1G

1A

1B 3

1Y0 [

1Y2 🛛 6

1Y3 🛛 7

GND

1Y1

2

4

5

8

Γ

CD54AC139 ... F PACKAGE CD74AC139 ... E OR M PACKAGE

(TOP VIEW)

16 🛛 Vcc

15 2G

14 2A

13 2B

12 2Y0

11 2Y1

10 2Y2

9 2Y3

SCHS332 - MARCH 2003

- AC Types Feature 1.5-V to 5.5-V Operation and Balanced Noise Immunity at 30% of the Supply Voltage
- **Buffered Inputs**
- Incorporate Two Enable Inputs to Simplify Cascading and/or Data Reception
- Speed of Bipolar F, AS, and S, With Significantly Reduced Power Consumption
- **Balanced Propagation Delays**
- ±24-mA Output Drive Current - Fanout to 15 F Devices
- SCR-Latchup-Resistant CMOS Process and **Circuit Design**
- **Exceeds 2-kV ESD Protection Per** MIL-STD-883, Method 3015

description/ordering information

The 'AC139 devices are dual 2-line to 4-line decoders/demultiplexers designed for 1.5-V to 5.5-V V_{CC} operation. These devices are designed to be used in high-performance memory-decoding or data-routing applications requiring very short propagation delay times. In high-performance memory systems, these decoders can be used to minimize the effects of system decoding. When used with high-speed memories utilizing a fast enable circuit, the delay times of these decoders and the enable time of the memory usually are less than the typical access time of the memory. This means that the effective system delay introduced by the decoders is negligible.

The active-low enable (\overline{G}) input can be used as a data line in demultiplexing applications. These decoders/demultiplexers feature fully buffered inputs, each of which represents only one normalized load to its driving circuit.

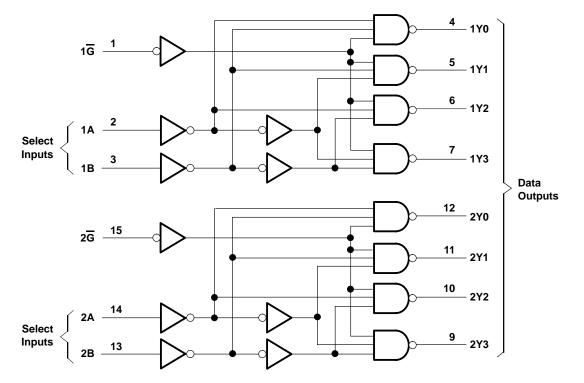
TA	TA PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING
	PDIP – E Tube		CD74AC139E	CD74AC139E
–55°C to 125°C	SOIC – M	Tube	CD74AC139M	AC139M
-55 C 10 125 C	30IC - M	Tape and reel	CD74AC139M96	ACTO9W
	CDIP – F	Tube	CD54AC139F3A	CD54AC139F3A

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



Copyright © 2003, Texas Instruments Incorporated On products compliant to MIL-PRF-38535, all parameters are tested less otherwise noted. On all other products. production processing does not necessarily include testing of all pa

SCHS332 - MARCH 2003

	FUNCTION TABLE (each decoder/demultiplexer)										
INPUTS OUTPUTS											
G	SEL	001	-015								
G	В	Α	Y0	Y1	Y2	Y3					
н	Х	Х	Н	Н	Н	Н					
L	L	L	L	Н	Н	н					
L	L	н	н	L	н	н					
L	н	L	н	Н	L	н					
L	Н	Н	Н	Н	Н	L					

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	–0.5 V to 6 V
Input clamp current, I_{IK} ($V_I < 0$ V or $V_I > V_{CC}$) (see Note 1)	
Output clamp current, I_{OK} (V _O < 0 V or V _O > V _{CC}) (see Note 1)	±50 mA
Continuous output current, $I_O (V_O > 0 V \text{ or } V_O < V_{CC})$	±50 mA
Continuous current through V _{CC} or GND	±100 mA
Package thermal impedance, θ_{JA} (see Note 2): E package	67°C/W
M package	73°C/W
Storage temperature range, T _{stg}	. −65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

SCHS332 - MARCH 2003

recommended operating conditions (see Note 3)

			T _A = 2	25°C	–55°C to 125°C		–40°C to 85°C		UNIT
			MIN MAX		MIN	MAX	MIN	MAX	
VCC	Supply voltage		1.5	5.5	1.5	5.5	1.5	5.5	V
		V _{CC} = 1.5 V	1.2		1.2		1.2		
VIH	High-level input voltage	$V_{CC} = 3 V$	2.1		2.1		2.1		V
		$V_{CC} = 5.5 V$	3.85		3.85		3.85		
		V _{CC} = 1.5 V		0.3		0.3		0.3	
VIL	Low-level input voltage	$V_{CC} = 3 V$		0.9		0.9		0.9	V
		V _{CC} = 5.5 V		1.65		1.65		1.65	
VI	Input voltage		0	VCC	0	VCC	0	VCC	V
VO	Output voltage		0	VCC	0	VCC	0	VCC	V
ЮН	High-level output current	V _{CC} = 4.5 V to 5.5 V		-24		-24		-24	mA
IOL	Low-level output current	V_{CC} = 4.5 V to 5.5 V		24		24		24	mA
A+/A.v	Input transition rise or fall rate	V_{CC} = 1.5 V to 3 V		50		50		50	no/\/
Δt/Δv	Input transition rise or fall rate	V _{CC} = 3.6 V to 5.5 V		20		20		20	ns/V

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CON	TEST CONDITIONS			5°C	–55°(125		–40°(85°		UNIT
			Vcc	MIN	MAX	MIN	MAX	MIN	MAX	
			1.5 V	1.4		1.4		1.4		
		I _{OH} = -50 μA	3 V	2.9		2.9		2.9		
			4.5 V	4.4		4.4		4.4		
∨он	$V_I = V_{IH} \text{ or } V_{IL}$	$I_{OH} = -4 \text{ mA}$	3 V	2.58		2.4		2.48		V
		I _{OH} = -24 mA	4.5 V	3.94		3.7		3.8		
		$I_{OH} = -50 \text{ mA}^{\dagger}$	5.5 V			3.85				
		I _{OH} = -75 mA†	5.5 V					3.85		
			1.5 V		0.1		0.1		0.1	
		I _{OL} = 50 μA	3 V		0.1		0.1		0.1	
			4.5 V		0.1		0.1		0.1	
VOL	$V_I = V_{IH} \text{ or } V_{IL}$	I _{OL} = 12 mA	3 V		0.36		0.5		0.44	V
		I _{OL} = 24 mA	4.5 V		0.36		0.5		0.44	
		$I_{OL} = 50 \text{ mA}^{\dagger}$	5.5 V				1.65		1	
		I _{OL} = 75 mA [†]	5.5 V						1.65	
l	$V_I = V_{CC}$ or GND		5.5 V		±0.1		±1		±1	μA
ICC	$V_I = V_{CC}$ or GND,	IO = 0	5.5 V		8		160		80	μA
Ci					10		10		10	pF

[†] Test one output at a time, not exceeding 1-second duration. Measurement is made by forcing indicated current and measuring voltage to minimize power dissipation. Test verifies a minimum 50-Ω transmission-line drive capability at 85°C and 75-Ω transmission-line drive capability at 125°C.

SCHS332 - MARCH 2003

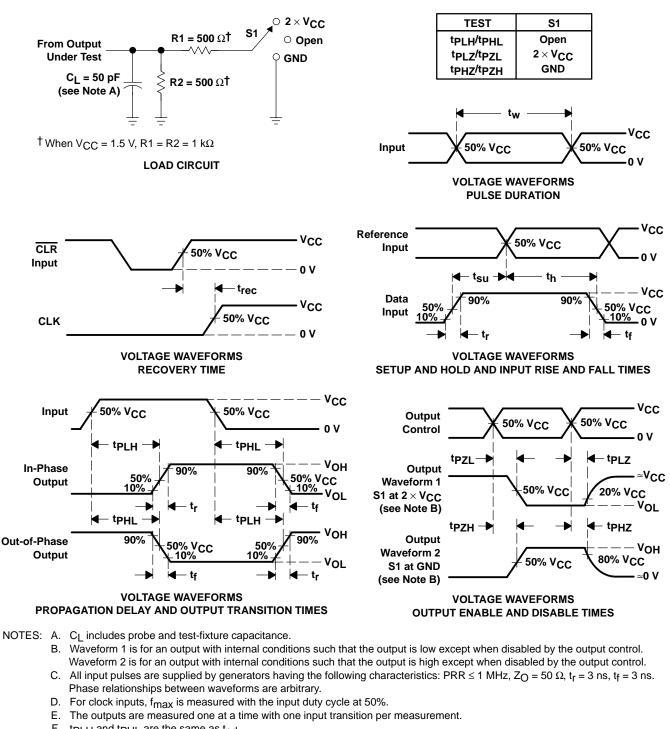
switching characteristics over recommended operating free-air temperature range, $V_{CC} = 1.5 \text{ V}$, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD CAPACITANCE	–55° 125		–40°(85°		UNIT
	(INPOT) (COTPOT) CAPACITANCE	MIN	MAX	MIN	MAX			
^t PLH	A or B	Any Y	$C_{1} = 50 \text{ pF}$		131		119	ns
^t PHL	AOIB	Ally f	C _L = 50 pF		131		119	115
^t PLH	G	Any Y	C _L = 50 pF		131		119	ns
^t PHL	9	Ану Г	CL = 50 pr		131		119	115

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V, C_L = 50 pF (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)		–55° 125		–40°(85°		UNIT
	(INFOT)	(001201)	CAFACITANCE	MIN	MAX	MIN	MAX	
^t PLH	A or B	Any Y	C _I = 50 pF	3.7	14.7	3.9	13.4	ns
^t PHL	AUB		0L = 30 pi	3.7	14.7	3.9	13.4	113
^t PLH	G	Any Y	$C_{1} = 50 \text{ pF}$	3.7	14.7	3.9	13.4	ns
^t PHL	9		C _L = 50 pF	3.7	14.7	3.9	13.4	115

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V, C_L = 50 pF (unless otherwise noted) (see Figure 1)


PARAMETER	FROM (INPUT)	TO (OUTPUT)		–55° 125		–40°(85°		UNIT
	(INFOT)	(001-01)	CAPACITANCE	MIN	MAX	MIN	MAX	
^t PLH	A or B	Any Y	C _I = 50 pF	2.6	10.5	2.8	9.5	ns
^t PHL	AUB	Ally I	0 <u></u> - 50 pi	2.6	10.5	2.8	9.5	115
^t PLH	G	Any Y	$C_{\rm L} = 50 \rm pE$	2.6	10.5	2.8	9.5	ns
^t PHL	9	Ally I	C _L = 50 pF	2.6	10.5	2.8	9.5	115

operating characteristics, V_{CC} = 5 V, T_A = 25°C

	PARAMETER	TYP	UNIT
C _{pd}	Power dissipation capacitance	83	pF

SCHS332 - MARCH 2003

PARAMETER MEASUREMENT INFORMATION

- F. t_{PLH} and t_{PHL} are the same as t_{pd} .
- G. t_{PZL} and t_{PZH} are the same as t_{en} .
- H. tPLZ and tPHZ are the same as tdis.
- I. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

10-Jun-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type		Pins	-	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
CD54AC139F3A	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	CD54AC139F3A	Samples
CD74AC139E	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74AC139E	Samples
CD74AC139EE4	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74AC139E	Samples
CD74AC139M	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC139M	Samples
CD74AC139M96	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC139M	Samples
CD74AC139MG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC139M	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

PACKAGE OPTION ADDENDUM

10-Jun-2014

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

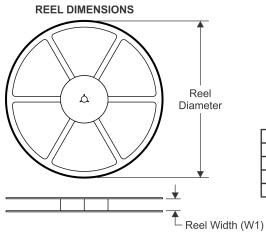
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF CD54AC139, CD74AC139 :

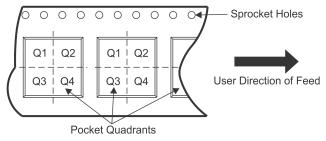
- Catalog: CD74AC139
- Military: CD54AC139

NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

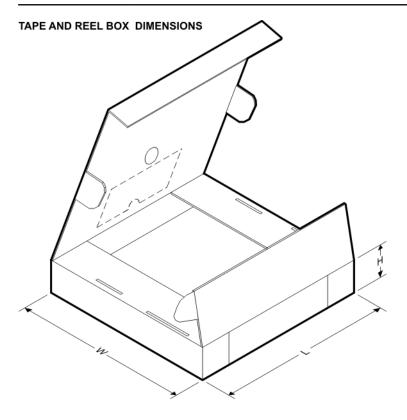

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD74AC139M96	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

26-Jan-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD74AC139M96	SOIC	D	16	2500	333.2	345.9	28.6

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

4211283-4/E 08/12

D (R-PDSO-G16) PLASTIC SMALL OUTLINE Stencil Openings (Note D) Example Board Layout (Note C) –16x0,55 -14x1,27 -14x1,27 16x1,50 5,40 5.40 Example Non Soldermask Defined Pad Example Pad Geometry (See Note C) 0,60 .55 Example 1. Solder Mask Opening (See Note E) -0,07 All Around

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconnectivity		

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated