Photologic ${ }^{\circledR}$ Slotted Optical Switch

OPB916 Series

Features:

- Low power consumption
- Data rates to 250 kBaud
- Choice of two logic states and two electrical outputs
- $24^{\prime \prime}$ (610 mm) minimum 26 AWG UL listed wires
- Slot width 0.20" (5.08 mm)
- Slot Depth $0.635^{\prime \prime}(16.13 \mathrm{~mm})$

Description:

The OPB916 series of Photologic ${ }^{\circledR}$ photo integrated circuit switches provide optimum flexibility. Each switch consists of an infrared Light Emitting Diode (LED) and a Photologic ${ }^{\circledR}$ photo integrated circuit, mounted in an opaque housing with clear windows for dust protection. The deep slot allows for a longer reach of the optical path from the $0.650^{\prime \prime}$ (16.5 mm) mounting plane. Internal apertures are 0.010 " x .060 " (. $25 \mathrm{~mm} \times 1.52 \mathrm{~mm}$) for the Photologic's " S " side and 0.05 " x 0.06 " ($1.27 \mathrm{~mm} \times 1.52 \mathrm{~mm}$) for the LED "E" side.

Devices in this series exhibit stable performance over supply voltages ranging from 4.5 V to 16.0 V , and may be specified as buffered or inverted with an internal $10 \mathrm{k} \Omega$ pull-up resistor or open collector output. Devices are TTL/LSTTL compatible and can drive up to 10 TTL loads.

Custom electrical, wire or cabling are available. Contact your local representative or OPTEK for more information.

Applications:

- Mechanical switch replacement
- Speed indication (tachometer)
- Mechanical limit indication
- Edge sensing

Ordering Information					
Part Number	LED Peak Wavelength	Sensor Photologic ${ }^{\circledR}$	Slot Width / Depth	Aperture Emitter / Sensor	Lead Length / Wire
OPB916BZ	880 nm	10K Pull-Up	$\begin{gathered} 0.200 " 1 \\ 0.635 \prime \prime \end{gathered}$	$\begin{gathered} 0.05 " / \\ 0.01 " \end{gathered}$	$24 \text { " / } 26$ AWG Wire
OPB916IZ		Inv-10K Pull-Up			
OPB916BOCZ		Open-Collector			
OPB916IOCZ		Inv-Open-Collector			

OPB916B 10K Pull-Up

Color	Description
Red	Anode
Black	Cathode
White	Vcc
Blue	Output
Green	Ground

RoHS

OPB916BOC Open-Collector

Photologic ${ }^{\circledR}$ Slotted Optical Switch

OPB916 Series

Absolute Maximum Ratings $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)	
Storage \& Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Input Infrared LED	
Diode Reverse DC Voltage	2 V
Input Diode Power Dissipation ${ }^{(2)}$	75 mW
Forward DC Current	50 mA
Output Photologic®	
Supply Voltage, V_{CC} (not to exceed 3 seconds)	18 V
Voltage at Output Lead (Open Collector Output)	30 V
Output Photologic ${ }^{\circledR}$ Power Dissipation ${ }^{(3)}$	90 mW

Notes:

(1) RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering.
(2) Derate linearly $1.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above 25°.
(3) Derate linearly $2.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above 25°.
(4) Normal application would be with light source blocked, simulated by $I_{F}=0 \mathrm{~mA}$.
(5) All parameters tested using pulse technique.

Photologic ${ }^{\circledR}$ Slotted Optical Switch

OPB916 Series

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)						
SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Input Diode						
V_{F}	Forward Voltage		1.3	1.8	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
I_{R}	Reverse Current	-	-	100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Output Photologic@ Sensor						
$\mathrm{V}_{\text {cc }}$	Operating DC Supply Voltage	4.5		16	V	-
$I_{\text {ccı }}$	Low Level Supply Current: Buffered with 10 k pull-up ${ }^{(1)}$ Buffered Open-Collector Output ${ }^{(1)}$	-	-	7	mA	$\mathrm{V}_{\mathrm{cC}}=16 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$, No Output Load
	Inverted with 10k pull-up: Inverted Open-Collector Output	-	-	7	mA	$\mathrm{V}_{\mathrm{cc}}=16 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$, No Output Load
$\mathrm{I}_{\text {cch }}$	High Level Supply Current: Buffered with 10k pull-up Buffered Open-Collector Output	-	-	6	mA	$\mathrm{V}_{\mathrm{CC}}=16 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$, No Output Load
	Inverted with 10k pull-up: Inverted Open-Collector Output ${ }^{(1)}$	-	-	6	mA	$\mathrm{V}_{\mathrm{cc}}=16 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$, No Output Load
Vot	Low Level Output Voltage: Buffered with 10k pull-up Buffered Open-Collector Output	-	-	0.4	V	$\mathrm{V}_{\mathrm{cC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{oL}}=16 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$
	Inverted with 10k pull-up: Inverted Open-Collector Output	-	-	0.4	V	$\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{oL}}=16 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
$\mathrm{V}_{\text {OH }}$	High Level Output Voltage: Buffered with 10 k pull-up	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & 2.0 \end{aligned}$	-	-	V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 16 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{OH}}=100 \mu \mathrm{~A} \end{aligned}$
	Inverted with 10k pull-up:	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & 2.0 \end{aligned}$	-	-	V	$\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$ to $16 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$,
IOH	High Level Output Current: Buffered with 10k pull-up Buffered Open-Collector Output	-	1.0	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\text {OH }}=30 \mathrm{~V}$
	Inverted with 10k pull-up: Inverted Open-Collector Output ${ }^{(1)}$		1.0	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{OH}}=30 \mathrm{~V}$

Photologic ${ }^{\circledR}$ Slotted Optical Switch

OPB916 Series

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)						
SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Output Photologic® Sensor						
$\mathrm{IF}_{\mathrm{F}(+)}$	LED Positive-Going Threshold Current Buffered with 10k pull-up Inverted with 10k pull-up	-	5	10	mA	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, No Output Load
	Buffered Open-Collector Output Inverted Open-Collector Output ${ }^{(1)}$	-	5	10	mA	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{F}(+) / \mathrm{I}(\mathrm{F})}$	Hysteresis	-	1.5	-	-	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$
$\mathrm{t}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	Rise Time, Fall Time	-	50	-	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \text { or } 10 \mathrm{~mA}, \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega \text { to } 5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$
$\mathrm{t}_{\text {PLL }} \mathrm{t}_{\text {PHL }}$	Propagation Delay	-	3	-	$\mu \mathrm{s}$	

Notes:
(1) Normal application would be with light source blocked, simulated by $\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$.
(2) All parameters tested using pulse technique.

Photologic ${ }^{\circledR}$ Slotted Optical Switch

OPB916 Series

