

Sample &

Buy

Texas Instruments

bq77904, bq77905

SLUSCM3A – JUNE 2016 – REVISED JUNE 2016

bq77905, bq77904 3-5S Ultra Low-Power Voltage, Current, Temperature, and Open Wire Stackable Lithium-ion Battery Protector

1 Features

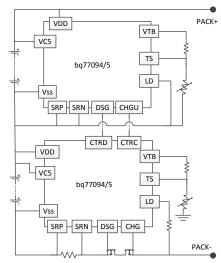
- Voltage Protection (Accuracy ±10 mV)
 - Overvoltage: 3 V to 4.575 V
 - Undervoltage: 1.2 V to 3 V
- Open Cell and Open Wire Detection (OW)
- Current Protection
 - Overcurrent Discharge 1: -10 mV to -85 mV
 - Overcurrent Discharge 2: -20 mV to 170 mV
 - Short Circuit Discharge: -40 mV to 340 mV
 - Accuracy ±20% for ≤ 20 mV, ±30% for > 20 mV across full temperature
- Temperature Protection
 - Overtemperature Charge: 45°C or 50°C
 - Overtemperature Discharge: 65°C or 70°C
 - Undertemperature Charge: -5°C or 0°C
 - Undertemperature Discharge: -20°C or -10°C
- Additional Features
 - Independent Charge (CHG) and Discharge (DSG) FET Drivers
 - SimpleStack Interface for Easy Stacking
 - 36-V Absolute Maximum Rating Per Cell Input
 - Built-In-Self-Test Functions For High Reliability
- Normal Mode: 6 μA (bq77904/bq77905)
- Shutdown Mode: 0.5 µA Maximum

2 Applications

- Power Tools, Garden Tools
- Start-Stop Battery Packs
- Lead-Acid (PbA) Replacement Batteries
- Light Electric Vehicles
- Energy Storage Systems, Uninterruptible Power Supplies (UPS)
- 10.8 V to 72 V Packs

3 Description

The bq77904 and bq77905 devices are low-power battery pack protectors that implement a suite of voltage, current, and temperature protections without microcontroller (MCU) control. Protection thresholds and delays are factory-programmed and available in a variety of configurations. Separate overtemperature and undertemperature thresholds for discharge (OTD and UTD) and charge (OTC and UTC) are provided for added flexibility.


The device achieves pack protection via the integrated independent CHG and DSG low-side NMOS FET drivers, which may be disabled via two control pins. These control pins may also be used to achieve cell protection solutions for higher series (6S and beyond) in a simple and economical manner. To do this, simply cascade a higher device CHG and DSG outputs to the immediate lower device control pins. For reduced component count, all protection faults use internal delay timers.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)		
bq77904		6 50 4 40 mm		
bq77905	TSSOP (20)	6.50 × 4.40 mm		

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Schematic

Copyright © 2016, Texas Instruments Incorporated

2

Table of Contents

1	Feat	tures 1								
2	Арр	lications 1								
3	Des	Description 1								
4	Rev	Revision History								
5	Dev	Device Comparison								
6	Pin	Configuration and Functions 4								
7	Spe	cifications5								
	7.1	Absolute Maximum Ratings 5								
	7.2	ESD Ratings 5								
	7.3	Recommended Operating Conditions 5								
	7.4	Thermal Information 6								
	7.5	Electrical Characteristics 6								
	7.6	Timing Requirements 9								
	7.7	Typical Characteristics 10								
8	Deta	ailed Description 12								
	8.1	Overview 12								
	8.2	Functional Block Diagram 13								
	8.3	Feature Description 14								

	8.4	Device Functional Modes	25
9	Appl	ication and Implementation	26
	9.1	Application Information	26
	9.2	Typical Application	32
	9.3	System Examples	36
10	Pow	er Supply Recommendations	36
11	Layo	out	37
	11.1	Layout Guidelines	37
	11.2	Layout Example	37
12	Devi	ice and Documentation Support	38
	12.1	Documentation Support	38
	12.2	Receiving Notification of Documentation Updates	38
	12.3	Community Resources	38
	12.4	Trademarks	38
	12.5	Electrostatic Discharge Caution	38
	12.6	Glossary	38
13	Mec	hanical, Packaging, and Orderable	
	Infor	mation	38

4 Revision History

Cł	hanges from Original (June 2016) to Revision A	Page
•	Changed the device From: Product Preview To: Production	1

www.ti.com

5 Device Comparison

DEVICE	NUMBER OF CELLS	PROTECTIONS	TYPICAL NORMAL MODE CURRENT (μΑ)	PACKAGE
bq77904	3, 4	OV, UV, OW, OTD, OTC, UTD, UTC, OCD1,	6	20-TSSOP
bq77905	3, 4, 5	OCD2, SCD, CTRC, CTRD	0	20-1330F

Unless specified, the devices in Table 1 and Table 2 are default with state comparator enabled with 2 mV threshold. Filtered fault detection is used by default. Contact Texas Instruments for new configuration option or device in preview.

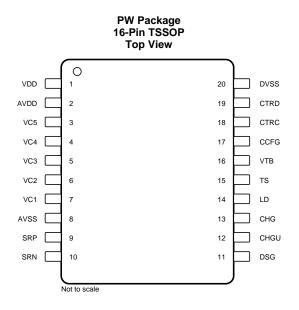
		ov				UV		ow	c	OCD1	0	CD2	SCD		urrent Fault Recovery	Те	mperat	ure (°C	;) ⁽¹⁾
Part Number	Threshold(mV)	Delay(s)	Hyst(mV)	Thresh (mV)	Delay(s)	Hyst(mV)	Load Removal Recovery(Y/N)	Current(nA)	Threshold (mV)	Delay (ms)	Threshold (mV)	Delay (ms)	Threshold (mV)	Delay (s)	Method	OTD	отс	UTD	отс
bq7790400 ⁽²⁾	4225	1	100	2800	1	200	N	0 (disable)	40	1420	80	700	160	0	Load Removal	70	50	-20	-5

Table 1. bq77904 Device Configuration

(1) These thresholds are target based on temperature, but they are dependent on external components that could vary based on customer selection. Circuit is based on 103AT NTC thermistor connected to TS and VSS, and a 10kΩ resistor connected to VTB and TS. Actual thresholds must be determined in mV. Refers to the over- and under-temperature mV threshold in the Electrical Characteristics table.

(2) Product Preview

		ov				UV		ow	c	OCD1	0	CD2	SCD	-	urrent Fault Recovery	Те	mperat	ure (°C) ⁽¹⁾
Part Number	Threshold(mV)	Delay(s)	Hyst(mV)	Thresh (mV)	Delay(s)	Hyst(mV)	Load Removal Recovery(Y/N)	Current(nA)	Threshold (mV)	Delay (ms)	Threshold (mV)	Delay (ms)	Threshold (mV)	Delay (s)	Method	OTD	отс	UTD	отс
bq7790500	4200	0.5	100	2600	1	400	Υ	100	30	1420	50	700	120	1	Load Removal + Delay	70	50	-20	0
bq7790501 ⁽²⁾	4200	0.5	100	2600	1	400	N	100	30	1420	50	700	120	1	Load Removal + Delay	70	50	-20	0
bq7790502 ⁽²⁾	4250	1	200	2700	1	200	Y	100	85	700	120	350	240		Load Removal	70	50	-20	-5
bq7790503 ⁽²⁾	4200	1	100	2700	2	400	Y	100	80	1420	160	350	320	1	Load Removal + Delay	70	50	-10	-5
bq7790504 ⁽²⁾	4250	0.5	200	2700	1	200	Y	100	80	350	160	5	200	1	Load Removal + Delay	70	50	-10	-5


Table 2. bq77905 Device Configuration

(1) These thresholds are target based on temperature, but they are dependent on external components that could vary based on customer selection. Circuit is based on 103AT NTC thermistor connected to TS and VSS, and a 10kΩ resistor connected to VTB and TS. Actual thresholds must be determined in mV. Refers to the over- and under-temperature mV threshold in the Electrical Characteristics table.

(2) Product Preview

6 Pin Configuration and Functions

Pin Functions

PIN		110 11	DESCRIPTION				
NAME	NO.	I/O ⁽¹⁾	DESCRIPTION				
AVDD	2	0	Analog supply (only connect to a capacitor)				
AVSS	8	Р	Analog ground				
CCFG	17	I	Cell in series-configuration input				
СНС	13	0	CHG FET driver, use on a single device or on the bottom device of a stack configuration				
CHGU	12	0	CHG FET signal, use for upper device of a stack configuration to feed the CHG signal to the CTRC pin of the lower device				
CTRC	18	I	OUO and DCO quantida inquita				
CTRD	19	I	CHG and DSG override inputs				
DSG	11	0	DSG FET driver				
DVSS	20	Р	Digital ground				
LD	14	I	PACK- load removal detection				
SRN	10	I	Current sense input connecting to the pack- side of sense resistor				
SRP	9	I	Current sense input connecting to the battery side of sense resistor				
TS	15	I	Thermistor measurement input. Connect a $10 \mbox{k} \Omega$ resistor to AVSS pin if the function is not used				
VC1	7	I					
VC2	6	I					
VC3	5	I	Cell voltage sense inputs				
VC4	4	I					
VC5	3	Ι	Cell voltage sense inputs (pin 3 must be connected to pin 4 on bq77904)				
VDD	1	Р	Supply voltage				
VTB	16	0	Thermistor bias output				

(1) I = Input, O = Output, P = Power

7 Specifications

7.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted). All values are referenced to VSS unless otherwise noted.

			MIN	MAX	UNIT
		VDD, VC5, VC4, VC3, VC2, VC1, CCFG, CTRD, CTRC	-0.3	36	V
VI	Input voltage	LD	-30	20	V
		SRN, SRP, TS, AVDD, CCFG	-0.3	3.6	V
		DSG, CHGU	-0.3	20	V
Vo	Output voltage range	CHG	-30	20	V
		VTB	-0.3	3.6	V
l _l	Input current	LD, CHG		500	μA
l _l	Input current	CHGU, DSG		1	mA
I _O	Output current	CHG		1	mA
lo	Output current	CHGU, DSG		1	mA
Storage	Storage temperature, T _{stg}				°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 $^{(1)}$	±1000	V
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 $^{\left(2\right) }$	±250	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted) .

			MIN	NOM MAX	UNIT
V _{BAT}	Supply voltage range	VDD	3	25	V
		VC5-VC4, VC4-VC3, VC3-VC2, VC2-VC1, VC1-VSS	0	5	
VI		CTRD, CTRC	0	(VDD + 5)	
	Input voltage range	CCFG	0	AVDD	V
		SRN, SRP	-0.2	0.8	
		LD	0	16	
		TS	0	VTB	
V		CHG, CHGU, DSG	0	16	V
Vo	Output voltage range	VTB, AVDD	0	3	v
T _{STG}	Operating free-range temperature		-40	85	°C

bq77904, bq77905

SLUSCM3A – JUNE 2016–REVISED JUNE 2016

www.ti.com

STRUMENTS

EXAS

7.4 Thermal Information

		bq77904 bq77905		
	THERMAL METRIC ⁽¹⁾	PW (TSSOP)		UNITS
		16 PINS		
θ_{JA}	Junction-to-ambient thermal resistance	TBD	thermal resistance	
θ_{JCtop}	Junction-to-case (top) thermal resistance	TBD	b) thermal resistance	
θ_{JB}	Junction-to-board thermal resistance	TBD	ermal resistance	°C/W
ΨJT	Junction-to-top characterization parameter	TBD	acterization parameter	C/VV
ΨЈВ	Junction-to-board characterization parameter	TBD	aracterization parameter	
θ_{JCbot}	Junction-to-case (bottom) thermal resistance	TBD	ttom) thermal resistance	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report.

7.5 Electrical Characteristics

Typical values stated at $T_A = 25^{\circ}$ C and VDD = 16 V (bq77904) or 20 V (bq77905). MIN and MAX values stated with $T_A = -40^{\circ}$ C to 85°C and VDD = 3 to 20 V (bq77904) or VDD = 3 to 25 V (bq77905) unless otherwise noted.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUPPLY VOL	TAGE					
V _(POR)	POR threshold	VDD rising, 0 to 6 V			4	V
V _(SHUT)	Shutdown threshold	VDD falling, 6 to 0 V	2		3.25	V
V _(AVDD)	AVDD voltage	$C_{(VDD)} = 1 \ \mu F$	2.1	2.5	3.25	V
SUPPLY AND	LEAKAGE CURRENT					
I _{CC}	Normal mode current (bq77904/bq77905)	Cell1 through Cell5 = 4 V, VDD = 20 V (bq77905)		6	9	μA
I _(CFAULT)	Fault condition current	State comparator on		8	12	μA
I _{OFF}	Shutdown mode current	VDD < V _{SHUT}			0.5	μA
I _{LKG(OW_DIS)}	Input leakage current at VCx pins	All cell voltages = 4 V, Open Wire disable configuration	-100	0	100	nA
I _{LKG(100nA)}	Open-wire sink current at VCx pins	All cell voltages = 4 V, 100 nA configuration	30	110	175	nA
I _{LKG(200nA)}	Open-wire sink current at VCx pins	All cell voltages = 4 V, 200 nA configuration	95	210	315	nA
I _{LKG(400nA)}	Open-wire sink current at VCx pins	All cell voltages = 4 V, 400 nA configuration	220	425	640	nA
PROTECTION	ACCURACIES				Ľ	
V _{OV}	Overvoltage programmable threshold range		3000		4575	mV
V _{UV}	Undervoltage programmable threshold range		1200		3000	mV
		$T_A = 25^{\circ}C$, OV detection accuracy	-10		10	mV
N/		$T_A = 25^{\circ}C$, UV detection accuracy	-18		18	mV
V _(VA)	OV, UV, detection accuracy	$T_{A} = 0$ to $60^{\circ}C$	-28		26	mV
		$T_{A} = -40$ to $85^{\circ}C$	-40		40	mV
V _{HYS(OV)}	OV hysteresis programmable threshold range		0		400	mV
V _{HYS(UV)}	UV hysteresis programmable threshold range		200		800	mV
\ <i>\</i>	Overtemperature in discharge	Threshold for 65°C ⁽¹⁾	17.48	20.56	23.64	%VTB
V _{OTD}	programmable threshold	Threshold for 70°C ⁽¹⁾	15.49	18.22	20.95	%VTB

⁽¹⁾ Based on a 10 K Ω pull-up and 103AT thermistor.

Electrical Characteristics (continued)

Typical values stated at $T_A = 25^{\circ}$ C and VDD = 16 V (bq77904) or 20 V (bq77905). MIN and MAX values stated with $T_A = -40^{\circ}$ C to 85°C and VDD = 3 to 20 V (bq77904) or VDD = 3 to 25 V (bq77905) unless otherwise noted.

		TEST CONDITIONS	MIN	TYP	MAX	UNIT
		Recovery threshold at 55°C for				
V _{OTD(REC)}	Overtemperature in discharge recovery	when V _{OTD} is at 65°C ⁽¹⁾	22.20	26.12	30.04	%VTB
. ,		Recovery threshold at 60°C for when V_{OTD} is at 70°C ⁽¹⁾	19.72	23.2	26.68	%VTB
V _{OTC}	Overtemperature in charge	Threshold for 45°C ⁽¹⁾	28.00	32.94	37.88	%VTB
VOIC	programmable threshold	Threshold for 50°C ⁽¹⁾	24.97	29.38	33.79	%VTB
V	Overtemperature in charge	Recovery threshold at 35°C for when V_{OTD} is at 45°C $^{(1)}$	34.82	40.97	47.12	%VTB
V _{OTC(REC)}	recovery	Recovery threshold at 40°C for when V_{OTD} is at 50°C ⁽¹⁾	31.30	36.82	42.34	%VTB
M	Undertemperature in discharge	Threshold for -20°C ⁽¹⁾	74.07	87.14	100.21	%VTB
V _{UTD}	programmable threshold	Threshold for -10°C ⁽¹⁾	68.80	80.94	93.08	%VTB
	Undertemperature in discharge	Recovery threshold at -10° C for when V _{UTD} is at -20° C ⁽¹⁾	68.80	80.94	93.08	%VTB
V _{UTD(REC)}	recovery	Recovery threshold at 0°C for when V_{UTD} is at -10°C ⁽¹⁾	62.20	73.18	84.16	%VTB
	Undertemperature in charge	Threshold for –5°C ⁽¹⁾	65.64	77.22	88.80	%VTB
V _{UTC}	programmable threshold	Threshold for 0°C ⁽¹⁾	62.20	73.18	84.16	%VTB
.,	Undertemperature in Charge	Recovery threshold at 5°C for when V_{UTC} is at –5°C ⁽¹⁾	58.48	68.80	79.12	%VTB
V _{UTC(REC)}	Recovery	Recovery threshold at 10°C for when V_{UTC} is at 0°C ⁽¹⁾	54.59	64.23	73.86	%VTB
V _{OCD1}	Overcurrent discharge 1 programm (V _{SRP} – V _{SRN})	able threshold range,	-85		-10	mV
V _{OCD2}	Overcurrent discharge 2 programm (V _{SRP} – V _{SRN})	able threshold range,	-20		-170	mV
V _{SCD}	Short circuit discharge programmat	ble threshold range, (V _{SRP} – V _{SRN})	-40		-340	mV
V _{CCAL}	OCD1 detection accuracy at lower thresholds	$V_{OCD1} > -20 \text{ mV}$	-30%		30%	
V _{CCAH}	OCD1, OCD2, SCD detection accuracy	$V_{OCD1} \le -20$ mV; all OCD2 and SCD threshold ranges	-20%		20%	
V _{OW}	Open-wire fault voltage threshold at VCx per cell with respect to VC_{x-1}	Voltage falling on VCx, 3.6 V to 0 V	450	500	550	mV
V _{OW(HYS)}	Hysteresis for open wire fault	Voltage rising on VCx, 0 V to 3.6 V		100		mV
CHARGE AND	DISCHARGE FET DRIVERS					
V	CHG/CHGU/DSG on	VDD ≥ 12 V, CL = 10 nF	11	12	14	V
V _(FETON)		VDD < 12 V, CL = 10 nF	VDD - 1		VDD	V
$V_{(FETOFF)}$	CHG/CHGU/DSG off	No load when CHG/CHGU/DSG is off			0.5	V
R _(CHGOFF)	CHG off resistance	CHG off for > t_{CHGPDN} and pin held at 2V		0.5		kΩ
R _(DSGOFF)	CHGU/DSG off resistance	CHGU/DSG off and pin held at 2V		10	16	Ω
I _{CHG(CLAMP)}	CHG clamp current	CHG off and pin held at 18 V			450	μA
V _{CHG(CLAMP)}	CHG clamp voltage	$I_{CHG(CLAMP)} = 300 \ \mu A$	16	18	20.5	V
t _{CHGON}	CHG on rise time	CL = 10 nF, 10% to 90%		50	150	μs
t _{DSGON}	CHGU/DSG on rise time	CL = 10 nF, 10% to 90%		2	75	μs
t _{CHGOFF}	CHG off fall time	CL = 10 nF, 90% to 10%		15	30	μs
t _{DSGOFF}	CHGU/DSG off fall time	CL = 10 nF, 90% to 10%		5	15	μs

Product Folder Links: bq77904 bq77905

Copyright © 2016, Texas Instruments Incorporated

ISTRUMENTS

EXAS

www.ti.com

Electrical Characteristics (continued)

Typical values stated at $T_A = 25^{\circ}$ C and VDD = 16 V (bq77904) or 20 V (bq77905). MIN and MAX values stated with $T_A = -40^{\circ}$ C to 85°C and VDD = 3 to 20 V (bq77904) or VDD = 3 to 25 V (bq77905) unless otherwise noted.

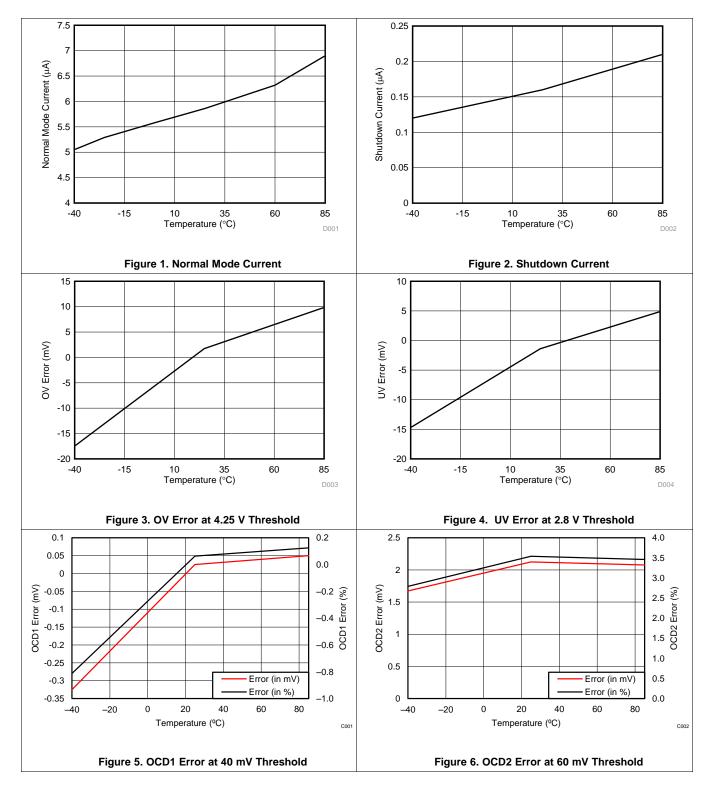
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
CTRC AND CTR	RD CONTROL					
V _{CTR1}	Enable FET driver (VSS)	With respect to VSS. Enabled < MAX			0.6	V
V _{CTR2}	Enable FET driver (Stacked)	Enabled > MIN	VDD + 2.2			V
V _{CTR(DIS)}	Disable FET driver	Disabled between MIN and MAX	2.04		VDD + 0.7	V
V _{CTR(MAXV)}	CTRC and CTRD clamp voltage	I _{CTR} = 600nA	VDD + 2.8	VDD + 4	VDD + 5	V
t _{CTRDEG_ON} ⁽²⁾	CTRC and CTRD de-glitch for ON signal			7		ms
t _{CTRDEG_OFF} ⁽²⁾	CTRC and CTRD de-glitch for OFF signal			7		ms
CURRENT STA	TE COMPARATOR					
V _(STATE_D1)	Discharge qualification threshold1	Measured at SRP-SRN	-3	-2	-1	mV
V _(STATE_C1)	Charge qualification threshold1	Measured at SRP-SRN	1	2	3	mV
t _{STATE} ⁽²⁾	State detection qualification time				1.2	ms
LOAD REMOVA	L DETECTION	•	÷			
V _{LD(CLAMP)}	LD clamp voltage	$I_{(LDCLAMP)} = 300 \ \mu A$	16	18	20.5	V
ILD(CLAMP)	LD clamp current	V _(LDCLAMP) = 18 V			450	μA
V _{LDT}	LD threshold	Load removed < when V _{LDT}	1.25	1.3	1.35	V
R _{LD(INT)}	LD input resistance when enabled	Measured to VSS	160	250	375	kΩ
t _{LD_DEG}	LD detection de-glitch		1	1.5	2.3	ms
CCFG PIN						
V _(CCFGL)	CCFG threshold low (ratio of V_{AVDD})	3 cell configuration			10	%AVDD
V _(CCFGH)	CCFG threshold high (ratio of $V_{\text{AVDD}})$	4 cell configuration	65		100	%AVDD
V _(CCFGHZ)	CFG threshold high-Z (ratio of $V_{\text{AVDD}})$	5 cell configuration, CCFG floating, internally biased	25	33	45	%AVDD
t _{CCFG_DEG} ⁽²⁾	CCFG de-glitch			6		ms
CUSTOMER TE	ST MODE					
V _(CTM)	Customer test mode entry voltage at VDD	$VDD > VC5 + V_{(CTM)}, T_A = 25^{\circ}C$	8.5		10	V
t _{CTM_ENTRY} ⁽³⁾	Delay time to enter and exit customer test mode	$VDD > VC5 + V_{(CTM)}, T_A = 25^{\circ}C$	50			ms
t _{CTM_DELAY} ⁽³⁾	Delay time of faults while in customer test mode	$T_A = 25^{\circ}C$			200	ms
t _{CTM_OC_REC} ⁽³⁾	Fault recovery time of OCD1, OCD2, and SCD faults while in customer test mode	1 s and 8 s options, $T_A = 25^{\circ}C$			100	ms

(2)

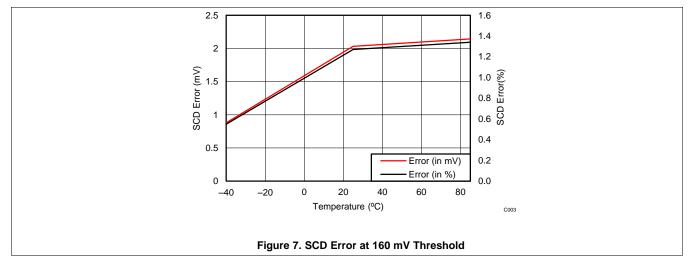
Not production tested parameters. Specified by design Device is in no fault state prior to entering Customer Test Mode. (3)

7.6 Timing Requirements

			MIN	TYP	MAX	UNIT	
PROTECTION	DELAYS ⁽¹⁾						
		0.5 s Delay Option	0.4	0.5	0.8		
	Over eltere detection delay time	1 s Delay Option	0.8	1	1.4		
t _{OVn_DELAY}	Overvoltage detection delay time	2 s Delay Option	1.8	2	2.7	S	
		4.5 s Delay Option	4	4.5	5.2		
t _{UVn_DELAY}		1 s Delay Option	0.8	1	1.5		
	Undervoltage detection delay time	2 s Delay Option	1.8	2	2.7	•	
	Undervoltage detection delay time	4.5 s Delay Option	4	4.5	5.5	S	
		9 s Delay Option	8	9	10.2		
town_DELAY	Open-wire detection delay time		3.6	4.5	5.3	S	
tOTC_DELAY	Overtemperature charge detection delay time		3.6	4.5	5.3	S	
t _{UTC_DELAY}	Undertemperature charge detection delay time		3.6	4.5	5.3	S	
tOTD_DELAY	Overtemperature discharge detection delay time		3.6	4.5	5.3	S	
t _{UTD_DELAY}	Undertemperature discharge detection delay time		3.6	4.5	5.3	S	
	Overcurrent 1 detection delay time	10 ms delay option	8	10	15	ms	
		20 ms delay option	17	20	26		
		45 ms delay option	36	45	52		
+		90 ms delay option	78	90	105		
tOCD1_DELAY		180 ms delay option	155	180	205		
		350 ms delay option	320	350	405		
		700 ms delay option	640	700	825		
		1420 ms delay option	1290	1420	1620		
		5 ms delay option	4	5	8		
		10 ms delay option	8	10	15		
		20 ms delay option	17	20	26		
t	Overcurrent 2 detection delay time	45 ms delay option	36	45	52	ms	
^t OCD2_DELAY	Overcurrent 2 detection delay time	90 ms delay option	78	90	105	1115	
		180 ms delay option	155	180	205		
		350 ms delay option	320	350	405		
		700 ms delay option	640	700	825		
t _{SCD_RELAY}	Short-circuit detection delay time	360 µs delay option	220	400	610	μs	
top pro	Overcurrent 1, Overcurrent 2, and	1 s option	0.8	1	1.4	e	
t _{CD_REC}	Short-circuit recovery delay time	9 s option	8	9	10.2	S	


(1) Not production tested parameters. Specified by design

bq77904, **bq77905** SLUSCM3A – JUNE 2016 – REVISED JUNE 2016


www.ti.com

7.7 Typical Characteristics

Typical Characteristics (continued)

8 Detailed Description

8.1 Overview

The bq77904 and bq77905 families are full-feature stackable primary protectors for Li-ion/Li-polymer batteries. The devices implement a suite of protections including:

- Cell voltage: overvoltage, undervoltage
- Current: Overcurrent discharge 1 and 2, short circuit discharge
- Temperature: overtemperature and undertemperature in charge and discharge
- PCB: cell open wire connection
- FET body diode protection

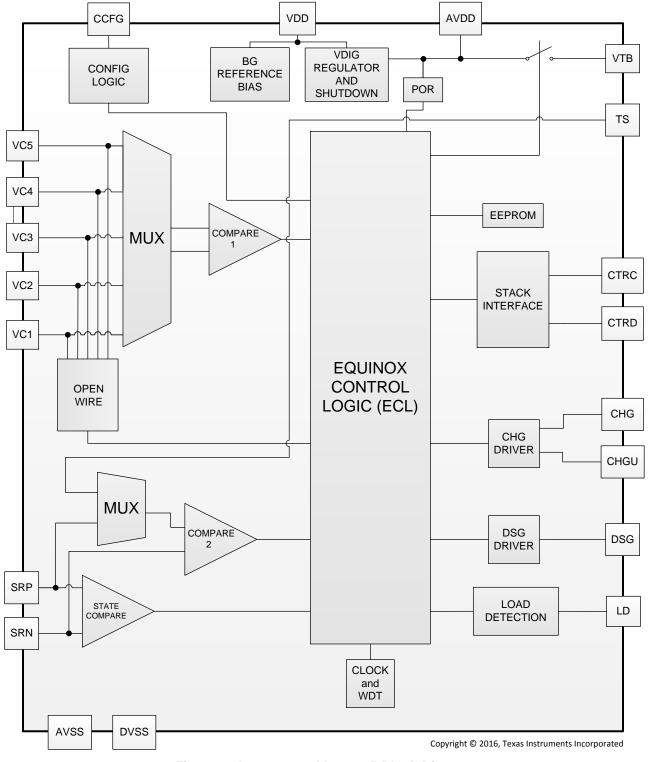
Protection thresholds and delays are factory-programmed and available in a variety of configurations.

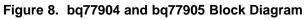
The bq77904 supports 3S-to-4S cell configuration and bq77905 supports 3S-to-5S cell configuration. Up to 4 devices can be stacked to support ≥6S cell configuration, providing protections up to 20S cell configuration.

The device has built-in CHG and DSG drivers for low-side N-channel FET protection, which automatically opens up the CHG and/or DSG FETs after protection delay time when a fault is detected. A set of CHG/DSG override is provided to allow disabling of CHG and/or DSG driver externally. Although host system can use this function to disable the FETs control, the main usage of these pins is to channel down the FET control signal from the upper device to the lower device in a cascading configuration in \geq 6S battery pack.

8.1.1 Device Functionality Summary

For brevity, in this and subsequent sections, a number of abbreviations will be used to identify specific fault conditions. The fault descriptor abbreviations and their meanings are defined in Table 3.


FAULT DESCRIPTOR		FAULT DETECTION THRES	SHOLD and DELAY OPTIONS	FAULT RECOVERY METHOD and SETTING OPTIONS		
OV	Overvoltage	3 V to 4.575 V (25 mV step)	0.5, 1, 2, 4.5 s	Hysteresis	0, 100, 200, 400 mV	
UV	Undervoltage	1.2 V to 3 V (100 mV step for < 2.5 V, 50 mV step for ≥ 2.5 V)	1, 2, 4.5, 9 s	Hysteresis, OR Hysteresis + Load Removal	200, 400 mV	
OW	Open Wire (cell to pcb disconnection)	0 (disabled), 100, 200, or 400 nA	4.5 s	Restore bad VCx to pcb connection	VCx > V _{OW}	
OTD ⁽¹⁾	Overtemperature during Discharge	65°C or 70°C	4.5 s	Hysteresis	10°C	
OTC ⁽¹⁾	Overtemperature during Charge	45°C or 50°C	4.5 s	Hysteresis	10°C	
UTD ⁽¹⁾	Undertemperature during Discharge	-20°C or -10°C	4.5 s	Hysteresis	10°C	
UTC ⁽¹⁾	Undertemperature during Charge	-5°C or 0°C	4.5s	Hysteresis	10°C	
OCD1	Overcurrent1 during Discharge	10 mV to 85 mV (5 mV step)	10, 20, 45, 90, 180, 350, 700, 1420 ms	Delay, OR		
OCD2	Overcurrent1 during Discharge	20 mV to 170 mV (10 mV step)	5, 10, 20, 45, 90, 180, 350, 700 ms	Delay + Load Removal , OR Load Removal	1 s or 9 s	
SCD	Short Circuit Discharge	40 mV to 340 mV (20 mV step)	360 µs			
CTRC	CHG signal override control	Disable via external control or via CHGU signal from the upper device in stack configuration	t _{CTRDEG_ON}	Enable via external control or via CHGU signal from the upper device in stack configuration	t _{CTRDEG_OFF}	
CTRD	DSG signal override control	Disable via external control or via DSG signal from the upper device in stack configuration	t _{CTRDEG_ON}	Enable via external control or via DSG signal from the upper device in stack configuration	t _{CTRDEG_OFF}	


Table 3. Device Functionality Summary

(1) These thresholds are target based on temperature, but they are dependent on external components that could vary based on customer selection. Circuit is based on 103AT NTC thermistor connected to TS and VSS, and a 10-kΩ resistor connected to VTB and TS. Actual thresholds must be determined in mV. Refers to the over- and under-temperature mV threshold in the Electrical Characteristics table.

8.2 Functional Block Diagram

NSTRUMENTS

EXAS

8.3 Feature Description

8.3.1 Protection Summary

The bq77904 and bq77905 have two comparators. Both are time multiplexed to detect all protection fault conditions. Each of the comparators runs on a time-multiplexed schedule and cycles through the assigned protection-fault checks. Comparator 1 checks for OV, UV, and OW protection faults. Comparator 2 checks for OCD1, OCD2, SCD, OTC, OTD, UTC, and UTD protection faults. For OV, UV, and OW protection faults, every cell is checked individually in round-robin fashion starting with cell 1 and ending with the highest-selected cell. The number of the highest cell is configured using the CCFG pin.

Devices can be ordered with various timing and hysteresis settings. Refer to the *Device Comparison Table* section for a summary of options available per device type.

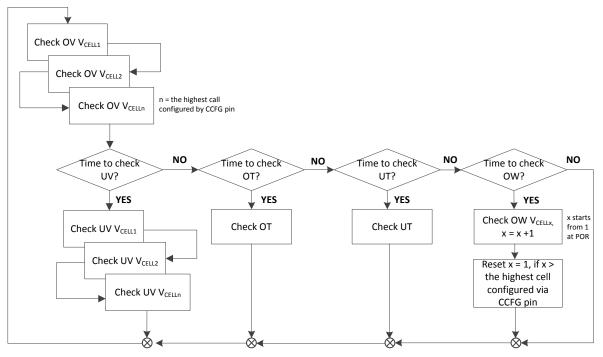


Figure 9. Comparator 1 Flow Chart

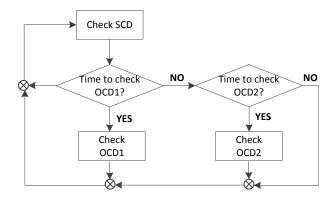


Figure 10. Comparator 2 Flow Chart

8.3.2 Fault Operation

8.3.2.1 Operation in OV

An OV fault detection is when at least one of the cell voltages is measured above the OV threshold, V_{OV} . The CHG pin is turned off if the fault condition lasts for a duration of OV Delay, t_{OVn_DELAY} . The OV fault recovers when the voltage of the cell in fault is below the (OV threshold - OV hysteresis, V_{HYS_OV}) for a time of OV Delay.

The bq77904, ba779055 assumes OV fault after device reset.

8.3.2.2 Operation in UV

An UV fault detection is when at least one of the cell voltages is measured below the UV threshold, V_{UV} . The DSG is turned off if the fault condition lasts for a duration of UV Delay, t_{UVn_DELAY} . The UV fault recovers when:

- the cell voltage in fault is above the (UV threshold + UV hysteresis, V_{HYS UV}) for a time of UV Delay only, OR
- the cell voltage in fault is above the (UV threshold + UV hysteresis) for a time of UV Delay AND Load removal is detected

If load removal is enabled as part of UV recovery requirement, The CHG FET R_{GS} value should change to around 3 M Ω . Refer to the *Using Load Detect For UV Fault Recovery* section of this document for more detail. This requirement applies to load removal enabled for UV recovery only. Hence, if load removal is selected for current fault recovery but not for the UV recovery, a lower CHG FET R_{GS} value (typical of 1M Ω) can be used to reduce the CHG FET turn off time.

To minimize supply current, the device disables all overcurrent detection blocks anytime the DSG FET has been turned off (due to a fault or CTRD being driven to the DISABLED state). Upon recovery from fault or when CTRD is no longer externally driven, all overcurrent detection blocks reactivate before the DSG FET turns back on.

8.3.2.3 Operation in OW

An OW fault detection is when at least one of the cell voltages is measured below the OW threshold, V_{OW} . Both CHG and DSG are turned off if the fault condition lasts for a duration of OW Delay, t_{OWn_DELAY} . The OW Fault recovers when the cell voltage in fault is above the OW threshold + OW hysteresis, V_{OW_HYS} for a time of OW Delay.

The t_{OWn_DELAY} time starts when voltage at a given cell is detected below V_{OW} threshold and is not from the time that the actual event of open wire occurs. During an open wire event, it is common that the device detects an undervoltage and/or overvoltage fault before detecting an open wire fault. This may happen due to the differences in fault thresholds, fault delays, and the VCx pin filter capacitor values. To ensure both CHG and DSG return to normal operation mode, the OW, OV and UV faults recovery conditions must be met.

8.3.2.4 Operation in OCD1

An OCD1 fault is when the discharge load is high enough that the voltage across the R_{SNS} resistor, (V_{SRP} - V_{SRN}), is measured below the OCD1 voltage threshold, V_{OCD1} . Both CHG and DSG are turned off if the fault condition lasts for a duration of OCD1 Delay, t_{OCD1_DELAY} .

The OCD1 Fault recovers when:

- Load removal detected only, V_{LD} < V_{LDT}, OR
- Overcurrent Recovery Timer, t_{CD REC}, expiration only , OR
- Overcurrent Recovery Timer expiration and load removal detected

8.3.2.5 Operation in OCD2

An OCD2 fault is when the discharge load is high enough that the voltage across the R_{SNS} resistor, (V_{SRP} - V_{SRN}), is measured below the OCD2 voltage threshold, V_{OCD2} . Both CHG and DSG are turned off if the fault condition lasts for a duration of OCD2 Delay, t_{OCD2_DELAY} .

The OCD2 Fault recovers when:

- Load removal detected only, V_{LD} < V_{LDT}, OR
- Overcurrent Recovery Timer, t_{CD REC}, expiration only , OR

Feature Description (continued)

Overcurrent Recovery Timer expiration and load removal detected

8.3.2.6 Operation in SCD

An SCD fault is when the discharge load is high enough that the voltage across the R_{SNS} resistor, (V_{SRP} - V_{SRN}), is measured below the SCD voltage threshold, V_{SCD} . Both CHG and DSG are turned off if the fault condition lasts for a duraiton of SCD Delay, t_{SCD} _DELAY.

The SCD Fault recovers when:

- Load removal detected only, V_{LD} < V_{LDT}, OR
- Overcurrent Recovery Timer, t_{CD REC}, expiration only , OR
- Overcurrent Recovery Timer expiration and load removal detected

8.3.2.7 Overcurrent Recovery Timer

The timer expiration method simply activates an internal recovery timer as soon as the initial fault condition exceeds the OCD1/OCD2/SCD time. When the recovery timer reaches its limit, both CHG and DSG drivers are turned back on. If the combination option of timer expiration AND load removal is used, then the load removal condition is only evaluated upon expiration of the recovery timer, which can have an expiration period of $t_{CD, REC}$.

8.3.2.8 Load Removal Detection

The load removal detection feature is implemented with the LD pin (see Table 4). When no undervoltage fault and current fault conditions are present, the LD pin is held in an open drain state. Once any UV, OCD1, OCD2, or SCD fault occurs and load removal is selected as part of the recovery conitions, a high impedance pull-down path to VSS is enabled on the LD pin. With an external load still present, the LD pin will be externally pulled high – it is internally clamped to $V_{LDCLAMP}$ and should also be resistor-limited via R_{LD} externally to avoid conducting excessive current. If the LD pin exceeds V_{LDT} , this is interpreted as a *load present condition*. When the load is eventually removed, the internal high-impedance path to VSS should be sufficient to pull the LD pin below V_{LDT} for t_{LD_DEG} – this is interpreted as a *load removed condition* and is one of the recovery mechanisms selectable for undervoltage and overcurrent faults.

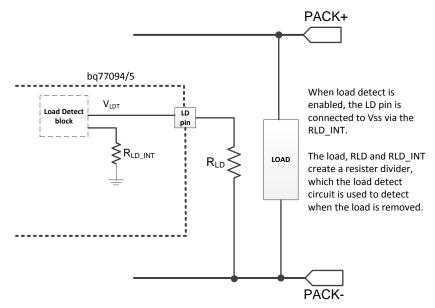


Figure 11. Load Detection Circuit For Current Faults Recovery

Table 4. Load State

LD PIN	LOAD STATE
≥ V _{LDT}	Load present
$< V_{LOT}$ for $t_{LD_{DEG}}$	Load removed

8.3.2.9 Load Removal Detection in UV

During UV fault, only the DSG FET driver is turned off while the CHG FET driver remains on. When load removal is selected as part of the UV recovery condition, the active CHG FET driver would alter the resistor divider ratio of the load detection circuit. To ensure the load status can still be detected properly, it is required to increase the CHG FET external R_{GS} value to about 3 M Ω . Refer to the *Using Load Detect For UV Fault Recovery* section of this document for more detail. Note that if load removal is only selected for the current fault recovery (and is not used for UV recovery), it is not required to use a larger CHG FET R_{GS} value.

8.3.2.10 Operation in OTC

An OTC Fault occurs when the temperature increases such that the voltage across an NTC thermistor goes below the OTC voltage threshold, V_{OTC} . CHG is turned off if the fault condition lasts for an OTC Delay time, t_{OTC_DELAY} . The state comparator is turned on when CHG is turned off. If a discharge current is detected, the device immediately switchs the CHG back on. The response time of the state comparator is typically in 700 µs and should not pose any disturbance in the discharge event. The OTC fault recovers when the voltage across thermistor gets above OTC recovery threshold, V_{OTC_REC} for OTC delay time.

8.3.2.11 Operation in OTD

An OTD fault is when the temperature increases such that the voltage across an NTC thermistor goes below the OTD voltage threshold, V_{OTD} . Both CHG and DSG are turned off if the fault condition lasts for an OTD Delay time, t_{OTD_DELAY} . The OTD fault recovers when the voltage across thermistor gets above OTD recovery threshold, V_{OTD_REC} , a time of OTD Delay.

8.3.2.12 Operation in UTC

A UTC fault occurs when the temperature decreases such that the voltage across an NTC thermistor gets above the UTC voltage threshold, V_{UTC} . CHG is turned off if the fault condition lasts for a time of UTC Delay, t_{UTC_DELAY} . The state comparator is turned on when CHG is turned off. If a discharge current is detected, the device will immediately switch the CHG back on. The response time of the state comparator is typically in 700 μ s and should not pose any disturbance in the discharge event. The UTC fault recovers when the voltage across thermistor gets below UTC recovery threshold, V_{UTC_REC} , a time of UTC Delay.

8.3.2.13 Operation in UTD

A UTD fault occurs when the temperature decreases such that the voltage across an NTC thermistor goes above the UTD voltage threshold, V_{UTD} . Both CHG and DSG are turned off if the fault condition lasts for a UTD Delay time. The UTD Fault recovers when the voltage across thermistor gets below UTD recovery threshold, $V_{UTD_{REC}}$, a time of UTD Delay.

8.3.3 Protection Response and Recovery Summary

Table 5 summarize how each fault condition affects the state of the DSG and CHG output signals, as well as the recovery conditions required to resume charging and/or discharging. As a rule, the CHG and DSG output drivers are enabled only when no respective fault conditions are present. When multiple simultaneous faults (such as an OV and OTD) are present, all faults must be cleared before the FET can resume operation.

ISTRUMENTS

FAULT	FAULT TRIGGER CONDITION	CHG	DSG	RECOVERY METHOD	TRIGGER DELAY	RECOVERY DELAY
CTRC disabled	CTRC disabled for delgitch delay time	OFF	_	CTRC must be enabled for delgitch delay time	t _{CTRDLY}	
CTRD disabled	CTRD disabled for delgitch delay time	_	OFF	CTRD must be enabled for delgitch delay time	t _{ctrc}	DLY
OV	V(Cell) rises above V _{OV} for delay time	OFF	_	V(Cell) drops below $V_{OV} - V_{HYS_OV}$ for delay	t _{OVn_D}	ELAY
UV	V(Cell) drops below V_{UV} for delay time	_	OFF	V(Cell) rises above V_{UV} + V_{HYS_UV} for delay	t _{UVn_D}	ELAY
OW	$VC_X - VC_{X-1} < V_{OW}$ for delay time	OFF	OFF	Bad VC _X recovers such that VC _X – VC _{X-1} > V _{OW} + V _{OW_HYS} for delay	t _{OWn_D}	ELAY
OCD1, OCD2, SCD	(VSRP - VSRN) < VOCD1, VOCD2, or VSCD for delay time	OFF	OFF	Recovery delay expires, OR LD detects < V _{LDT} , OR Recovery delay expires + LD detects < V _{LDT}	tocd1_delay, tocd2_delay, tscd_delay,	t _{CD_REC}
OTC ⁽¹⁾	Temperature rises above T_{OTC} for delay time	OFF	_	Temp drops below $T_{OTC} - T_{OTC_REC}$ for delay	t _{OTC_DI}	ELAY
OTD ⁽¹⁾	Temperature rises above $T_{\mbox{\scriptsize OTD}}$ for delay time	OFF	OFF	Temp drops below $T_{\text{OTD}} - T_{\text{OTD}_\text{REC}}$ for delay	t _{OTD_DI}	ELAY
UTC ⁽¹⁾	Temperature drops below T_{UTC} for delay time	OFF	_	Temperature rises above T_{UTC} + $T_{\text{UTC}_\text{REC}}$ for delay	tutc_D	ELAY
UTD ⁽¹⁾	Temp drops below T _{UTD} for delay time	OFF	OFF	Temp rises above $T_{UTD} + T_{UTD_{REC}}$ for delay	t _{UTD_D}	ELAY

Table 5. Fault Condition, State, and Recovery Methods

(1) T_{UTC} , T_{UTD} , T_{UTC_REC} , and T_{UTD_REC} correspond to the temperature produced by V_{UTC} , V_{UTD} , V_{UTC_REC} , and V_{UTD_REC} of the selected thermistor resistance.

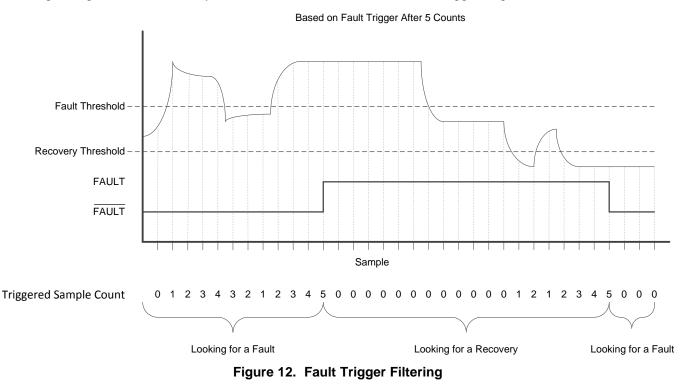
For bq77904 and bq77905 devices to prevent CHG FET damage, there are times when the CHG FET may be enabled even though an OV, UTC, OTC or CTRC low event has occurred. See the *State Comparator* section for details.

8.3.4 Configuration CRC Check And Comparator Built-In-Self-Test

To improve reliability, the device has built in CRC check for all the factory-programmable configuration, such as the thresholds and delay time setting. When the device is set up in the factory, a corresponding CRC value is also programmed to the memory. During normal operation, the device compares the configuration setting against the programmed CRC periodically. A CRC error will reset the digital circuitry and increment the CRC fault counter. The digital reset forces the device to reload the configuration as an attempt to correct the configurations. A correct CRC check reduces the CRC fault counter. Three CRC faults counts will turn off both the CHG and DSG drivers. If FETs are opened due to CRC error, only a POR can recover the FET state and reset the CRC fault.

In addition to the CRC check, the device also has built-in-self-test (BIST) on the comparators. The BIST runs in a scheduler, each comparator is checked for a period of time. If a fault is detected for the entire check period, the particular comparator is considered at fault, and both the CHG and DSG FETs is turned off. The BIST continuous to run by the scheduler even if a BIST fault is detected. If the next BIST result is good, the FET driver resumes normal operation.

The CRC check and BIST check do not affect the normal operation of the device. However, there is not specific indication when a CRC or BIST error is detected besides turning off both CHG and DSG drivers. If there is no voltage, current or temperature fault condition present, but CHG and DSG drivers remain off, it is possible either CRC or BIST error is detected. User can POR the device to reset the device.


8.3.5 Fault Detection Method

8.3.5.1 Filtered Fault Detection

The device detects a fault once the applicable fault is triggered after accumulating sufficient trigger sample counts. The filtering scheme is based on a simple add/subtract. Starting with the Triggered Sample Count cleared, the counts go up for a sample that is taken across the tested condition (for example, above the fault

threshold when looking for a fault) and the counts go down for a sample that is taken before the tested condition (that is, below the fault threshold). Figure 12 shows an example of a signal that triggers a fault when accumulating 5 counts above the Fault Threshold. Once a fault has been triggered, the trigger sample counts reset and counts are incremented for every sample that is found to be below the Recovery Threshold.

Note that with filtered detection, when the input signal falls below the fault threshold, the sample count does not reset but only counts down as shown in Figure 12. Therefore, it is normal to observe a longer delay time if a signal is right at the detection threshold. The noise can push the delay count to be counting up and down, resulting a longer time for the delay counter to reach its final accumulated trigger target.

8.3.6 State Comparator

A small, low-offset analog State comparator monitors the sense-resistor voltage (SRP-SRN) to determine when the pack is in a discharge state less than a minimum threshold, V_{STATE_D} or charge state greater than a maximum threshold, V_{STATE C}. The State comparator is used to turn the CHG FET on to prevent damage or overheating during discharge in fault states that call for having only the CHG FET off, and vice versa for the DSG FET during charging in fault that call for having only the DSG FET off.

Table 6 summarizes when the State comparator is operational. The State comparator is only on during faults detected that call for only one FET driver to be turned off.

STATE COMP	CHG	DSG	MODE
OFF	ON	ON	Normal
V _{STATE_C} Detection	ON	OFF	UV, CTRD
V _{STATE_D} Detection	OFF	ON	OV, UTC, OTC, CTRC
OFF	OFF	OFF	OCD1, OCD2, SCD, UTD, OTD, OW

Table 6. State Comparator Operation Summary

Copyright © 2016, Texas Instruments Incorporated

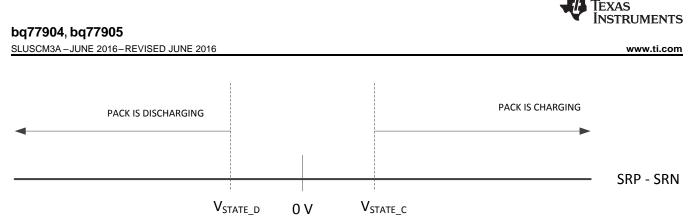


Figure 13. State Comparator Thresholds

8.3.7 DSG FET Driver Operation

The DSG pin is driven high only when no related faults (UV, OW, OTD, UTD, OCD1, OCD2, SCD, and CTRD disabled) are present. It is a fast switching driver with a target on resistance of about 15-20 Ω and an off resistance of R_{DSGOFF}. It is designed to allow customer to select the optimized R_{GS} value to archive the desirable FET rise and fall time per the application requirement and the choice of FET characteristics. When the DSG FET is turned off, the DSG pin drives low, all overcurrent protection (OCD1, OCD2, SCD) is disabled to better conserve power. These resume operation when the DSF FET is turned on. The device provides FET body diode protection via the state comparator if one FET driver is on and the other FET driver is off.

The DSG driver may be turned on to prevent FET damage if the battery pack is charging while a discharge inhibit fault condition is present. This is done via the state comparator. The state comparator (with VSTATE_C threshold) remains on for the entire duration of a DSG fault with no CHG fault event.

- If (SRP SRN) ≤ VSTATE_C, no charge event is detected, the DSG FET output will remain OFF due to the
 present of a DSG fault
- If (SRP SRN) > VSTATE_C, a charge event is detected, the DSG FET output will turn ON for body diode protection

See the State Comparator section for detail.

The presence of any related faults as shown in Figure 14 results in the DSGFET_OFF signal.

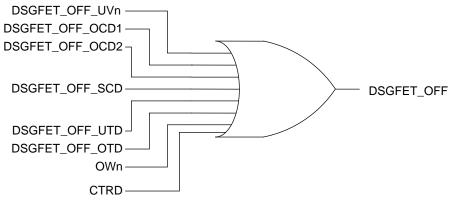


Figure 14. Faults That Can Qualify DSGFET_OFF

8.3.8 CHG FET Driver Operation

The CHG and CHGU pin are driven high only when no related faults (OV, OW, OTC, UTC, OTD, UTD, OCD1, OCD2, SCD, and CTRC are disabled) are present or the pack has a discharge current where (SRP-SRN) < V_{STATE_D1} . The CHG pin drives the CHG FET, which is for use on the single device configuration or by the bottom device in a stack configuration. The CHGU pin has the same logic state as the CHG pin and is for use in the upper device (in a multi-stack configuration) to provide the drive signal to the CTRC pin of the lower device and should never connect to the CHG FET directly.

Turning off the CHG pin has no influence on the overcurrent protection circuitry. The CHG pin is designed to switch on quickly and the target on resistance is about 2 k Ω . When the pin is turned off, the CHG driver pin is actively driven low and will together with PACK- voltage below ground.

The CHG FET may be turned on to protect the FET's body diode if the pack is discharging, even if a charging inhibit fault condition is present. This is done via the state comparator. The State comparator (with VSTATE_D threshold) remains on for the entire duration of a DSG fault with no CHG fault event.

- If (SRP SRN) > VSTATE_D, no discharge event is detected, the CHG FET output will remain OFF due to the present of a CHG fault
- If (SRP SRN) ≤ VSTATE_D, a charge event is detected, the CHG FET output will turn ON for body diode protection

The CHGFET_OFF signal is a result of the presence of any related faults as shown in Figure 15.

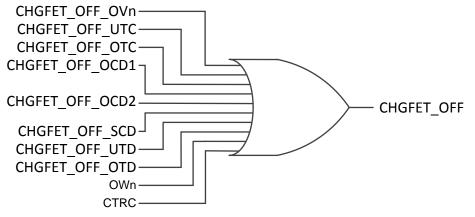
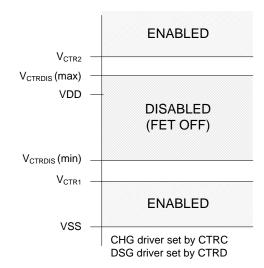


Figure 15. Faults That Can Qualify CHGFET OFF


8.3.9 External Override of CHG and DSG Drivers

The device allows direct disabling of the CHG and DSG drivers via the CTRC and CTRD pins respectively. The operation of CTRC and CTRD pins is shown in Figure 16. To support the SimpleStack solution for higher-cell count packs, these pins are designed to operate above the device's VDD level. Simply connect a 10 M Ω resistor between a lower device CTRC and CTRD input pins to an upper device CHGU and DSG output pins (see schematics in *Stacking Implementations*.

CTRC only enables or disables the CHG pin, while CTRD only enables or disables the DSG pin. When the CTRx pin is in the DISABLED region, the respective FET pin will be off, regardless of the state of the protection circuitry. When the CTRx pin is in either ENABLED region, the protection circuitry determines the state of the FET driver.

Both CTRx pins apply the fault-detection filtered method to improve the robustness of the signal detection; a counter counts up if an ENABLED signal is sampled; the counter counts down if a DISABLED signal is sampled. When the counter counts up from 0% to > 70% of its full range, which take about 7 ms typical of a solid signal, the CTRx pins take the signal as ENABLED. If the counter counts down from 100% to < 30%, of its full range, which take about 7 ms typical of a solid signal, the CTRx pins take the signal as ENABLED. If the CTRx pins take the signal as DISABLED. From a 0 count counter (solid DISABLE), a solid ENABLE signal takes about t_{CTRDEG_ON} time to deglitch. From a 100% count (solid ENABLE), a solid DISABLE signal takes about t_{CTRDEG_OFF} time to deglitch. Although such a filter scheme provides a certain level of noise tolerance, it is highly recommended to shield the CTRx traces and keep the traces as short as possible in the PCB layout design. The CTRx deglitch time will add onto the FET response timing on OV, UV, and OW faults in a stack configuration. The t_{CTRDEG_OFF} time adds an additional delay to the fault detection timing and the t_{CTRDEG_ON} time adds an additional delay to the fault recovery timing.

Figure 16. External Override of CHG and DSG Drivers

8.3.10 Configuring 3S, 4S, or 5S Mode

The bq77904 supports 3S and 4S packs, while the bq77905 supports 3S, 4S, and 5S packs. In order to avoid accidentally detecting a UV fault on unused (shorted) cell inputs, the device must be configured for the specific cell count of the pack. This is set with the configuration pin, CCFG, which is mapped as in Table 7. The device periodically checks the CCFG status and takes $t_{CCFG DEG}$ time to detect the pin status.

Table 7. CCFG Configurations

CCFG	CONFIGURATION	CONNECT TO
< V _{CCFGL} for t _{CCFG_DEG}	3 cells	AVSS
Within V _{CCFGM} for t _{CCFG_DEG}	4 cells	AVDD
> V _{CCFGH} for t _{CCFG_DEG}	5 cells	Floating

The CCFG pin should be tied to the recommended net from Table 7. The device compares the CCFG input voltage to the AVDD voltage and should never be set above the AVDD voltage. When the device configuration is for 5S, leave the CCFG pin floating. The internal pin bias is approximately 30% of the AVDD voltage for 5S configuration. Note that the bq77904 should be configured in 5S mode as this results in a permanent UV fault.

8.3.11 Stacking Implementations

Higher than 5S cell packs may be supported by daisy-chaining multiple devices. Each device will ensure OV, UV, OTC OTD, UTC, and UTD protections, of its directly monitored cells, while any fault conditions automatically disable the global CHG and/or DSG FET driver. Note that upper devices do not provide OCD1, OCD2, or SCD protections, as these are based on pack current. For bq77904 and bq77905 used on the upper stack, the SRP and SRN pins should be shorted to prevent false detection.

Table 8. Stacking Implementation Configurations

CONFIGURATION	CHG PIN	CHGU PIN
Bottom or single device	Connect to CHG FET	Leave unconnected
Upper stack Leave unconnect		Connect to CTRC of the lower device

To configure higher-cell packs, follow this procedure:

- Each device must have a connection on at least three lowest-cell input pins.
- It is recommended to connect higher-cell count to the upper devices (for example, for a 7S configuration, connect 4 cells on the upper device and 3 cells on the bottom device). This is to provide stronger CRTx signal to the bottom device.
- Ensure that each device's CCFG pin is configured appropriately for its specific number of cells (three, four, or five cells).

- For the bottom device, the CHG pin should be used to drive the CHG FET and leave the CHGU pin unconnected. For the upper device, the CHGU pin should be used to connect to lower device's CTRC pin with a R_{CTRx} and leave the CHG pin unconnected.
- Connect the upper DSG pins with a R_{CTRx} to the immediate lower device CTRD pin
- All upper devices should have the SRP and SRN to its AVSS pin.
- If load removal is not used for UV recovery, connect the upper device LD pin to its AVSS pin shown in Figure 17 and Figure 18. Otherwise, refer to Figure 25 for proper LD connection.

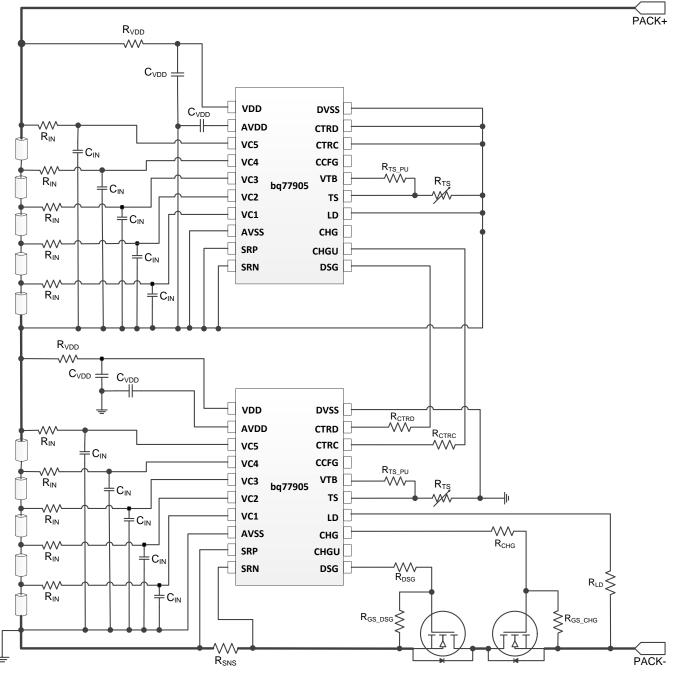
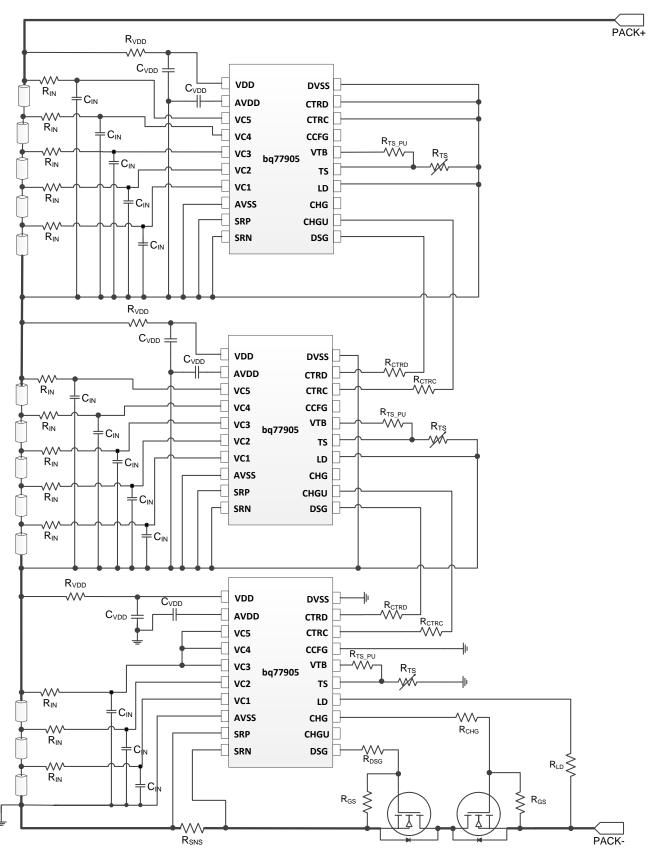



Figure 17. 10S Pack Using Two bq77905 Devices

INSTRUMENTS

Texas

8.3.12 Zero-Volt Battery Charging Inhibition

Once the device is powered up, it can pull the CHG pin up if the VDD $\geq V_{SHUT}$, which varies from about 1 V per cell on a 3S configuration to about 0.6 V per cell on a 5S configuration. If the battery stack voltage falls below V_{SHUT} , the device is in SHUTDOWN mode and the CHG driver is not longer active and charging is not allowed unless VDD rises above V_{POR} again.

8.4 Device Functional Modes

8.4.1 Power Modes

8.4.1.1 Power On Reset (POR)

The device powers up when $VDD \ge V_{POR}$. At POR, the following events occur:

- A typical 5-ms hold-off delay applies to both CHG and DSG drivers, keeping both drivers in the OFF state. This provides time for the internal LDO voltage to ramp up.
- CTRC and CTRD de-glitch occurs. During the de-glitch time, the CHG and DSG driver remains off. Note that de-glitch time basically mask out the 5-ms hold-off delay.
- Device assumes OV fault at POR, hence, the CHG driver is off for OV recovery time if all the cell voltages are < (V_{OV} V_{HYS_OV}). The OV recovery time start after the 5-ms hold-off delay. If device reset occurs when any cell voltage is above the OV hysteresis range, the CHG driver will remain off until an OV recovery condition is met.

8.4.1.2 FAULT Mode

If any configured protection fault is detected, the device enters the FAULT mode. In this mode, the CHG and/or DSG driver can be turned off depending on the fault. Refer to the Fault Response Summary for detail. When one of the FET drivers (either CHG or DSG) is turned off, while the other FET driver is still on, the state comparator is activated for FET body diode protection.

8.4.1.3 SHUTDOWN Mode

This is the lowest power consumption state of the device when VDD falls below V_{SHUT} . In this mode, all fault detections, CHG and DSG drivers are disabled. The device will wake up and enter NORMAL Mode when VDD rises above V_{POR} .

8.4.1.4 Customer Fast Production Test Modes

The bq7790x device supports the ability to greatly reduce production test time by cutting down on protection fault delay times. To shorten fault times, place the bq7790x device into Customer Test Mode (CTM). CTM is triggered by raising VDD to V_{CTM} voltage above the highest cell input pin (that is, VC5) for t_{CTM ENTRY} time.

The CTM is expected to be used in single-chip designs only. CTM is not supported for stacked designs. Once the device is in CTM, all fault delay and non-current fault's recovery delay times reduce to a value of t_{CTM_DELAY} . The fault recovery time for overcurrent faults (OCD1, OCD2, and SCD) is reduced to $t_{CTM_OC_REC}$.

Verification of protection fault functionality can be accomplished in a reduced time frame in CTM. Reducing the VDD voltage to the same voltage applied to the highest-cell input pin for t_{CTM ENTRY} will exit CTM.

In CTM, with reduced time for all internal delays, qualification of all faults will be reduced to a single instance. Thus in this mode, fault condition qualification is more susceptible to transients, so take care to have fault conditions clearly and cleanly applied during test mode to avoid false triggering of fault conditions during CTM.

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The bq77904/5 is low power stackable battery pack protector with integrated low-side NMOS FET driver. The bq77904/5 provides voltage, current, temperature and open wire protections. All the devices protect and recover without a MCU control. The following section highlights several recommended implementation when using these devices.

9.1.1 Recommended System Implementation

9.1.1.1 CHG and DSG FET Rise And Fall Time

The CHG and DSG FET driver are designed to have fast switching time. Customer should select a proper gate resistor (R_{CHG} and R_{DSG} in the reference schematic) to set to the desired rise/fall time.

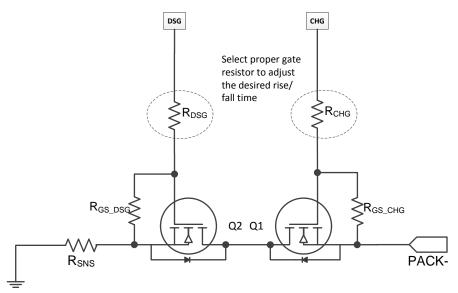


Figure 19. Select Proper Gate Resistor For FET Rise And Fall Time

The CHG FET fall time is generally slower because it is connected to the PACK- terminal. The CHG driver will pull to V_{SS} quickly when the driver is signaled to turn off. Once the gate of the CHG FET reaches ground or Vgsth, the PACK- will start to fall below ground, the CHG signal will follow suit in order to turn off the CHG FET. This portion of the fall time is strongly dependent on the FET characteristic, the number of FETs in parallel, and the value of gate-source resistor ($R_{GS_{CHG}}$).

Application Information (continued)

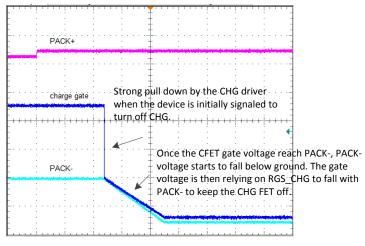
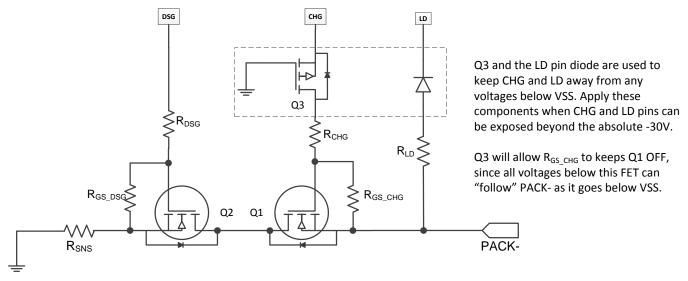



Figure 20. CHG FET Fall Time

9.1.1.2 Protecting CHG And LD

Since both CHG and LD are connected to PACK- terminal, these pins are specially designed to sustain an absolute max of -30 V. However, the device can be used in a wide variety of application, it is possible to expose the pins lower than -30 V absolute max rating.

To protect the pins, it is recommended to put a PMOS FET in series of the CHG pin and a diode in series of the LD pin as shown below.

9.1.1.3 Protecting CHG FET

When CHG driver is off, CHG is pulled to V_{SS} , the PACK- terminal can be pull up to PACK+ level when a load is connected. This can put the gate-source voltage above the absolute max of the MOSFET rating. Hence, it is common to place a Zener diode across the CHG FET's gate-source to protect the CHG FET. Additional components are added when a Zener is used to limit current going into the CHG pin as well as reducing the impact on rise time. See Figure 22 for details.

Application Information (continued)

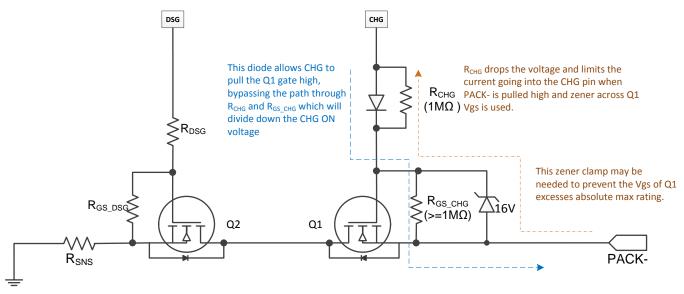
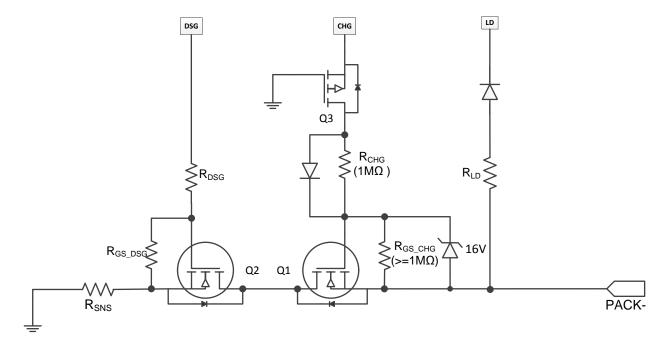
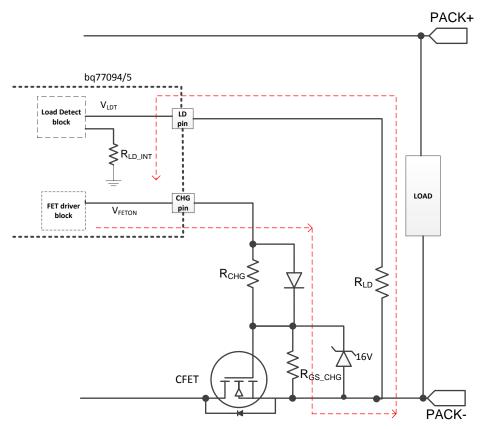



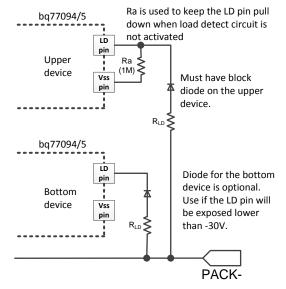
Figure 22. Protect CHG FET from High Voltage on PACK-

9.1.1.4 Using Load Detect For UV Fault Recovery

A larger CHG FET gate-source resistor is required if load removal is enabled as part of the UV recovery criteria. When the load removal circuit is enabled, the device is internally connected to Vss. Since in UV fault, the CHG driver remains on, it creates a resistor divider path to the load detect circuit.

Application Information (continued)




Figure 24. Load Detect Circuit During UV Fault

To ensure load removal is detected properly during UV fault, it is recommended to use 3.3 M Ω for R_{GS_CHG} (instead of a typical of 1 M Ω when load removal is NOT required for UV recovery). R_{CHG} can stay in 1 M Ω as recommended when using CHG FET protection components. The CHG FET rise time impact is minimized as described in the "Protecting CHG FET" section. On a stacked configuration, connect the LD pin as shown in Figure 25 if load removal is used for UV fault recovery. If load detection is not required for UV fault recovery, a larger value of R_{GS_CHG} can be used (that is, 10 M Ω) and there LD pin on the upper devices can be left floating.

TEXAS INSTRUMENTS

www.ti.com

Application Information (continued)

9.1.1.5 Temperature Protection

The device detects temperature by checking the voltage divided by R_{TS_PU} and R_{TS} , with the assumption of using 10 K Ω R_{TS_PU} and 103AT NTC for R_{TS} . System designer should always check the thermistor resistance characteristic and refer to the temperature protection threshold specification in the Electrical Characteristic table to determine if a different pull up resistor should be used. If a different temperature trip pint is required, it is possible to scale the threshold using this equation: Temperature Protection Threshold = $R_{TS}/(R_{TS} + R_{TS_PU})$.

Example: Scale OTC trip points from 50°C to 55°C

The OTC protection can be set to 45°C or 50°C. When the device's OTC threshold is set to 50°C, it is referred to configure the V_{OTC} parameter to 29.38% of VTB (typical), with the assumption of $R_{TS_PU} = 10K\Omega$ and $R_{TS} = 103AT$ or similar NTC (which the NTC resistance at 50°C = 4.16K Ω). The V_{OTC} specification is simply the resistor divider ratio of R_{TS_PU} and R_{TS} .

The V_{OTC} , V_{OTD} , V_{UTC} and V_{UTD} configuration options are fixed in the device. Hence, the actual temperature trip point can only adjust by using a different B-value NTC and/or using a different R_{TS PU}.

In this example, the 103AT NTC resistance at 55°C is 3.536 K Ω . By changing the R_{TS_PU} from 10 K Ω to 8.5 K Ω , we can scale the actual OTC temperature trip point from 50°C to 55°C. Because the R_{TS_PU} value is smaller, this change affects all the other temperature trip points and scales OTD, UTC and UTD to ~5°C higher as well.

9.1.1.6 Adding Filter To Sense Resistor

Current fault is sense through voltage across sense resistor. Optional RC filters can be added to the sense resistor to improve stability.

Application Information (continued)

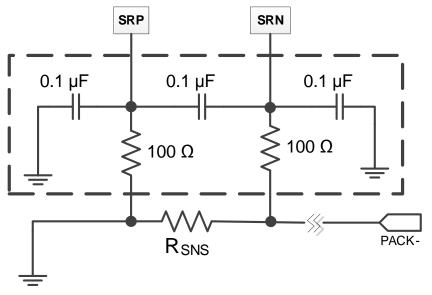


Figure 26. Optional Filters Improve Current Measurement

9.1.1.7 Using State Comparator In Application

The state comparator does not have built-in hysteresis. It is normal to observe the FET body diode protection toggling on and off with the $V_{\text{STATE_C1}}$ or $V_{\text{STATE_D1}}$ accuracy range. In a typical application, the sense resistor is selected according to the application current, which usually is not close to the state comparator threshold.

9.1.1.7.1 Examples

For example, using a 5-Ah battery, with 1C-rate (5 A) charge and 2C-rate (10 A) discharge, the sense resistor is mostly 3 m Ω or less.

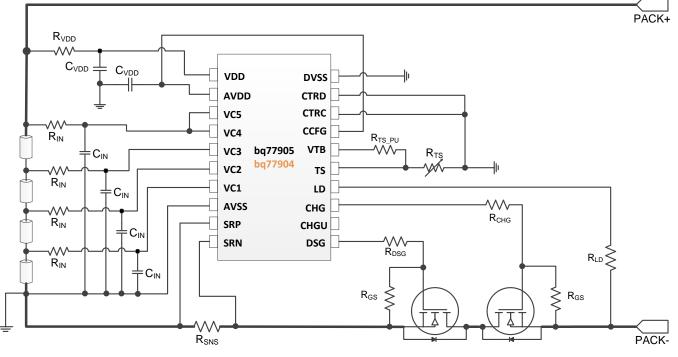
The typical current to turn on the FET body diode protection is 667 mA using this example. Since there is no built-in hysteresis, noise can reset the state comparator counter and toggle off the FET body diode protection and vice versa. Hence, it is normal to observe the device toggles the FET body diode protection on or off within 1 mV to 3 mV range. With a 3mohm sense resistor, it is about 330 mA to 1 A. As this behavior is due to noise from the system, the FET toggling behavior is usually occurs right at the typical 2mV state comparator threshold, as current increases or decreases from the typical value, the detection is more solid and has less frequent FET toggling. Using this example, either charge or discharge should provide a solid FET body diode protection detection.

Look at the device behavior during an OV event (and no other fault is detected). In an OV event, CHG FET is off and DSG FET is on. If a discharge of >1 A occurs, the device would turn on the CHG FET immediate to allow the full discharge current to pass through. Once the overcharged cell is discharged to the OV recovery level, the OV fault is recovered and CHG driver turns on (or remains on in this scenario) and the state comparator is turned off.

If the discharge current is < 1 A when the device is still in OV fault, the CHG FET may toggle on and off until the overcharged cell voltage is reduced down to the OV recovery level. When OV fault recovered, the CHG FET will be solidly turned on and the state comparator is off.

Without the FET body diode protection, if a discharge occurs during an OV fault state, the discharge current can only pass through the CHG FET body diode until the OV fault is recovered. This increase the risk of damaging the CHG FET if the MOSFET is not rate to sustain such current through its body diode. It also increases the FET temperature as current is now carry through the body diode.

PARAMETER


 R_{IN}

9.2.1 Design Requirements

For this design example, use the parameters shown in Table 9.

Cell voltage sensing (VCx pins) filter resistor

9.2 Typical Application

Copyright © 2016, Texas Instruments Incorporated

VALUES

1 kΩ ±5%

Copyright © 2016, Texas Instruments Incorporated

Figure 27. bq77904 and bq77905 with 4 Cells

Table 9. Design Parameters

DESCRIPTION

C _{IN}	Cell voltage sensing	0.1 μF ±10%	
R _{VDD}	Supply voltage filter r	1 kΩ ±5%	
C _{VDD}	Supply voltage filter of	1 μF ±20%	
R _{TS}	NTC thermistor		103AT, 10 kΩ ±3%
R _{TS_PU}	Thermistor pullup res resistance-temperatu	istor to VTB pin, assuming using 103AT NTC or NTC with similar re characteristic	10 kΩ ±1%
R _{GS_CHG}	CHG FET gate-	Load removal is enabled for UV recovery	3.3 MΩ ±5%
	source resistor Load removal is disabled for UV recovery		1 MΩ ±5%
R _{GS_DSG}	DSG FET gate-sourc	e resistor	1 MΩ ±5%
R _{CHG}	CHG gate resistor	CHG gate resistor system designer should adjust this parameter to meet the desirable FET rise/fall time	
		If additional components are used to protect the CHG FET and/or to enable load removal detection for UV recovery	1 MΩ ±5%
R _{DSG}	DSG gate resistor, sy desirable FET rise/fa	vstem designer should adjust this parameter to meet the II time	4.5 kΩ ±5%
R _{CRTC} and R _{CTRD}	CTRC and CTRD cu	rrent limit resistor	10 MΩ ±5%
R _{LD}	LD resistor for load re	450 KΩ ±5%	
R _{SNS}	Current sense resistor parameter according	1 mΩ ±1%	

www.ti.com

9.2.2 Detailed Design Procedure

The following is the detailed design procedure.

- 1. Based on the application current, select the proper sense resistor value. The sense resistor should allow detection of the highest current protection, short circuit current.
- Temperature protection is set with the assuming of using 103AT NTC (or NTC with similar specification). If a different type of NTC is used, a different R_{TS_PU} may be used for the application. Refer to the actual temperature detection threshold voltage to determine the R_{TS_PU} value.
- 3. Connect the CCFG pin correctly based on the number of cell in series.
- 4. Review the Recommended Application Implementation to determine if optional components should be added to the schematic.

9.2.2.1 Design Example

To design the protection for a 36 V Li-ion battery pack using 4.2 V LiCoO2 cells with the following protection requirements.

Voltage Protection

- OV at 4.3V, recover at 4.1V
- UV at 2.6V, recover at 3V and when load is removed

Current Protection

- OCD1 at 40A with 300-400ms delay
- OCD2 at 80A with the shortest delay option
- SCD at 100A with <500us delay
- Requires load removal for recovery

Temperature Protection

- Charge OTC at 50°C, UTC at -5°C
- Discharge OTD at 70°C, UTD at -10°C

To start the design:

- 1. Start the schematic
 - A 36 V pack using LiCoO2 cells requires 10S configuration. Hence, two bq77905 devices in stackable configuration is needed.
 - Follow the 10S reference schematic in this document. Follow the recommended desgin parameters list in the Design Requirements section of this document.
 - The power FET uses in this type of application usually has an absolute of 20 V Vgs. For a 36 V pack design, it is recommended to use the additional components to protect the CHG FET Vgs. Refer to the Using Load Detect For UV Fault Recovery section for detail.
 - Since load removal for UV recovery is required, a 3 MΩ R_{GS CHG} should be used for the schematic.
- 2. Decide the value of the sense resistor, R_{SNS}
 - When selecting the value of R_{SNS}, ensure the voltage drop across SRP and SRN is within the available current protection threshold range.
 - In this example, select $R_{SNS} = 1 \text{ m}\Omega$ (any value $\leq 2 \text{ m}\Omega$ will work in this example).
- 3. Determine all the bq77905 protection configuration, see Table 10.
- 4. Review the available release or preview device in the *Device Option Tables* to determine if a suitable option is available. If not, contact TI representative for further assistant.

Table 10. Design Example Configuration

Protection	Threshold	Hystersis	Delay	Recovery Method
OV	4.3 V	200 mV	1 s (default setting)	Hysteresis
UV	2.6 V	400 mV	1 s (default setting)	Hysteresis + load removal
ow	100 nA (default setting)	-	-	$(VC_x - VC_{x-1}) > 600 \text{ mV} (typical)$
OCD1	40 mV	-	350 ms	Load removal only
OCD2	80 mV	-	5 ms	Load removal only
SCD	100 mV	-	Fixed at 360us	Load removal only
OTC	50°C	10°C	4.5 s	Hysteresis
OTD	70°C	10°C	4.5 s	Hysteresis
UTC	-5°C	10°C	4.5 s	Hysteresis
UTD	-10°C	10°C	4.5 s	Hysteresis

www.ti.com

9.2.3 Application Curves

Copyright © 2016, Texas Instruments Incorporated

bq77904, **bq77905** SLUSCM3A – JUNE 2016 – REVISED JUNE 2016 Texas Instruments

www.ti.com

9.3 System Examples

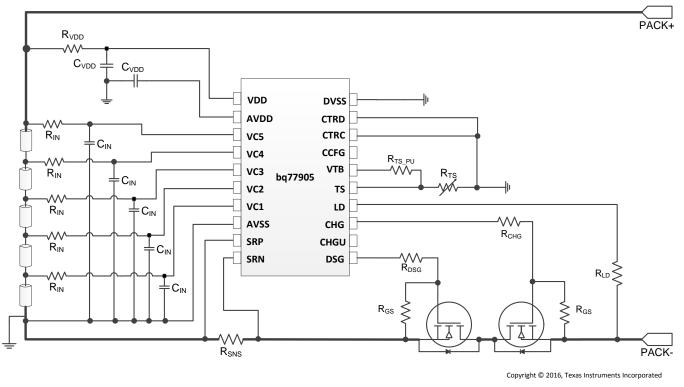


Figure 34. bq77905 with 5 Cells

10 Power Supply Recommendations

The recommended cell voltage range is up to 5 V. If 3 cells in series is connecting to bq77905, the unused VCx pins should be shorted to the highest unused VCx pin. The recommended VDD range is from 3 V to 25 V. This implies the device is still operational when cell voltage is depleted down to \sim 1.5 V range.

11 Layout

11.1 Layout Guidelines

- 1. Match SRN and SRP trace.
- 2. R_{IN} filters, VDD, AVDD filters and C_{VDD} capacitor should be placed close to the device pins.
- 3. Separating device ground plane (low current ground) from the high current path. Filter capacitors should reference to the low current ground path or device Vss.
- 4. In a stack configuration, the R_{CTRD} and R_{CTRC} should be placed closer to the lower device CTRD and CTRC pins.
- 5. R_{GS} should be placed near the FETs

11.2 Layout Example

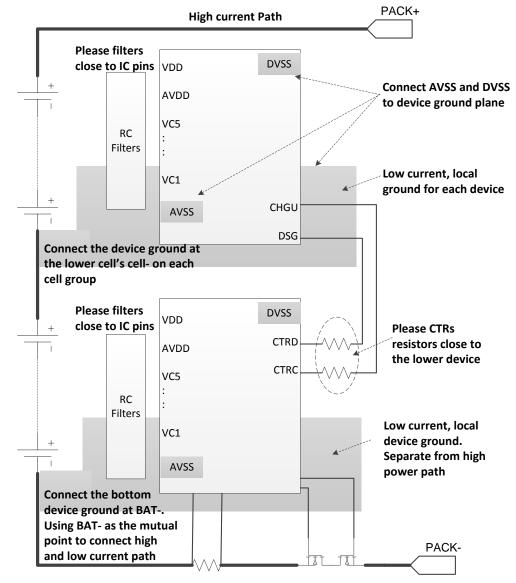


Figure 35. Layout Example

TEXAS INSTRUMENTS

www.ti.com

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
bq77904	Click here	Click here	Click here	Click here	Click here
bq77905	Click here	Click here	Click here	Click here	Click here

Table 11. Related Links

12.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates — go to the product folder for your device on ti.com. In the upper right-hand corner, click the Alert me button to register and receive a weekly digest of product information that has changed (if any). For change details, check the revision history of any revised document

12.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.4 Trademarks

E2E is a trademark of Texas Instruments.

12.5 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

25-Oct-2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	-		Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		•		Qty	(2)	(6)	(3)		(4/5)	
BQ7790400PW	PREVIEW	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	B7790400	
BQ7790400PWR	PREVIEW	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	B7790400	
BQ7790500PW	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	B7790500	Samples
BQ7790500PWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	B7790500	Samples
BQ7790501PW	PREVIEW	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	B7790501	
BQ7790501PWR	PREVIEW	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	B7790501	
BQ7790502PW	PREVIEW	TSSOP	PW	20	70	TBD	Call TI	Call TI	-40 to 85		
BQ7790502PWR	PREVIEW	TSSOP	PW	20	2000	TBD	Call TI	Call TI	-40 to 85		
BQ7790503PW	PREVIEW	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	B7790503	
BQ7790503PWR	PREVIEW	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	B7790503	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

25-Oct-2016

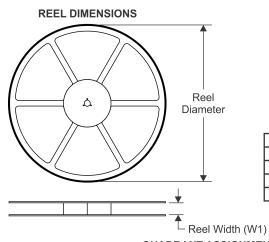
⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

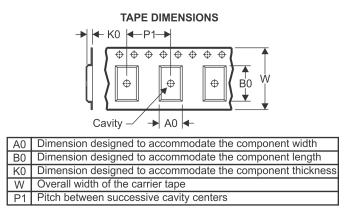
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

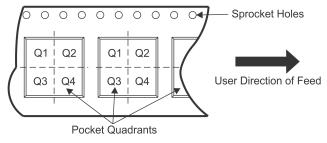
⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PACKAGE MATERIALS INFORMATION

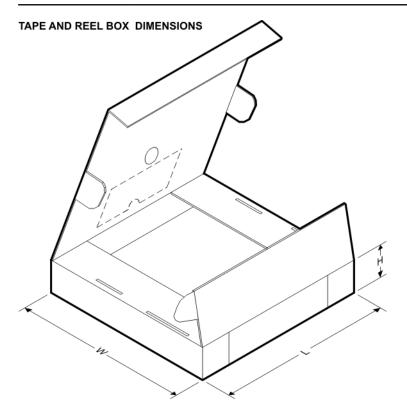
www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal	*All	dimensions	are	nominal
-----------------------------	------	------------	-----	---------

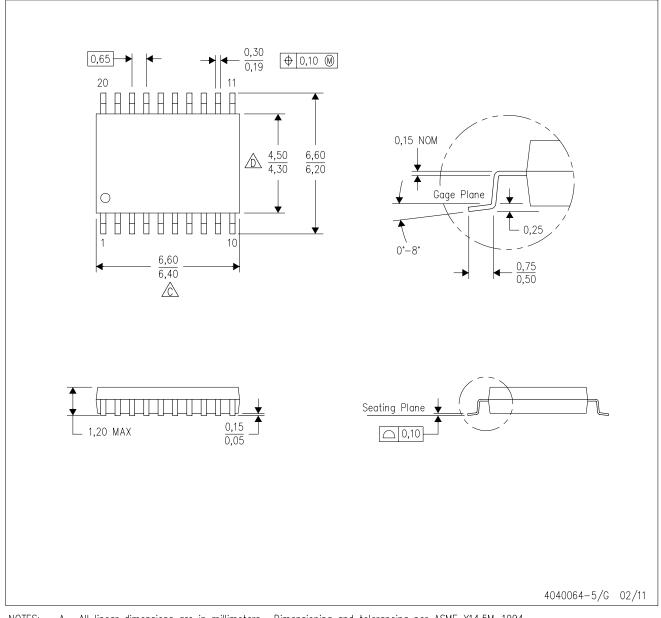

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
BQ7790500PWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

30-Jun-2016



*All dimensions are nominal

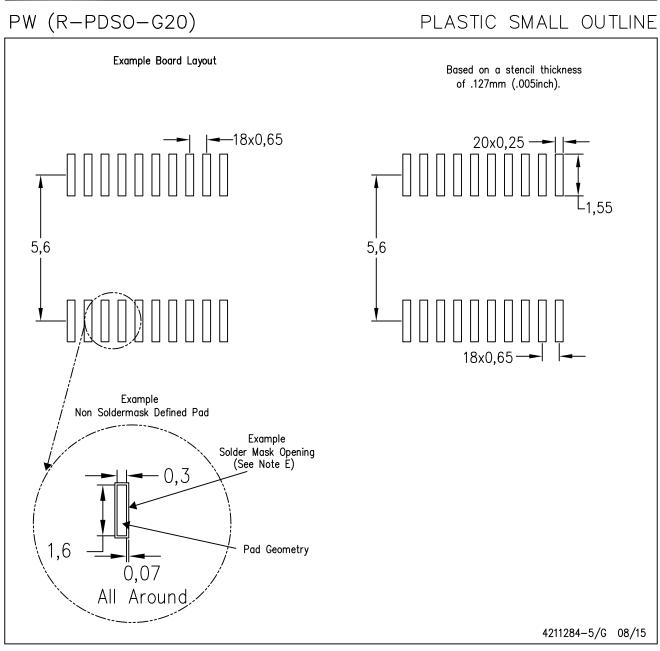
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
BQ7790500PWR	TSSOP	PW	20	2000	367.0	367.0	38.0

PW (R-PDSO-G20)

PLASTIC SMALL OUTLINE

NOTES:

A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. β . This drawing is subject to change without notice.


Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

LAND PATTERN DATA

NOTES: Α. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
 C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated