

SN65EPT22

SLLS926B - DECEMBER 2008 - REVISED NOVEMBER 2014

SN65EPT22 3.3 V Dual LVTTL/LVCMOS to Differential LVPECL Buffer

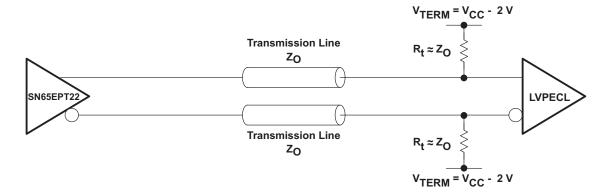
Features

- Dual 3.3V LVTTL to LVPECL Buffer
- Operating Range
 - LVPECL V_{CC} = 3.0 V to 3.6 V With GND = 0 V
- Support for Clock Frequencies to 2.0 GHz (typ)
- 420 ps Typical Propagation Delay
- Deterministic HIGH Output Value for Open Input Conditions
- **Built-in Temperature Compensation**
- Drop in Compatible to MC100ELT23
- PNP Single Ended Inputs for Minimal Loading

Applications

- Data and Clock Transmission Over Backplane
- Signaling Level Conversion

3 Description


The SN65EPT22 is a low power dual LVTTL to LVPECL translator device. The device includes circuitry to maintain known logic HIGH level when inputs are in open condition. The SN65EPT22 is housed in an industry standard SOIC-8 package and is also available in TSSOP-8 package option.

Device Information⁽¹⁾

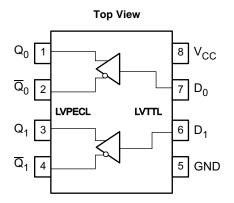
PART NUMBER	PACKAGE	BODY SIZE (NOM)		
SN65EPT22	SOIC (8)	4.90mm x 3.91mm		
	VSSOP (8)	3.00mm x 3.00mm		

(1) For all available packages, see the orderable addendum at the end of the datasheet.

Simplified Schematic

T	ab	le	of	Contents
---	----	----	----	----------

1 2	Features			Key AttributesTTL Input DC Characteristics	
3	Description			PECL Output DC Characteristics	
5	Revision History2	8		Typical Characteristicsice and Documentation Support	
6 7	Pin Configuration and Functions	·	8.1	Trademarks	8
	7.1 Absolute Maximum Ratings		8.3	Electrostatic Discharge Caution	
	7.3 Power Dissipation Ratings	9		hanical, Packaging, and Orderable rmation	8


5 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Cha	anges from Revision A (November 2010) to Revision B	Page
•	Deleted the Ordering Information table	1
•	Added the Device Information table	1
•	Added the Simplified Schematic	1
•	Added the Handling Ratings	3
<u>. </u>	Added the Device and Documentation Support and Mechanical, Packaging, and Orderable Information	8
Cha	anges from Original (November 2010) to Revision A	Page
•	Changed SN65EPT22 to EPT22 (2 places) in Ordering Information Table under Part Marking column	1

6 Pin Configuration and Functions

Pin Functions

PIN	FUNCTION
D ₀ , D ₁	LVTTL data inputs
$Q_0, \overline{Q}_0, Q_1, \overline{Q}_1$	LVPECL outputs
V _{CC}	Positive supply
GND	Ground

7 Specifications

7.1 Absolute Maximum Ratings⁽¹⁾

PARAMETER	CONDITION	MIN	MAX	UNIT					
Absolute supply voltage, V _{CC}			6	V					
Absolute input voltage, VI	GND = 0 and VI ≤ V _{CC}	0	6	V					
Supply voltage LVPEL			3.3	V					
Output ourrent	Continuous		50	A					
Output current	Surge		100	mA mA					
Operating temperature range		-40	85	°C					

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 Handling Ratings

			MIN	MAX	UNIT
T _{stg}	Storage temperature rang	e	-65	150	°C
V		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	-4	4	1.3.7
V _(ESD)		Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2)	-2	2	kV

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

Product Folder Links: SN65EPT22

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Power Dissipation Ratings

PACKAGE	CIRCUIT BOARD MODEL	POWER RATING T _A < 25°C (mW)	THERMAL RESISTANCE, JUNCTION TO AMBIENT NO AIRFLOW	DERATING FACTOR T _A > 25°C (mW/°C)	POWER RATING T _A = 85°C (mW)
D	Low-K	719	139	7	288
D	High-K	840	119	8	336
DCK	Low-K	469	213	5	188
DGK	High-K	527	189	5	211

7.4 Thermal Information

	THERMAL METRIC ⁽¹⁾	D	DGK	LINIT
	I HERMAL METRIC '/	8 PINS	8 PINS	UNIT
$R_{\theta JB}$	Junction-to-board thermal resistance	79	120	°C/W
$R_{\theta JC}$	Junction-to-case thermal resistance	98	74	C/VV

⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

7.5 Key Attributes

CHARACTERISTICS	VALUE
Moisture sensitivity level	Lead free package
SOIC-8	Level 1
VSSOP-8	Level 3
Flammability rating (Oxygen Index: 28 to 34)	UL 94 V-0 at 0.125 in
Meets or exceeds JEDEC Spec EIA/JESD78 latchup test	

7.6 TTL Input DC Characteristics⁽¹⁾

 $(V_{CC} = 3.3 \text{ V}, \text{ GND} = 0, T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C})$

	CHARACTERISTIC	CONDITION	MIN	TYP MAX	UNIT
I _{IH}	Input HIGH current	V _{IN} = 2.7 V		20	μΑ
I _{IHH}	Input HIGH current max	$V_{IN} = V_{CC}$		100	μΑ
I _{IL}	Input LOW current	V _{IN} = 0.5 V		-0.6	mA
V_{IK}	Input clamp voltage	$I_{IN} = -18 \text{ mA}$		-1	V
V _{IH}	Input high voltage		2.0		V
V _{IL}	Input low voltage			0.8	V

⁽¹⁾ Device will meet the specifications after thermal balance has been established when mounted in a socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are assured only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

Product Folder Links: SN65EPT22

7.7 PECL Output DC Characteristics (1)

 $(V_{CC} = 3.3 \text{ V}; \text{ GND} = 0.0 \text{V})^{(2)}$

CHARACTERISTIC		–40°C		25°C			85°C			LINUT	
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
I _{CC}	Power supply current		39	45		42	47		45	50	mA
V _{OH}	Output HIGH voltage (3)	2155	2224	2405	2155	2224	2405	2155	2224	2405	mV
V _{OL}	Output LOW voltage ⁽³⁾	1355	1441	1605	1355	1438	1605	1355	1435	1605	mV

- (1) Device will meet the specifications after thermal balance has been established when mounted in a socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are assured only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
- Output parameters vary 1:1 with V_{CC}
- (3) All loading with 50Ω to V_{CC} –2.0V

7.8 AC Characteristics (1)

 $(V_{CC} = 3.0 \text{ V to } 3.6 \text{ V: GND} = 0 \text{ V})^{(2)}$

	CHARACTERICTIC	-40°C			25°C			85°C			LINUT
	CHARACTERISTIC	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
f _{MAX}	Max switching frequency ⁽³⁾ , see Figure 5		2.1			2.0			2.0		GHz
t _{PLH} / t _{PHL}	Propagation delay to differential output	230		550	230		550	230		550	ps
t _{SKEW}	Within device skew ⁽⁴⁾		25	50		25	50		25	50	ps
	Device to device skew ⁽⁵⁾		100	200		100	200		100	200	ps
t _{JITTER}	Random clock jitter (RMS)		0.2	8.0		0.2	8.0		0.2	8.0	ps
t _r / t _f	Output rise/fall times (20%-80%)	150		300	150		300	150		300	ps

- (1) Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are assured only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
- Measured using a 2.4 V source, 50% duty cycle clock source. All loading with 50 Ω to VCC 2.0 V.
- Maximum switching frequency measured at output amplitude of 300 mV $_{\rm pp}$. Skew is measured between outputs under identical transitions and conditions on any one device.
- Device-to-Device Skew for identical transitions at identical VCC levels.

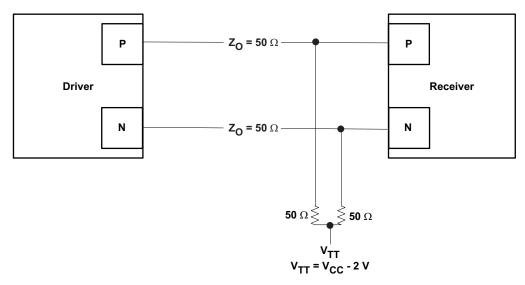


Figure 1. Termination for Output Driver

Copyright © 2008-2014, Texas Instruments Incorporated

Submit Documentation Feedback

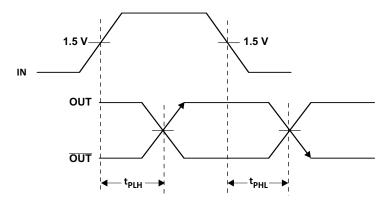


Figure 2. Output Propagation Delay

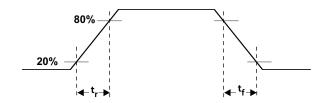


Figure 3. Output Rise and Fall Times

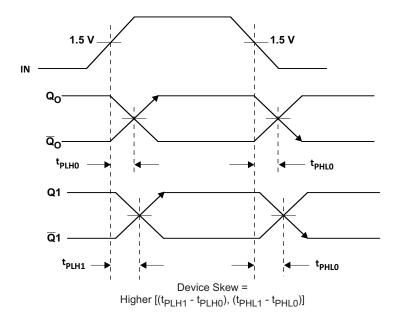


Figure 4. Device Skew

Submit Documentation Feedback

7.9 Typical Characteristics

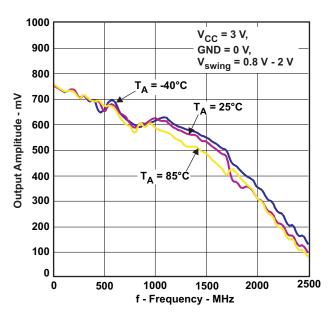


Figure 5. Output Amplitude versus Frequency

8 Device and Documentation Support

8.1 Trademarks

All trademarks are the property of their respective owners.

8.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

8.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

9 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Submit Documentation Feedback

13-Nov-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN65EPT22D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	EPT22	Samples
SN65EPT22DGK	ACTIVE	VSSOP	DGK	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	SIQI	Samples
SN65EPT22DGKR	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	SIQI	Samples
SN65EPT22DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	EPT22	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

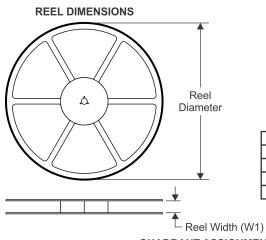
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

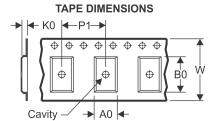
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

PACKAGE OPTION ADDENDUM

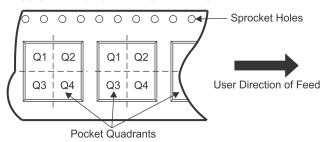
13-Nov-2014


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

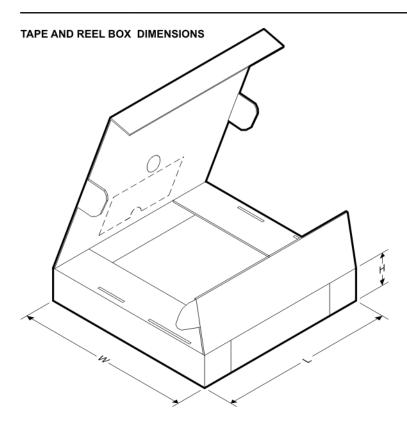

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 13-Nov-2014


TAPE AND REEL INFORMATION

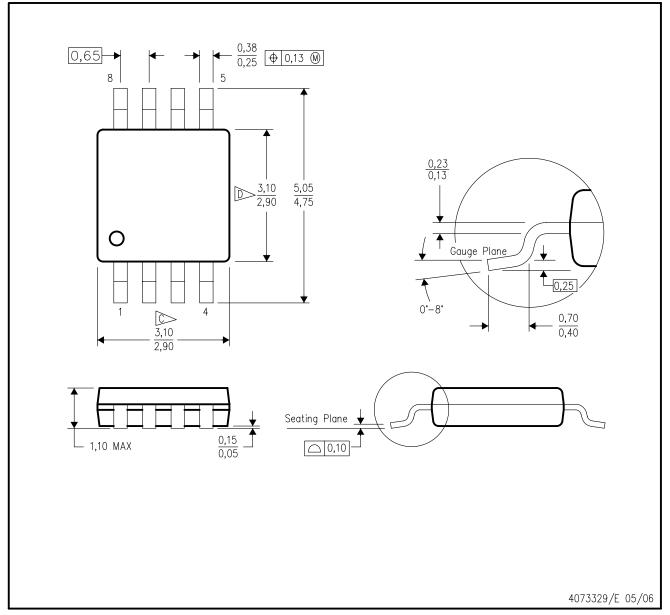
	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN65EPT22DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
SN65EPT22DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

www.ti.com 13-Nov-2014

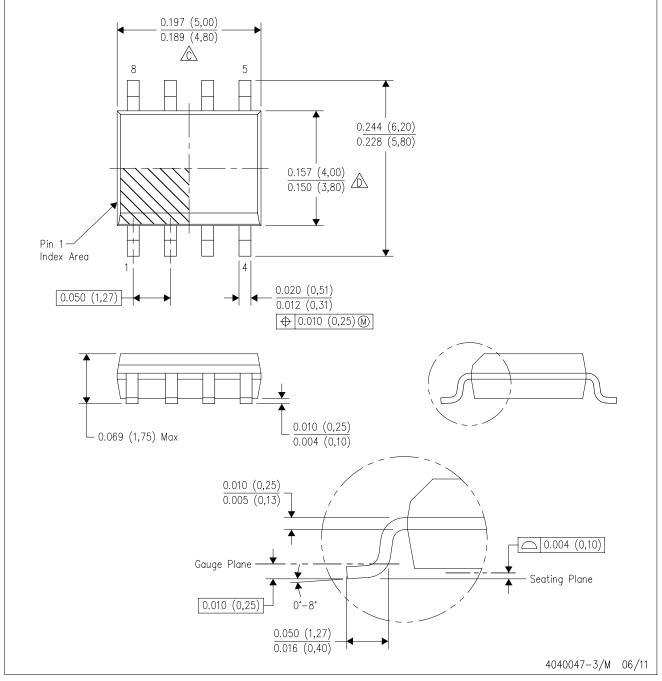


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN65EPT22DGKR	VSSOP	DGK	8	2500	367.0	367.0	35.0
SN65EPT22DR	SOIC	D	8	2500	367.0	367.0	35.0

DGK (S-PDSO-G8)

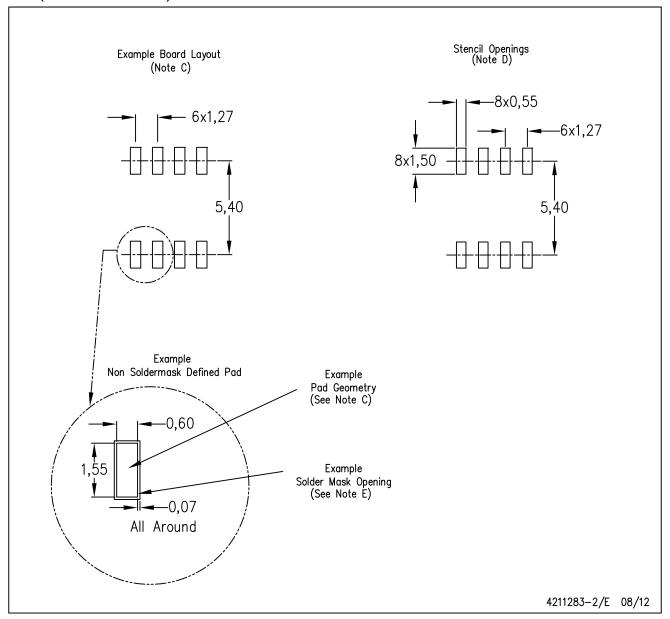
PLASTIC SMALL-OUTLINE PACKAGE


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom Amplifiers amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID <u>www.ti-rfid.com</u>

OMAP Applications Processors <u>www.ti.com/omap</u> TI E2E Community <u>e2e.ti.com</u>

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>