ATC 100 B Series Porcelain Superchip® Multilayer Capacitors

- Case B Size (.110" x .110")
- Capacitance Range 0.1 pF to 1000 pF
- High Q
- Low ESR/ESL
- Ultra-Stable Performance
 High Self-Resonance
- Low Noise
- Established Reliability (QPL)
- Extended WVDC up to 1500 VDC

ATC, the industry leader, offers new improved ESR/ESL performance for the 100 B Series RF/Microwave Capacitors. This Series is now available with extended operating temperatures up to 175°C. High Density porcelain construction provides a rugged, hermetic package.

Typical functional applications: Bypass, Coupling, Tuning, Feedback, Impedance Matching and DC Blocking.

Typical circuit applications: UHF/Microwave RF Power Amplifiers, Mixers, Oscillators, Low Noise Amplifiers, Filter Networks, Timing Circuits and Delay Lines.

ENVIRONMENTAL TESTS

ATC 100 B Series Capacitors are designed and manufactured to meet and exceed the requirements of EIA-198, MIL-PRF-55681 and MIL-PRF-123.

THERMAL SHOCK: MIL-STD-202, Method 107, Condition A.

MOISTURE RESISTANCE: MIL-STD-202, Method 106.

LOW VOLTAGE HUMIDITY:

MIL-STD-202, Method 103, Condition A, with 1.5 Volts DC applied while subjected to an environment of 85°C with 85% relative humidity for

240 hours min.

LIFE TEST:

MIL-STD-202, Method 108, for 2000 hours, at 125°C. Voltage Applied:

200% of WVDC for capacitors rated at 500 volts DC or less. 120% of WVDC for capacitors rated at 1250 volts DC or less. 100% of WVDC for capacitors rated above 1250 volts DC.

AMERICAN

ATC North America

sales@atceramics.com

ELECTRICAL AND MECHANICAL SPECIFICATIONS

QUALITY FACTOR (Q): greater than 10,000 at 1 MHz.

TEMPERATURE COEFFICIENT OF CAPACITANCE (TCC):

+90 ±20 PPM/°C (-55°C to +125°C) +90 ±30 PPM/°C (+125°C to +175°C)

INSULATION RESISTANCE (IR):

0.1 pF to 470 pF:

- 10⁶ Megohms min. @ +25°C at rated WVDC.
- 10⁵ Megohms min. @ +125°C at rated WVDC.
- 510 pF to 1000 pF:

10⁵ Megohms min. @ +25°C at rated WVDC.

10⁴ Megohms min. @ +125°C at rated WVDC.

IR above +125°C is derated by one order of magnitude.

WORKING VOLTAGE (WVDC): See Capacitance Values Table, page 2.

DIELECTRIC WITHSTANDING VOLTAGE (DWV):

250% of WVDC for capacitors rated at 500 volts DC or less for 5 seconds. 150% of WVDC for capacitors rated at 1250 volts DC or less for 5 seconds. 120% of WVDC for capacitors rated above 1250 volts DC for 5 seconds.

RETRACE: Less than ±(0.02% or 0.02 pF), whichever is greater.

AGING EFFECTS: None

PIEZOELECTRIC EFFECTS: None

(No capacitance variation with voltage or pressure).

CAPACITANCE DRIFT: ±(0.02% or 0.02 pF), whichever is greater.

OPERATING TEMPERATURE RANGE:

0.1 to 330 pF: from -55°C to +175°C 360 to 1000 pF: from -55°C to +125°C

TERMINATION STYLES:

Available in various surface mount and leaded styles. See Mechanical Configurations, page 3.

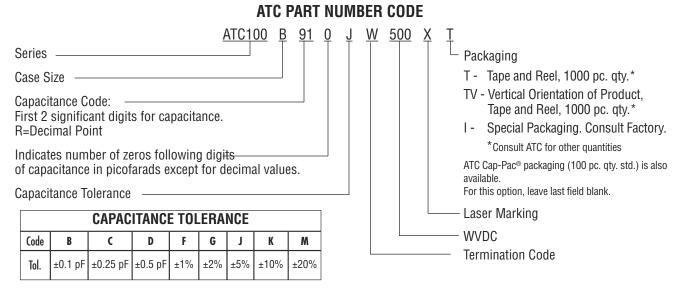
TERMINAL STRENGTH: Terminations for chips and pellets withstand a pull of 5 lbs. min., 15 lbs. typical, for 5 seconds in direction perpendicular to the termination surface of the capacitor. Test per MIL-STD-202, method 211.

TECHNICAL

ATC Europe saleseur@atceramics.com **GERAMICS** ATC Asia sales@atceramics-asia.com

THE ENGINEERS' CHOICE™

www.atceramics.com ATC # 001-807 Rev. Q; 9/14


ATC 100 B Capacitance Values

CAP.	CAP.	TOL.	RATED	WVDC	CAP.	CAP.	TOL.	RATED	WVDC		CAP.	TOL.	RATED	WVDC	0/11.	CAP.	TOL.	RATED	WVDC			
CODE	(pF)	TUL.	STD.	EXT.	CODE	(pF)	TUL.	STD.	EXT.	CODE	(pF)	TUL.	STD.	EXT.	CODE	(pF)	TUL.	STD.	EXT.			
0R1	0.1	В			2R4	2.4			200	20				151	150							
0R2	0.2	D		ц	2R7	2.7			LL.	220	22				161	160			ΙΟΛ			
0R3	0.3	B, C		AGI	3R0	3.0			AGE	240	24				181	180		300	1000			
0R4	0.4	5, 0		VOLTAG	3R3	3.3			VOLTAGE	270	27				201	200			EXT			
0R5	0.5				3R6	3.6				300	30				221	220			E)			
OR6	0.6			EXTENDED	3R9	3.9	B, C,		EXTENDED	330	33			E	241	240						
0R7	0.7			ENL	ENI	4R3	4.3 D	D		ENL	360	36			IAG	271	270			11		
OR8	0.8			EXT	4R7	4.7		EXT	390	39			VOLTAGE	301	300		000	ΤΟΛ				
0R9	0.9				5R1 5R6	5.1 5.6	6			430	43 47		500	1500	331	330 360	F, G, J,	200	000 EX1			
1R0 1R1	1.0 1.1				6R2	5.0 6.2				470 510	47 51	ECI			361 391	300 390						
1R2	1.2	В, С,	500	1500	6R8	6.8		500	1500	560	56	F, G, J, K, M		DEC	431	430	K, M					
1R3	1.3	D			7R5		B, C, J,			620	62	1, 11		EXTENDED	471	470	1, 11					
1R4	1.4			щ	8R2	8.2	K, M		щ	680	68			EXJ	511	510						
1R5	1.5			TAG	9R1	9.1	,		VOLTAGE	750	75				561	560		100				
1R6	1.6			VOLTAGE	100	10		-	170.	820	82				621	620		100	н			
1R7	1.7							110	11				910	91				681	680	1		ΤΟΛ
1R8	1.8			DEL	120	12			EXTENDED	101	100				751	750			300			
1R9	1.9			EXTENDED	130	130 13 F,	F, G, J,			111	110				821	820		50	EXT			
2R0	2.0			EX	150	15	К, М		EX	121	120		300		911	910			E			
2R1	2.1				160	16				131	130			1000	102	1000						
2R2	2.2				180	18																

VRMS = 0.707 X WVDC

• SPECIAL VALUES, TOLERANCES, HIGHER WVDC AND MATCHING AVAILABLE. PLEASE CONSULT FACTORY.

NOTE: EXTENDED WVDC DOES NOT APPLY TO CDR PRODUCTS.

The above part number refers to a 100 B Series (case size B) 91 pF capacitor,

J tolerance (±5%), 500 WVDC, with W termination (Tin/Lead, Solder Plated over Nickel Barrier), laser marking and Tape and Reel packaging.

ATC accepts orders for our parts using designations *with* or *without* the "ATC" prefix. Both methods of defining the part number are equivalent, i.e., part numbers referenced with the "ATC" prefix are interchangeable to parts referenced without the "ATC" prefix. Customers are free to use either in specifying or procuring parts from American Technical Ceramics.

ATC North America

sales@atceramics.com

For additional information and catalogs contact your ATC representative or call direct at (+1-631) 622-4700.

Consult factory for additional performance data.

AMERICAN TECHNICAL CERAMICS

ATC Europe saleseur@atceramics.com ATC Asia sales@atceramics-asia.com

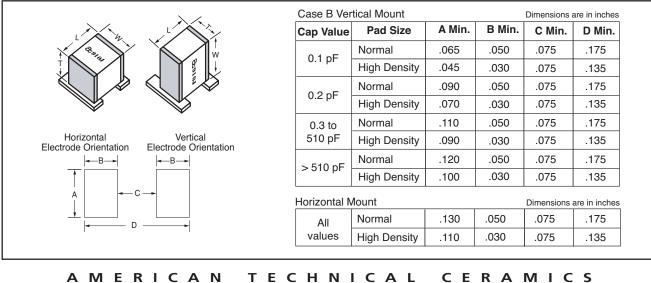
www.atceramics.com

ATC 100 B Capacitors: Mechanical Configurations

ATC Series	ATC	MIL-PRF-	CASE SIZE	OUTLINES		DY DIMENSIO INCHES (mm)	LEAD AND TERMINATION Dimensions and materials				
& CASE SIZE	TERM. Code	55681	& TYPE	W/T IS A Termination surface	LENGTH (L)	WIDTH (W)	THICKNESS (T)	OVERLAP (Y)	MATERIALS		
100B	W	CDR14BG	B Solder Plate	$\begin{array}{c c} Y \rightarrow \parallel \leftarrow & \downarrow \\ & & & \\ \hline & & \\ \hline & & & \\ \hline \\ \hline$.110 +.020010 (2.79 +0.51 -0.25)	.110 ±.015 (2.79 ±0.38)		.015 (0.38)	Tin/Lead, Solder Plated over Nickel Barrier Termination		
100B	Р	CDR14BG	B Pellet	$\begin{array}{c c} Y \rightarrow \parallel \leftarrow & \downarrow \\ & & & \\ & & & \\ \hline \\ \rightarrow & & \\ L & \leftarrow^{\uparrow} \rightarrow & T & \leftarrow \end{array}$.110 +.035010 (2.79 +0.89 -0.25)	.110 ±.015 (2.79 ±0.38)	.102 (2.59)		Heavy Tin/Lead Coated, over Nickel Barrier Termination		
100B	Т	N/A	B Solderable Nickel Barrier	$\begin{array}{c} Y \rightarrow \left\ \leftarrow & \downarrow \\ & \blacksquare & \blacksquare \\ \rightarrow \right\ \perp \left \leftarrow^{\uparrow} \rightarrow \right \top \left \leftarrow \end{array}$.110 +.020010 (2.79 +0.51 -0.25)	.110 ±.015 (2.79 ±0.38)	max.	±.010 (0.25)	RoHS Compliant Tin Plated over Nickel Barrier Terminatio		ver
100B	CA	CDR13BG	B Gold Chip	$\begin{array}{c} Y \rightarrow \left\ \leftarrow & \downarrow \\ & \blacksquare & \blacksquare \\ \rightarrow & \downarrow & \downarrow \\ \downarrow & \downarrow & \blacksquare \\ \rightarrow & \downarrow & \downarrow & \downarrow \\ \downarrow & \downarrow & \downarrow & \blacksquare \\ \downarrow & \downarrow & \downarrow & \downarrow \\ \downarrow & \downarrow & \downarrow & \downarrow \\ \downarrow & \downarrow &$.110 +.020010 (2.79 +0.51 -0.25)	.110 ±.015 (2.79 ±0.38)			RoHS Compliant Gold Plated over Nickel Barrier Termination		
100B	MS	CDR21BG	B Microstrip	$\begin{array}{c c} \downarrow & \rightarrow \mid \downarrow_{L} \mid \leftarrow & \downarrow & \rightarrow \parallel \leftarrow \\ \hline \hline w_{L} & \blacksquare & \blacksquare \\ \hline \hline \psi_{L} & \blacksquare & \blacksquare \\ \hline \uparrow & \rightarrow \mid \downarrow \mid \leftarrow & \hline \uparrow & \uparrow & \uparrow \mid \leftarrow \end{array}$.135 ±.015 (3.43 ±0.38)		.120 (3.05) max.	N/A	Length (LL) .250 (6.35) min.	Width (WL) .093 ±.005 (2.36 ±0.13)	Thickness (T_L) .004 ±.001 (.102 ±.025)
100B	AR	CDR22BG	B Axial Ribbon	$\begin{array}{c} \downarrow \qquad \rightarrow \mid \downarrow_{L} \mid \leftarrow \qquad \stackrel{T_{L}}{\rightarrow} \parallel \leftarrow \\ \hline \underline{w_{L}} \qquad \hline \underline{w_{L}} \qquad \hline \underline{w_{L}} \qquad \hline \underline{w_{L}} \qquad \qquad \underbrace{w_{L}} \qquad \qquad \underbrace{w_{L}} \qquad \\ \uparrow \qquad \rightarrow \mid \downarrow \mid \leftarrow \qquad \stackrel{\uparrow}{\rightarrow} \mid \downarrow \mid \leftarrow \qquad \stackrel{\uparrow}{\rightarrow} \mid \downarrow \mid \leftarrow \end{array}$.102 (2.59) max.				
100B	RR	CDR24BG	B Radial Ribbon	$ \begin{array}{c} & & & \downarrow & \rightarrow \mid L_{L} \mid \leftarrow \\ & & & & \\ \rightarrow \mid L \mid \leftarrow & & \uparrow \rightarrow \mid T \mid \leftarrow & \uparrow \\ \end{array} \\ \end{array} \\ \end{array} \\ w_{L} $.110 ±.015 (2.79 ±0.38)					
100B	RW	CDR23BG	B Radial Wire	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} $.500		AWG., 106) dia.
100B	AW	CDR25BG	B Axial Wire	$ \xrightarrow{\rightarrow} \begin{array}{c} \downarrow_{L} \\ \downarrow \leftarrow \\ \hline \\ \hline \\ \rightarrow \end{array} \begin{array}{c} \downarrow_{L} \\ \downarrow \leftarrow \\ \hline \\$	(3.68 ±0.51)				min.		ninal

Additional lead styles available: Narrow Microstrip (NM), Narrow Axial Ribbon (NA) and Vertical Narrow Microstrip (H). Other lead lengths are available; consult factory. All leads are high purity silver attached with high temperature solder and are **RoHS** compliant. For a complete military catalog, request American Technical Ceramics document ATC 001-818.

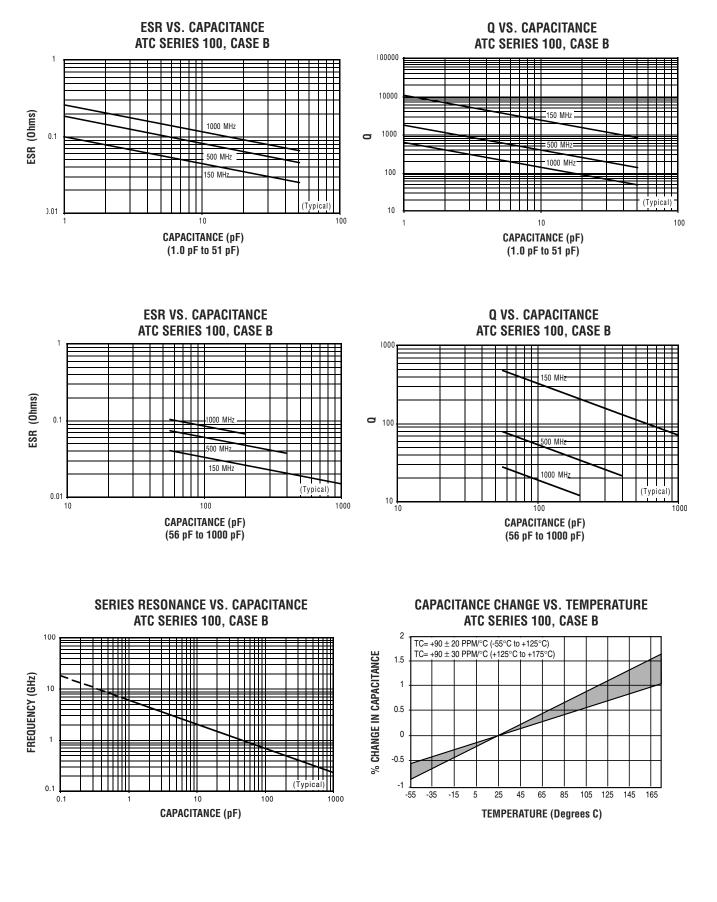
 A
 M
 E
 R
 I
 C
 N
 I
 C
 S


 ATC North America
 ATC Europe
 ATC Asia
 Sales@atceramics.com
 Sales@atceramics.com
 Sales@atceramics.asia.com
 Sales@atceramics.asia.com

ATC 100 B Non-Magnetic Capacitors: Mechanical Configurations

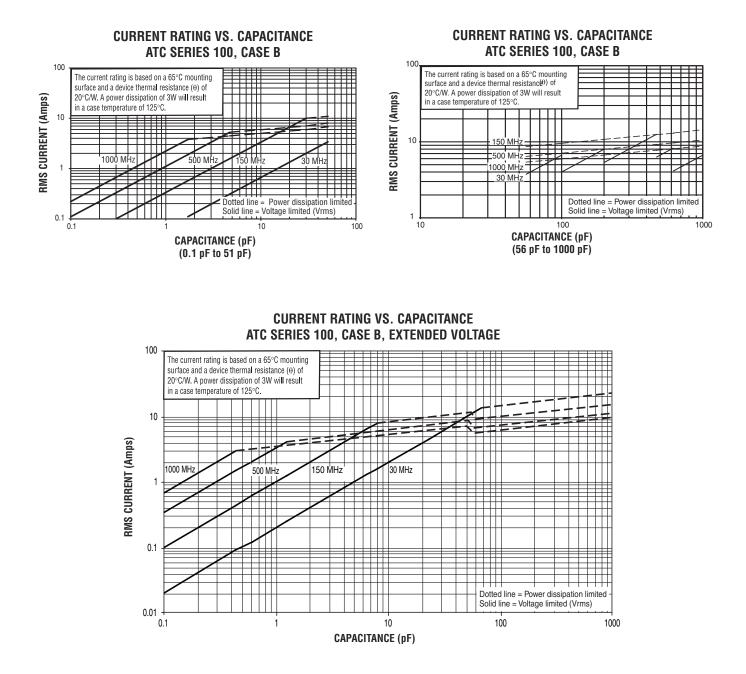
ATC SERIES	ATC Term. Code	MIL-PRF- 55681	CASE SIZE	OUTLINES		DY DIMENSIO INCHES (mm)	LEAD AND TERMINATION DIMENSIONS AND MATERIALS				
& CASE SIZE			& TYPE	W/T IS A Termination surface	LENGTH (L)	WIDTH (W)	THICKNESS (T)	OVERLAP (Y)	MATERIALS		
100B	WN	Meets Require- ments	B Non-Mag Solder Plate	$\begin{array}{c c} Y \rightarrow \parallel \leftarrow & \downarrow \\ & \blacksquare & & \blacksquare \\ \rightarrow \mid L \mid \leftarrow^{\uparrow} \rightarrow \mid T \mid \leftarrow \end{array}$.110 +.025010 (2.79 +0.64 -0.25) .110 ±.015 (2.79 ±0.38)				Tin/Lead, Solder Plated over Non-Magnetic Barrier Termination		
100B	PN	Meets Require- ments	B Non-Mag Pellet	$\begin{array}{c c} Y \rightarrow \parallel \leftarrow & \downarrow \\ & \blacksquare & \underline{W} \\ \rightarrow \mid L \mid \leftarrow^{\uparrow} \rightarrow \mid T \mid \leftarrow \end{array}$.110 +.035010 (2.79 +0.89 -0.25)	.110 ±.015 (2.79 ±0.38)	.102 (2.59) max.	.015 (0.38) ±.010 (0.25)	Heavy Tin/Lead Coated, ove Non-Magnetic Barrier Termination		Barrier
100B	TN	Meets Require- ments	B Non-Mag Solderable Barrier	⋎⋺∥⋲ □ → └ └ ← [↑] →│ ⊤ │ ←	.110 +.025010 (2.79 +0.64 -0.25)	.110 ±.015 (2.79 ±0.38)			RoHS Compliant Tin Plated over Non-Magnetic Barrier Termination		ver Barrier
100B	MN	Meets Require- ments	Non-Mag Microstrip	$\begin{array}{c} \downarrow & \rightarrow \mid \iota_{L} \mid \leftarrow & \downarrow & \rightarrow \mid \leftarrow \\ \frac{W_{L}}{W_{L}} & \blacksquare & \blacksquare & \frac{W_{L}}{W_{L}} & \blacksquare & 1 \\ \uparrow & \rightarrow \mid \iota \mid \leftarrow & \uparrow \downarrow & \uparrow \mid \tau \mid \leftarrow \end{array}$	135 ±.015 (3.43 ±0.38) .145 ±.020 (3.68 ±0.51)		.120 (3.05) max.	N/A	Length (LL) .250 (6.35) min. .500 (12.7) min.	Width (WL) .093 ±.005 (2.36 ±0.13)	Thickness (TL) .004 ±.001 (.102 ±.025)
100B	AN	Meets Require- ments	Non-Mag Axial Ribbon	$\begin{array}{c} \downarrow & \rightarrow \mid \downarrow_{L} \mid \leftarrow & \downarrow^{T_{L}} \\ \hline \underline{W_{L}} & \blacksquare & \blacksquare \\ \hline \underline{W_{L}} & \blacksquare & \blacksquare \\ \uparrow & \rightarrow \mid L \mid \leftarrow & \uparrow^{+} \mid \downarrow \mid \leftarrow \end{array}$.110 ±.015 (2.79 ±0.38)	.102 (2.59) max.				
100B	FN	Meets Require- ments	B Non-Mag Radial Ribbon	$ \begin{array}{c} \underbrace{\bullet} & \xrightarrow{\bullet} & \stackrel{\downarrow}{} & \stackrel{\downarrow}{} & \stackrel{\downarrow}{} & \stackrel{\downarrow}{} \\ \underbrace{\bullet} & \underbrace{\bullet} & \underbrace{\bullet} & \underbrace{\bullet} & \stackrel{\downarrow}{} \\ \hline & & \stackrel{\downarrow}{} & \stackrel{\downarrow}{} & \stackrel{\downarrow}{} & \stackrel{\downarrow}{} \\ \hline & & \stackrel{\downarrow}{} & \stackrel{\downarrow}{} & \stackrel{\downarrow}{} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underbrace{\bullet} & & \stackrel{\downarrow}{} \\ \hline & & \stackrel{\downarrow}{} \\ \hline & & \stackrel{\downarrow}{} \\ \hline \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} $							
100B	RN	Meets Require- ments	B Non-Mag Radial Wire	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $						#26 / .016 (.4	AWG., 106) dia
100B	BN	Meets Require- ments	B Non-Mag Axial Wire	$ \begin{array}{c c} \rightarrow & \downarrow_{L} & \downarrow_{L} \\ \hline \\ \hline \\ \rightarrow & \downarrow_{L} & \downarrow_{L} \\ \hline \\ \rightarrow & \downarrow_{L} & \uparrow_{+} & \uparrow_{+} \\ \hline \end{array} $							ninal

Additional lead styles available: Narrow Microstrip (DN), Narrow Axial Ribbon (GN) and Vertical Narrow Microstrip (HN). Other lead lengths are available; consult factory. All leads are high purity silver attached with high temperature solder and are RoHS compliant.


Suggested Mounting Pad Dimensions

AMERICAN **ATC North America** ATC Europe sales@atceramics.com sales@atceramics-asia.com saleseur@atceramics.com

www.atceramics.com


ATC Asia

A MERICAN TECHNICAL CERAMICS ATC North America sales@atceramics.com
CERAMICS ATC Asia sales@atceramics.com
CERAMICS

www.atceramics.com

ATC 100 B Performance Data

Sales of ATC products are subject to the terms and conditions contained in American Technical Ceramics Corp. Terms and Conditions of Sale (ATC document #001-992 Rev. B; 12/05). Copies of these terms and conditions will be provided upon request. They may also be viewed on ATC's website at www.atceramics.com/productfinder/default.asp. Click on the link for Terms and Conditions of Sale.

ATC has made every effort to have this information as accurate as possible. However, no responsibility is assumed by ATC for its use, nor for any infringements of rights of third parties which may result from its use. ATC reserves the right to revise the content or modify its product without prior notice.

© 1996 American Technical Ceramics Corp. All Rights Reserved

ATC # 001-807 Rev. Q 9/14

AMERICAN ATC North America sales@atceramics.com

TECHNICAL

ATC Europe saleseur@atceramics.com CERAMICS ATC Asia

sales@atceramics-asia.com

ISO 9001 REGISTERED COMPANY

THE ENGINEERS' CHOICE™

www.atceramics.com