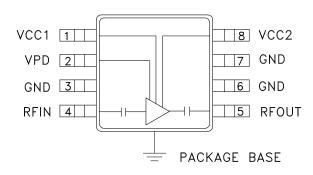
Typical Applications

This amplifier is ideal for use as a power amplifier for 5 - 7 GHz applications:

- UNII
- HiperLAN

Features

Gain: 15 dB


Saturated Power: +29 dBm

28% PAE

Supply Voltage: +5V
Power Down Capability

No External Matching Required

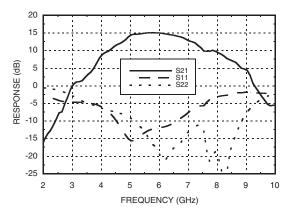
Functional Diagram

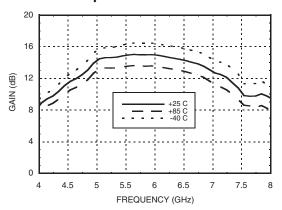
General Description

The HMC407MS8G & HMC407MS8GE are high efficiency GaAs InGaP Heterojunction Bipolar Transistor (HBT) MMIC Power amplifiers which operate between 5 and 7 GHz. The amplifier requires no external matching to achieve operation and is thus truly 50 Ohm matched at input and output. The amplifier is packaged in a low cost, surface mount 8 leaded package with an exposed base for improved RF and thermal performance. The amplifier provides 15 dB of gain, +29 dBm of saturated power at 28% PAE from a +5V supply voltage. Power down capability is available to conserve current consumption when the amplifier is not in use.

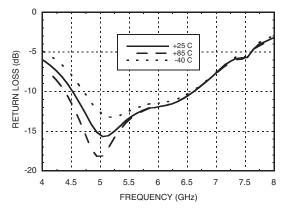
Electrical Specifications, $T_A = +25^{\circ}$ C, Vs = 5V, Vpd = 5V

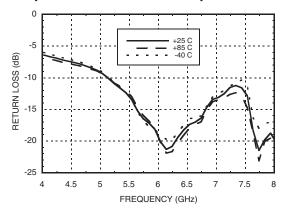
Parameter		Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range			5 - 7 5.6 - 6.0			GHz		
Gain		10	15	18	12	15	18	dB
Gain Variation Over Temperature			0.025	0.035		0.025	0.035	dB/ °C
Input Return Loss			12			12		dB
Output Return Loss			15			15		dB
Output Power for 1 dB Compression (P1dB)		21	25		22	25		dBm
Saturated Output Power (Psat)			29			29		dBm
Output Third Order Intercept (IP3)		32	37		36	40		dBm
Noise Figure			5.5			5.5		dB
Supply Current (Icq) Vp	od = 0V/5V		0.002 / 230			0.002 / 230		mA
Control Current (Ipd)	Vpd = 5V	·	7			7		mA
Switching Speed t	tON, tOFF	·	30			30		ns

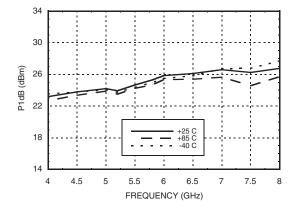


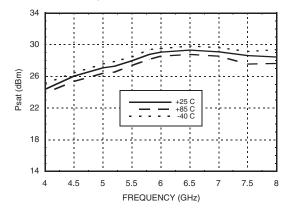


GaAs InGaP HBT MMIC **POWER AMPLIFIER, 5 - 7 GHz**


Broadband Gain & Return Loss

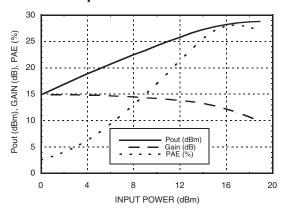

Gain vs. Temperature


Input Return Loss vs. Temperature

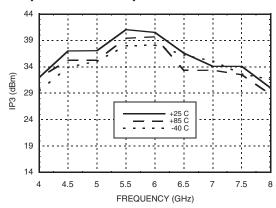

Output Return Loss vs. Temperature

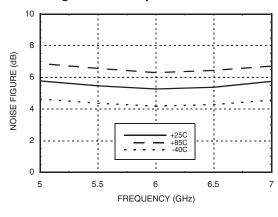
P1dB vs. Temperature

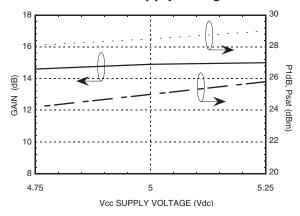
Psat vs. Temperature

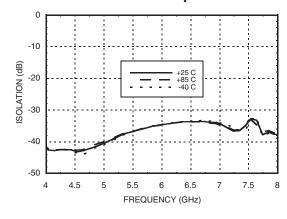


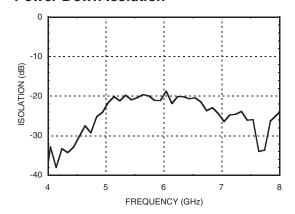
HMC407MS8G / 407MS8GE


GaAs InGaP HBT MMIC POWER AMPLIFIER, 5 - 7 GHz


Power Compression @ 5.8 GHz

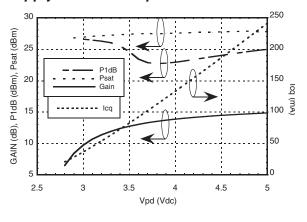

Output IP3 vs. Temperature


Noise Figure vs. Temperature


Gain & Power vs. Supply Voltage

Reverse Isolation vs. Temperature

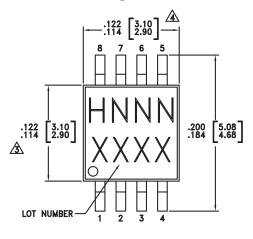
Power Down Isolation

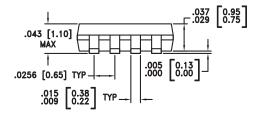

MICROWAVE CORPORATION

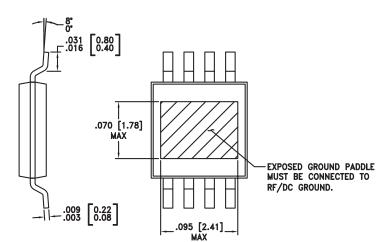
HMC407MS8G / 407MS8GE

GaAs InGaP HBT MMIC POWER AMPLIFIER, 5 - 7 GHz

Gain, Power & Quiescent Supply Current vs. Vpd @ 5.8 GHz


Absolute Maximum Ratings


Collector Bias Voltage (Vcc1, Vcc2)	+5.5 Vdc	
Control Voltage (Vpd)	+5.5 Vdc	
RF Input Power (RFIN)(Vs = Vpd = +5Vdc)	+20 dBm	
Junction Temperature	150 °C	
Continuous Pdiss (T = 85 °C) (derate 31 mW/°C above 85 °C)	2 W	
Thermal Resistance (junction to ground paddle)	32 °C/W	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-40 to +85 °C	



ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

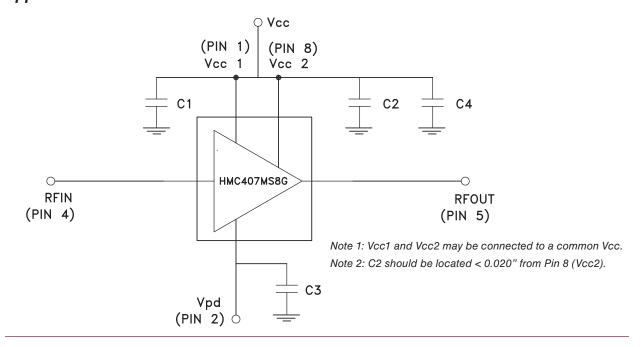
NOTES:

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
- 5. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC407MS8G	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H407 XXXX
HMC407MS8GE	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	H407 XXXX

- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 °C
- [3] 4-Digit lot number XXXX

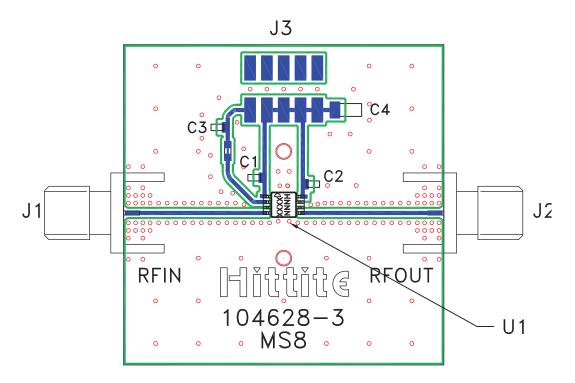


GaAs InGaP HBT MMIC POWER AMPLIFIER, 5 - 7 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic	
1	Vcc1	Power supply voltage for the first amplifier stage. An external bypass capacitor of 330 pF is required as shown in the application schematic.	ovcc1	
2	Vpd	Power control pin. For maximum power, this pin should be connected to 5V. A higher voltage is not recommended. For lower die current, this voltage can be reduced.	OVPD	
3, 6, 7	GND	Ground: Backside of package has exposed metal ground slug that must be connected to ground thru a short path. Vias under the device are required.	○ GND =	
4	RFIN	This pin is AC coupled and matched to 50 Ohms.	RFIN ○── ├──	
5	RFOUT	This pin is AC coupled and matched to 50 Ohms.	— —○ RFOUT	
8	Vcc2	Power supply voltage for the output amplifier stage. An external bypass capacitor of 330 pF is required. This capacitor should be placed no more than 20 mils form package lead.		

Application Circuit



v02 1006

GaAs InGaP HBT MMIC POWER AMPLIFIER, 5 - 7 GHz

Evaluation PCB

List of Materials for Evaluation PCB 104987 [1]

Item	Description
J1 - J2	PCB Mount SMA RF Connector
J3	2 mm DC Header
C1 - C3	330 pF Capacitor, 0603 Pkg.
C4	2.2 μF Capacitor, Tantalum
U1	HMC407MS8G / HMC407MS8GE Amplifier
PCB [2]	104628 Eval Board

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Roger 4350

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.