



Sample 8

Buv







SN74LVCR16245A

SCES427B - FEBRUARY 2003 - REVISED JUNE 2014

# SN74LVCR16245A 16-Bit Bus Transceiver with 3-State Outputs

#### Features 1

- Member of the Texas Instruments Widebus™ Familv
- Operates From 1.65 V to 3.6 V
- Inputs Accept Voltages to 5.5 V
- Max  $t_{pd}$  of 4.8 ns at 3.3 V
- Typical V<sub>OLP</sub> (Output Ground Bounce) <0.8 V at  $V_{CC}$  = 3.3 V,  $T_A$  = 25°C
- Typical V<sub>OHV</sub> (Output V<sub>OH</sub> Undershoot) >2 V at  $V_{CC}$  = 3.3 V,  $T_A$  = 25°C
- Supports Mixed-Mode Signal Operation on All Ports (5-V Input/Output Voltage With 3.3-V V<sub>CC</sub>)
- All Inputs and Outputs Have Equivalent 26-Ω Series Resistors, So No External Resistors Are Required
- Ioff Supports Live Insertion, Partial-Power-Down Mode, and Back-Drive Protection
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22

Simplified Schematic

4

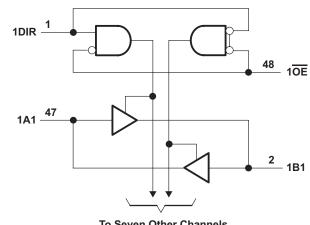
- 2000-V Human-Body Model (A114-A)
- 200-V Machine Model (A115-A)

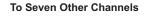
## 2 Applications

- Servers
- PCs and Notebooks
- **Network Switches**
- **Telecom Infrastructures**

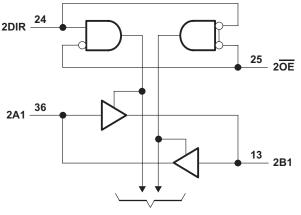
## 3 Description

This 16-bit (dual-octal) noninverting bus transceiver is designed for 1.65-V to 3.6-V V<sub>CC</sub> operation.


The SN74LVCR16245A device is designed for asynchronous communication between data buses. All inputs and outputs have equivalent  $26-\Omega$  resistors that will slow the edges of the output and reduce switching noise caused by long capacitive etch runs or cables.


This device can be used as two 8-bit transceivers or one 16-bit transceiver. Active bus-hold circuitry holds unused or undriven data inputs at a valid logic state.

| Device Information ' |                              |                    |  |  |  |  |
|----------------------|------------------------------|--------------------|--|--|--|--|
| PART NUMBER          | PACKAGE                      | BODY SIZE (NOM)    |  |  |  |  |
|                      | TSSOP (48)                   | 12.50 mm × 6.1 mm  |  |  |  |  |
|                      | TVSOP (48)                   | 9.70 mm × 4.40 mm  |  |  |  |  |
| SN74LVCR16245A       | SSOP (48)                    | 15.88 mm × 7.49 mm |  |  |  |  |
|                      | BGA MICROSTAR<br>JUNIOR (56) | 7.00 mm × 4.50 mm  |  |  |  |  |


Device Information<sup>(1)</sup>

(1) For all available packages, see the orderable addendum at the end of the datasheet.





Pin numbers shown are for the DGG, DGV, and DL packages.



**To Seven Other Channels** 

1

Features

# **Table of Contents**

1

| • |      | <b></b>                          | ••••••         |
|---|------|----------------------------------|----------------|
| 2 | Арр  | lications                        | 1              |
| 3 | Des  | cription                         | 1              |
| 4 | Sim  | plified Schematic                | 1              |
| 5 | Rev  | ision History                    | 2              |
| 6 |      | Configuration and Functions      |                |
| 7 |      | cifications                      |                |
|   | 7.1  | Absolute Maximum Ratings         | 5              |
|   | 7.2  | Handling Ratings                 | 5              |
|   | 7.3  | Recommended Operating Conditions | <mark>6</mark> |
|   | 7.4  | Thermal Information              | <mark>6</mark> |
|   | 7.5  | Electrical Characteristics       | 7              |
|   | 7.6  | Switching Characteristics        | 7              |
|   | 7.7  | Operating Characteristics        | 7              |
|   | 7.8  | Typical Characteristics          | 8              |
| 8 | Para | ameter Measurement Information   | 9              |
| 9 | Deta | ailed Description                | 10             |

#### 5 Revision History

| C | hanges from Revision A (November 2004) to Revision B | Page |
|---|------------------------------------------------------|------|
| • | Updated document to new TI data sheet standards.     |      |
| • | Deleted Ordering Information table.                  | 1    |
| • | Updated I <sub>off</sub> Feature bullet.             | 1    |
| • | Added Applications.                                  | 1    |
| • | Added Handling Ratings table                         | 5    |
| • | Changed MAX ambient temperature to 125°C.            | 6    |
| • | Added Thermal Information table.                     | 6    |
| • | Added Typical Characteristics.                       | 8    |

### 9.1 Overview ...... 10 Functional Block Diagram ..... 10 9.2 Feature Description...... 10 9.3 Device Functional Modes...... 10 9.4 10 Application and Implementation...... 11 10.1 Application Information..... 11 10.2 Typical Application ..... 11 11 Power Supply Recommendations ...... 12 12 Layout...... 12 12.1 Layout Guidelines ..... 12 12.2 Layout Example ..... 12 13 Device and Documentation Support ...... 13 13.1 Trademarks ...... 13 13.2 Electrostatic Discharge Caution ...... 13 13.3 Glossary...... 13 14 Mechanical, Packaging, and Orderable Information ..... 13

www.ti.com

STRUMENTS

EXAS

### 2



# 6 Pin Configuration and Functions

| DGG, DGV, OR DL PACKAGE<br>(TOP VIEW) |                                                                                                                       |                                                                                                                                                                                                                                                                         |                         |  |  |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|--|
|                                       | TOP VI<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20 | <ul> <li>EW)</li> <li>48</li> <li>47</li> <li>46</li> <li>45</li> <li>44</li> <li>43</li> <li>42</li> <li>41</li> <li>40</li> <li>39</li> <li>38</li> <li>37</li> <li>36</li> <li>35</li> <li>34</li> <li>33</li> <li>32</li> <li>31</li> <li>30</li> <li>29</li> </ul> |                         |  |  |
| 2B7 [<br>2B8 [<br>2DIR [              |                                                                                                                       |                                                                                                                                                                                                                                                                         | ] 2A7<br>] 2A8<br>] 2OE |  |  |
| ٦                                     |                                                                                                                       |                                                                                                                                                                                                                                                                         | _                       |  |  |

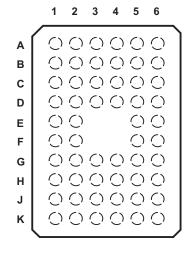
### **Pin Functions**

| PIN |      | I/O | DESCRIPTION         |
|-----|------|-----|---------------------|
| NO. | NAME | 1/0 | DESCRIPTION         |
| 1   | 1DIR | I   | Direction pin 1     |
| 2   | 1B1  | I/O | 1B1 input or output |
| 3   | 1B2  | I/O | 1B2 input or output |
| 4   | GND  | —   | Ground pin          |
| 5   | 1B3  | I/O | 1B3 input or output |
| 6   | 1B4  | I/O | 1B4 input or output |
| 7   | VCC  | —   | Power pin           |
| 8   | 1B5  | I/O | 1B5 input or output |
| 9   | 1B6  | I/O | 1B6 input or output |
| 10  | GND  | —   | Ground pin          |
| 11  | 1B7  | I/O | 1B7 input or output |
| 12  | 1B8  | I/O | 1B8 input or output |
| 13  | 2B1  | I/O | 2B1 input or output |
| 14  | 2B2  | I/O | 2B2 input or output |
| 15  | GND  | —   | Ground pin          |
| 16  | 2B3  | I/O | 2B3 input or output |
| 17  | 2B4  | I/O | 2B4 input or output |
| 18  | VCC  | -   | Power pin           |
| 19  | 2B5  | I/O | 2B5 input or output |
| 20  | 2B6  | I/O | 2B6 input or output |
| 21  | GND  | _   | Ground pin          |

Copyright © 2003–2014, Texas Instruments Incorporated

### SN74LVCR16245A SCES427B – FEBRUARY 2003 – REVISED JUNE 2014

www.ti.com


NSTRUMENTS

EXAS

### **Pin Functions (continued)**

| PIN                                       |                 | 1/0 | DECODIDITION        |  |  |
|-------------------------------------------|-----------------|-----|---------------------|--|--|
| NO.         NAME           22         2B7 |                 |     | DESCRIPTION         |  |  |
| 22                                        | 2B7             | I/O | 2B7 input or output |  |  |
| 23                                        | 2B8             | I/O | 2B8 input or output |  |  |
| 24                                        | 2DIR            | I   | Direction pin 2     |  |  |
| 25                                        | 2 <del>0E</del> | I   | Output Enable 2     |  |  |
| 26                                        | 2A8             | I/O | 2A8 input or output |  |  |
| 27                                        | 2A7             | I/O | 2A7 input or output |  |  |
| 28                                        | GND             | —   | Ground pin          |  |  |
| 29                                        | 2A6             | I/O | 2A6 input or output |  |  |
| 30                                        | 2A5             | I/O | 2A5 input or output |  |  |
| 31                                        | VCC             | —   | Power pin           |  |  |
| 32                                        | 2A4             | I/O | 2A4 input or output |  |  |
| 33                                        | 2A3             | I/O | 2A3 input or output |  |  |
| 34                                        | GND             | —   | Ground pin          |  |  |
| 35                                        | 2A2             | I/O | 2A2 input or output |  |  |
| 36                                        | 2A1             | I/O | 2A1 input or output |  |  |
| 37                                        | 1A8             | I/O | 1A8 input or output |  |  |
| 38                                        | 1A7             | I/O | 1A7 input or output |  |  |
| 39                                        | GND             | —   | Ground pin          |  |  |
| 40                                        | 1A6             | I/O | 1A6 input or output |  |  |
| 41                                        | 1A5             | I/O | 1A5 input or output |  |  |
| 42                                        | VCC             | —   | Power pin           |  |  |
| 43                                        | 1A4             | I/O | 1A4 input or output |  |  |
| 44                                        | 1A3             | I/O | 1A3 input or output |  |  |
| 45                                        | GND             | _   | Ground pin          |  |  |
| 46                                        | 1A2             | I/O | 1A2 input or output |  |  |
| 47                                        | 1A1             | I/O | 1A1 input or output |  |  |
| 48                                        | 1 <del>0E</del> | I   | Output Enable 1     |  |  |

### GQL OR ZQL PACKAGE (TOP VIEW)



### **Pin Assignments**

|   | 1    | 2   | 3               | 4               | 5   | 6                 |
|---|------|-----|-----------------|-----------------|-----|-------------------|
| Α | 1DIR | NC  | NC              | NC              | NC  | 1 <mark>0E</mark> |
| в | 1B2  | 1B1 | GND             | GND             | 1A1 | 1A2               |
| С | 1B4  | 1B3 | V <sub>CC</sub> | V <sub>CC</sub> | 1A3 | 1A4               |
| D | 1B6  | 1B5 | GND             | GND             | 1A5 | 1A6               |
| Е | 1B8  | 1B7 |                 |                 | 1A7 | 1A8               |
| F | 2B1  | 2B2 |                 |                 | 2A2 | 2A1               |
| G | 2B3  | 2B4 | GND             | GND             | 2A4 | 2A3               |
| Н | 2B5  | 2B6 | V <sub>CC</sub> | V <sub>CC</sub> | 2A6 | 2A5               |
| J | 2B7  | 2B8 | GND             | GND             | 2A8 | 2A7               |
| κ | 2DIR | NC  | NC              | NC              | NC  | 2 <mark>0E</mark> |
|   |      |     |                 |                 |     |                   |

NC - No internal connection

4



### 7 Specifications

### 7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)<sup>(1)</sup>

|                 |                                               |                                                  | MIN  | MAX                   | UNIT |
|-----------------|-----------------------------------------------|--------------------------------------------------|------|-----------------------|------|
| $V_{CC}$        | Supply voltage range                          |                                                  | -0.5 | 6.5                   | V    |
| VI              | Input voltage range <sup>(2)</sup>            |                                                  | -0.5 | 6.5                   | V    |
| Vo              | Voltage range applied to any output in the    | high-impedance or power-off state <sup>(2)</sup> | -0.5 | 6.5                   | V    |
| Vo              | Voltage range applied to any output in the    | high or low state <sup>(2)(3)</sup>              | -0.5 | V <sub>CC</sub> + 0.5 | V    |
| I <sub>IK</sub> | Input clamp current                           | V <sub>1</sub> < 0                               |      | -50                   | mA   |
| I <sub>OK</sub> | Output clamp current                          | V <sub>O</sub> < 0                               |      | -50                   | mA   |
| I <sub>O</sub>  | Continuous output current                     |                                                  |      | ±50                   | mA   |
|                 | Continuous current through each $V_{CC}$ or G | ND                                               |      | ±100                  | mA   |

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings (1) only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed. The value of  $V_{CC}$  is provided in the *Recommended Operating Conditions* table. (2)

(3)

### 7.2 Handling Ratings

|                                            |                                                                                          |                                                                             | MIN  | MAX  | UNIT |
|--------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------|------|------|
| T <sub>stg</sub>                           | Storage temperature rang                                                                 | orage temperature range                                                     |      | 150  | °C   |
| V                                          | Electrostatia discharge                                                                  | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins <sup>(1)</sup> | 0    | 2000 |      |
| V <sub>(ESD)</sub> Electrostatic discharge | Charged device model (CDM), per JEDEC specification JESD22-C101, all pins <sup>(2)</sup> | 0                                                                           | 1500 | V    |      |

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. (2)

### SN74LVCR16245A

SCES427B-FEBRUARY 2003-REVISED JUNE 2014

www.ti.com

STRUMENTS

EXAS

### 7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)<sup>(1)</sup>

|                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            | MIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MAX                  | UNIT |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------|
| V                                                                                                                                                             | Supply voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Operating                                  | 1.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.6                  | V    |
| VCC                                                                                                                                                           | $ \begin{array}{c} \mbox{pply voltage} & \begin{array}{c} \mbox{Operating} & 1.65 & 3 \\ \hline \mbox{Data retention only} & 1.5 \\ \hline \mbox{Data retention only} & 0.65 \times V_{\rm CC} \\ \hline \mbox{V}_{\rm CC} = 1.65 \lor to 1.95 \lor & 0.65 \times V_{\rm CC} \\ \hline \mbox{V}_{\rm CC} = 2.3 \lor to 2.7 \lor & 1.7 \\ \hline \mbox{V}_{\rm CC} = 2.7 \lor to 3.6 \lor & 2 \\ \hline \mbox{V}_{\rm CC} = 2.3 \lor to 1.95 \lor & 0.35 \times V_{\rm CC} \\ \hline \mbox{V}_{\rm CC} = 2.3 \lor to 2.7 \lor & 0.36 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 2.3 \lor to 2.7 \lor & 0.36 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 2.3 \lor to 2.7 \lor & 0.35 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 2.3 \lor to 2.7 \lor & 0.36 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 2.3 \lor to 2.7 \lor & 0.6 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 2.3 \lor to 2.7 \lor & 0.6 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 2.7 \lor to 3.6 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 2.7 \lor to 3.6 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 1.65 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 1.65 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 2.3 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 2.3 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 3 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 3 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 3 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 2.3 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 2.3 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 2.3 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 2.3 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 3 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 3 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 2.3 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 3 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 3 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 3 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 3 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 3 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 3 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 3 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 3 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 3 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 3 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 3 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 3 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 3 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 3 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 3 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 3 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 3 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 3 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 3 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 3 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 3 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 3 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 3 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 3 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 3 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 3 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 3 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 3 \lor & 0 \\ \hline \mbox{V}_{\rm CC} = 3 \lor & 0 \\ \hline $ |                                            | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |      |
| $V_{CC}  Supply voltage \qquad \qquad$ | 0.65 × V <sub>CC</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |      |
| V <sub>IH</sub>                                                                                                                                               | High-level input voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $V_{CC}$ = 2.3 V to 2.7 V                  | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | V    |
|                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$ | $\begin{array}{c c c c c c c c } \hline 1.65 & 3.6 \\ \hline 1.5 & \\ \hline 0.65 \times V_{CC} & \\ \hline 1.7 & \\ 2 & \\ \hline 0.35 \times V_{CC} & \\ \hline 0 & 0.35 \times V_{CC} & \\ \hline 0 & 0.35 \times V_{CC} & \\ \hline 0 & 0.55 & \\ \hline 0 & 0 0 & 0 & \\ $ |                      |      |
|                                                                                                                                                               | High-level input voltage<br>Low-level input voltage<br>Input voltage<br>Output voltage<br>High-level output current<br>Low-level output current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V <sub>CC</sub> = 1.65 V to 1.95 V         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.35 \times V_{CC}$ |      |
| VIL                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.7                  | V    |
|                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.8                  |      |
| VI                                                                                                                                                            | Input voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.5                  | V    |
| V <sub>o</sub> C                                                                                                                                              | Output voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | High or low state                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V <sub>CC</sub>      | V    |
|                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3-state                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |      |
|                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V <sub>CC</sub> = 1.65 V                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -2                   |      |
|                                                                                                                                                               | IH       High-level input voltage         IL       Low-level input voltage         I       Input voltage         O       Output voltage         OH       High-level output current         UL       Low-level output current         UL       Low-level output current         UL       Low-level output current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V <sub>CC</sub> = 2.3 V                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -4                   |      |
| ЮН                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V <sub>CC</sub> = 2.7 V                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -8                   | mA   |
|                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $V_{CC} = 3 V$                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -12                  |      |
|                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V <sub>CC</sub> = 1.65 V                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                    |      |
|                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V <sub>CC</sub> = 2.3 V                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                    |      |
| OL                                                                                                                                                            | Low-level output current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V <sub>CC</sub> = 2.7 V                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8                    | mA   |
|                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $V_{CC} = 3 V$                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12                   |      |
| Δt/Δv                                                                                                                                                         | Input transition rise or fall rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                   | ns/V |
| T <sub>A</sub>                                                                                                                                                | Operating free-air temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            | -40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 125                  | °C   |

 All unused inputs of the device must be held at V<sub>CC</sub> or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

### 7.4 Thermal Information

|                       | THERMAL METRIC <sup>(1)</sup>                | DGG     | DGV     | DL      | LINUT |
|-----------------------|----------------------------------------------|---------|---------|---------|-------|
|                       |                                              | 48 PINS | 48 PINS | 48 PINS | UNIT  |
| $R_{\thetaJA}$        | Junction-to-ambient thermal resistance       | 64.3    | 78.4    | 68.4    |       |
| $R_{\theta JC(top)}$  | Junction-to-case (top) thermal resistance    | 17.6    | 30.7    | 34.7    |       |
| $R_{\theta JB}$       | Junction-to-board thermal resistance         | 31.5    | 41.8    | 41.0    | °C/W  |
| ΨJT                   | Junction-to-top characterization parameter   | 1.1     | 3.8     | 12.3    | 0.00  |
| $\Psi_{JB}$           | Junction-to-board characterization parameter | 31.2    | 41.3    | 40.4    |       |
| R <sub>0JC(bot)</sub> | Junction-to-case (bottom) thermal resistance | n/a     | n/a     | n/a     |       |

(1) For more information about traditional and new thermal metrics, see the *IC Package Thermal Metrics* application report, SPRA953.

Copyright © 2003-2014, Texas Instruments Incorporated

### 7.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

| Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ARAMETER                 | TEST CONDITIONS                                                     | V <sub>cc</sub> | MIN TYP <sup>(1)</sup> | MAX  | UNIT |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------|-----------------|------------------------|------|------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | I <sub>OH</sub> = -100 μA                                           | 1.65 V to 3.6 V | V <sub>CC</sub> – 0.2  |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | $I_{OH} = -2 \text{ mA}$                                            | 1.65 V          | 1.2                    |      |      |
| $V_{OH} + \frac{I_{OH} = -100 \ \mu A}{I_{OH} = -2 \ mA}$ $I_{OH} = -4 \ mA$ $I_{OH} = -4 \ mA$ $I_{OH} = -6 \ mA$ $I_{OH} = -6 \ mA$ $I_{OH} = -8 \ mA$ $I_{OH} = -12 \ mA$ $I_{OH} = -12 \ mA$ $I_{OL} = 100 \ \mu A$ $I_{OL} = 2 \ mA$ $I_{OL} = 2 \ mA$ $I_{OL} = 2 \ mA$ $I_{OL} = 6 \ mA$ $I_{OL} = 6 \ mA$ $I_{OL} = 8 \ mA$ $I_{OL} = 12 \ mA$ $I_{OL} = 8 \ mA$ $I_{OL} = 12 \ mA$ $I_{OL} = 0 \ to \ 5.5 \ V$ $I_{OT} = V_{O} = 0 \ to \ 5.5 \ V$ $I_{OT} = V_{O} = 0 \ to \ 5.5 \ V$ $I_{OT} = V_{O} = 0 \ to \ 5.5 \ V$ $I_{OT} = V_{O} = 0 \ to \ 5.5 \ V$ $I_{OT} = V_{O} = 0 \ to \ 5.5 \ V$ $I_{OT} = V_{O} = 0 \ to \ 5.5 \ V$ $I_{OT} = V_{O} = 0 \ to \ 5.5 \ V$ $I_{OT} = V_{O} = 0 \ to \ 5.5 \ V$ $I_{OT} = V_{O} = 0 \ to \ 5.5 \ V$ $I_{OT} = V_{O} = 0 \ to \ 5.5 \ V$ $I_{OT} = V_{O} = 0 \ to \ 5.5 \ V$ $I_{OT} = V_{O} = 0 \ to \ 5.5 \ V$ $I_{OT} = V_{O} = 0 \ to \ 5.5 \ V$ $I_{OT} = V_{O} = 0 \ to \ 5.5 \ V$ $I_{OT} = V_{O} = 0 \ to \ 5.5 \ V$ $I_{OT} = V_{O} = 0 \ to \ 5.5 \ V$ $I_{OT} = V_{O} = 0 \ to \ 5.5 \ V$ $I_{OT} = V_{O} = 0 \ to \ 5.5 \ V$ $I_{OT} = V_{O} = 0 \ to \ 5.5 \ V$ $I_{OT} = V_{O} = 0 \ to \ 5.5 \ V$ $I_{OT} = V_{O} = 0 \ to \ 5.5 \ V$ $I_{OT} = V_{O} = 0 \ to \ 5.5 \ V$ $I_{OT} = V_{O} = 0 \ to \ 5.5 \ V$ $I_{OT} = V_{O} = 0 \ to \ 5.5 \ V$ $I_{OT} = V_{O} = 0 \ to \ 5.5 \ V$ $I_{OT} = V_{O} = 0 \ to \ 5.5 \ V$ $I_{OT} = V_{O} = 0 \ to \ 5.5 \ V$ $I_{OT} = V_{O} = 0 \ to \ 5.5 \ V$ $I_{OT} = V_{OT} = 0 \ to \ 5.5 \ V$ $I_{OT} = V_{OT} = 0 \ to \ 5.5 \ V$ $I_{OT} = V_{OT} = 0 \ to \ 5.5 \ V$ $I_{OT} = 0 \ to \ 5.5 \ V$ $I_{OT} = 0 \ to \ 5.5 \ V$ $I_{OT} = 0 \ to \ 5.5 \ V$ $I_{OT} = 0 \ to \ 5.5 \ V$ $I_{OT} = 0 \ to \ 5.5 \ V$ $I_{OT} = 0 \ to \ 5.5 \ V$ $I_{OT} = 0 \ to \ 5.5 \ V$ $I_{OT} = 0 \ to \ 5.5 \ V$ $I_{OT} = 0 \ to \ 5.5 \ V$ $I_{OT} = 0 \ to \ 5.5 \ V$ $I_{OT} = 0 \ to \ 5.5 \ V$ $I_{OT} =$ |                          | 2.3 V                                                               | 1.7             |                        |      |      |
| V <sub>OH</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | $\begin{array}{c c c c c c c c c c c c c c c c c c c $              | V               |                        |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | $I_{OH} = -6 \text{ mA}$                                            | 3 V             | 2.4                    |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | I <sub>OH</sub> = -8 mA                                             | 2.7 V           | 2                      |      |      |
| V <sub>OL</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I <sub>OH</sub> = -12 mA | 3 V                                                                 | 2               |                        |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | I <sub>OL</sub> = 100 μA                                            | 1.65 V to 3.6 V |                        | 0.2  |      |
| V <sub>OL</sub><br>I <u>I</u> Control inputs<br>I <sub>off</sub><br>I <sub>OZ</sub> <sup>(2)</sup><br>I <sub>CC</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          | I <sub>OL</sub> = 2 mA                                              | 1.65 V          |                        | 0.45 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | 2.3 V                                                               |                 | 0.7                    | V    |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I <sub>OL</sub> = 4 mA   | 2.7 V                                                               |                 | 0.4                    |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | I <sub>OL</sub> = 6 mA                                              | 3 V             |                        | 0.55 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | I <sub>OL</sub> = 8 mA                                              | 2.7 V           |                        | 0.6  |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | I <sub>OL</sub> = 12 mA                                             | 3 V             |                        | 0.8  |      |
| l <sub>l</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Control inputs           | $V_{I} = 0$ to 5.5 V                                                | 3.6 V           |                        | ±5   | μA   |
| I <sub>off</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | $V_1 \text{ or } V_0 = 5.5 \text{ V}$                               | 0               |                        | ±10  | μA   |
| $I_{OZ}^{(2)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | $V_0 = 0$ to 5.5 V                                                  | 3.6 V           |                        | ±5   | μA   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | $V_{I} = V_{CC}$ or GND,                                            |                 |                        | 20   |      |
| ICC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          | $3.6 \ \forall \le \forall_{I} \le 5.5 \ \forall^{(3)}$ $I_{O} = 0$ | 3.6 V           |                        | 20   | μA   |
| $\Delta I_{CC}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | One input at $V_{CC} - 0.6 V$ ,<br>Other inputs at $V_{CC}$ or GND  | 2.7 V to 3.6 V  |                        | 500  | μA   |
| Ci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Control inputs           | $V_1 = V_{CC}$ or GND                                               | 3.3 V           | 3                      |      | pF   |
| Cio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A or B ports             | $V_{O} = V_{CC}$ or GND                                             | 3.3 V           | 12                     |      | pF   |

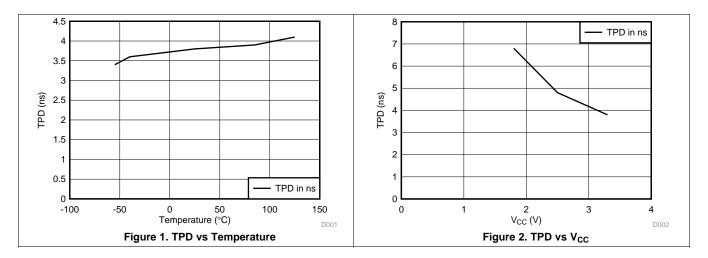
(1) All typical values are at V<sub>CC</sub> = 3.3 V, T<sub>A</sub> = 25°C. (2) For I/O ports, the parameter  $I_{OZ}$  includes the input leakage current. (3) This applies in the disabled state only.

### 7.6 Switching Characteristics

over operating free-air temperature range (unless otherwise noted) (See Figure 3)

| PARAMETER        | FROM<br>(INPUT) | TO<br>(OUTPUT) | V <sub>CC</sub> = 1<br>± 0.15 | .8 V<br>V | V <sub>CC</sub> = 2<br>± 0.2 |     | V <sub>CC</sub> = 2 | .7 V | V <sub>CC</sub> = 3<br>± 0.3 | 3.3 V<br>V | UNIT |
|------------------|-----------------|----------------|-------------------------------|-----------|------------------------------|-----|---------------------|------|------------------------------|------------|------|
|                  | (INPUT)         | (001P01)       | MIN                           | MAX       | MIN                          | MAX | MIN                 | MAX  | MIN                          | MAX        |      |
| t <sub>pd</sub>  | A or B          | B or A         | 1                             | 7.8       | 1                            | 5.8 | 1.5                 | 5.7  | 1.5                          | 4.8        | ns   |
| t <sub>en</sub>  | OE              | A or B         | 1.5                           | 10        | 1                            | 8   | 1.5                 | 7.9  | 1.5                          | 6.3        | ns   |
| t <sub>dis</sub> | OE              | A or B         | 1.5                           | 11.9      | 1                            | 8.4 | 1.5                 | 8.3  | 2.2                          | 7.4        | ns   |

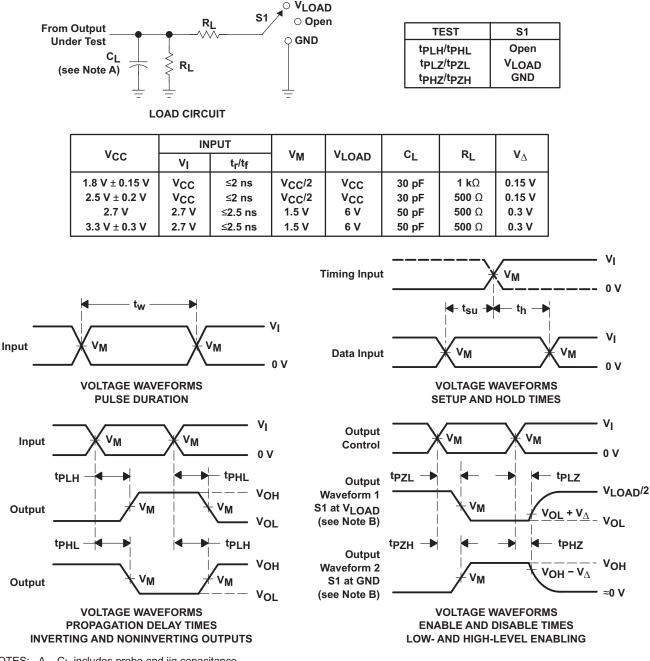
## 7.7 Operating Characteristics


 $T_A = 25^{\circ}C$ 

|          | PARAMETER                     | TEST<br>CONDITIONS | V <sub>CC</sub> = 1.8 V<br>TYP | V <sub>CC</sub> = 2.7 V<br>TYP | V <sub>CC</sub> = 3.3 V<br>TYP | UNIT |            |
|----------|-------------------------------|--------------------|--------------------------------|--------------------------------|--------------------------------|------|------------|
| <u> </u> | Power dissipation capacitance | Outputs enabled    | f = 10 MHz                     | 25                             | 38                             | 40   | ~ <b>F</b> |
| Cpd      | per transceiver               | Outputs disabled   |                                | 35                             | 30                             | 43   | pF         |

SN74LVCR16245A SCES427B – FEBRUARY 2003 – REVISED JUNE 2014 TEXAS INSTRUMENTS

www.ti.com


## 7.8 Typical Characteristics



Copyright © 2003–2014, Texas Instruments Incorporated



#### Parameter Measurement Information 8



NOTES: A. C<sub>I</sub> includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  10 MHz, Z<sub>Q</sub> = 50  $\Omega$ .
- D. The outputs are measured one at a time, with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. t<sub>PZL</sub> and t<sub>PZH</sub> are the same as t<sub>en</sub>.
- G. tpLH and tpHL are the same as tpd.
- H. All parameters and waveforms are not applicable to all devices.

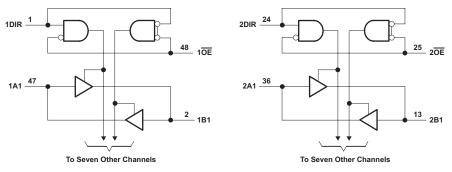
### Figure 3. Load Circuit and Voltage Waveforms

**ISTRUMENTS** 

www.ti.com

#### Detailed Description 9

#### Overview 9.1


The SN74LVCR16245A device is designed for asynchronous communication between data buses. The logic levels of the direction-control (DIR) input and the output-enable  $(\overline{OE})$  input activate either the B-port outputs or the A-port outputs or place both output ports into the high-impedance mode. The device transmits data from the A bus to the B bus when the B-port outputs are activated, and from the B bus to the A bus when the A-port outputs are activated. The input circuitry on both A and B ports always is active and must have a logic HIGH or LOW level applied to prevent excess  $I_{CC}$  and  $I_{CCZ}$ .

All inputs and outputs have equivalent  $26 \cdot \Omega$  resistors that will slow the edges of the output and reduce switching noise caused by long capacitive etch runs or cables.

To ensure the high-impedance state during power up or power down,  $\overline{OE}$  should be tied to V<sub>CC</sub> through a pullup resistor. The minimum value of the resistor is determined by the current-sinking capability of the driver. Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment.

This device is fully specified for partial-power-down applications using I<sub>off</sub>. The I<sub>off</sub> circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

### 9.2 Functional Block Diagram



Pin numbers shown are for the DGG, DGV, and DL packages.

Figure 4. Logic Diagram (Positive Logic)

### 9.3 Feature Description

- Wide operating voltage range
  - Operates from 1.65 V to 3.6 V
- Allows down voltage translation
  - Inputs accept voltages to 5.5 V
- I<sub>off</sub> feature
  - Allows voltages on the inputs and outputs when V<sub>CC</sub> is 0 V

### 9.4 Device Functional Modes

| (Each 8-Bit Section) |      |                 |  |  |  |  |  |  |
|----------------------|------|-----------------|--|--|--|--|--|--|
| INF                  | PUTS | OPERATION       |  |  |  |  |  |  |
| OE                   | DIR  | OPERATION       |  |  |  |  |  |  |
| L                    | L    | B data to A bus |  |  |  |  |  |  |
| L                    | н    | A data to B bus |  |  |  |  |  |  |
| Н                    | Х    | Isolation       |  |  |  |  |  |  |

Table 1. Function Table



## **10** Application and Implementation

### **10.1** Application Information

The SN74LVCR16245A device is a 16-bit bidirectional transceiver. This device can be used as two 8-bit transceivers or one 16-bit transceiver. It allows data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable ( $\overline{OE}$ ) input can be used to disable the device so that the buses are effectively isolated. The device has 5.5V tolerant inputs at any valid V<sub>CC</sub> which allows it to be used in multi-power systems and can be used for down translation.

### **10.2 Typical Application**

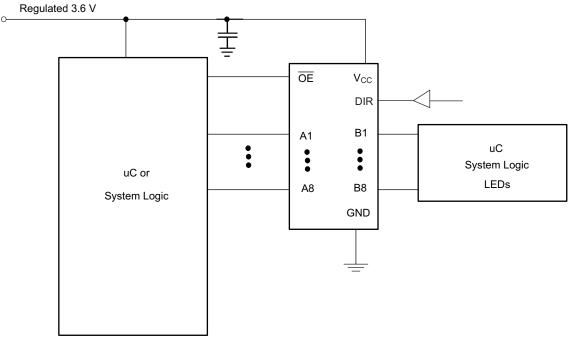
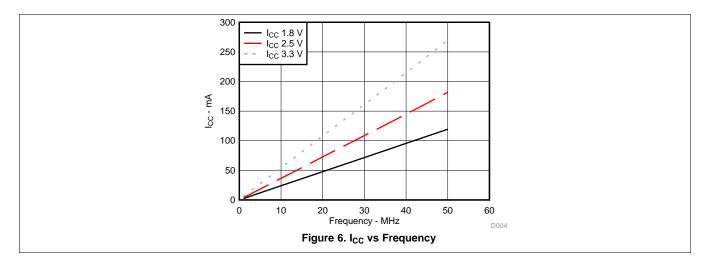



Figure 5. Typical Application Diagram


### 10.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads; therefore, routing and load conditions should be considered to prevent ringing.

### 10.2.2 Detailed Design Procedure

- 1. Recommended Input Conditions
  - Rise time and fall time specs: See (Δt/ΔV) in Recommended Operating Conditions
  - Specified high and low levels: See (VIH and VIL) in Recommended Operating Conditions
  - Inputs are overvoltage tolerant allowing them to go as high as 5.5 V at any valid  $V_{CC}$
- 2. Recommend Output Conditions
  - Load currents should not exceed 25 mA per output and 50 mA total for the part
  - Outputs should not be pulled above V<sub>CC</sub>

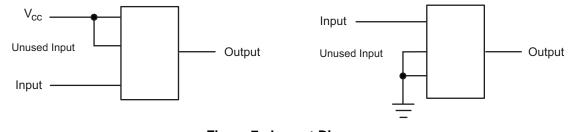
## Typical Application (continued) 10.2.3 Application Curves



# 11 Power Supply Recommendations

The power supply can be any voltage between the MIN and MAX supply voltage rating located in the *Recommended Operating Conditions* table.

Each  $V_{CC}$  pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, 0.1 µf is recommended; if there are multiple  $V_{CC}$  pins, then 0.01 µf or 0.022 µf is recommended for each power pin. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. A 0.1 µf and a 1 µf are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results.


## 12 Layout

### 12.1 Layout Guidelines

When using multiple-bit logic devices, inputs should never float.

In many cases, functions or parts of functions of digital logic devices are unused, for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Figure 7 specifies the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or  $V_{CC}$ , whichever makes more sense or is more convenient. It is generally acceptable to float outputs, unless the part is a transceiver. If the transceiver has an output enable pin, it will disable the output section of the part when asserted. This will not disable the input section of the I/Os, so they cannot float when disabled.

### 12.2 Layout Example





## **13** Device and Documentation Support

### 13.1 Trademarks

Widebus is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

### **13.2 Electrostatic Discharge Caution**



These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

### 13.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

### 14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.



24-Aug-2014

## PACKAGING INFORMATION

| Orderable Device   | Status | Package Type               | •       | Pins | •    | Eco Plan                   | Lead/Ball Finish | MSL Peak Temp      | Op Temp (°C) | Device Marking | Samples |
|--------------------|--------|----------------------------|---------|------|------|----------------------------|------------------|--------------------|--------------|----------------|---------|
|                    | (1)    |                            | Drawing |      | Qty  | (2)                        | (6)              | (3)                |              | (4/5)          |         |
| 74LVCR16245ADGGRG4 | ACTIVE | TSSOP                      | DGG     | 48   | 2000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 85    | LVCR16245A     | Samples |
| SN74LVCR16245ADGGR | ACTIVE | TSSOP                      | DGG     | 48   | 2000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 85    | LVCR16245A     | Samples |
| SN74LVCR16245ADGVR | ACTIVE | TVSOP                      | DGV     | 48   | 2000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 85    | LDR245A        | Samples |
| SN74LVCR16245ADLR  | ACTIVE | SSOP                       | DL      | 48   | 1000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 85    | LVCR16245A     | Samples |
| SN74LVCR16245AZQLR | ACTIVE | BGA<br>MICROSTAR<br>JUNIOR | ZQL     | 56   | 1000 | Green (RoHS<br>& no Sb/Br) | SNAGCU           | Level-1-260C-UNLIM | -40 to 85    | LDR245A        | Samples |

<sup>(1)</sup> The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

**PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

**TBD:** The Pb-Free/Green conversion plan has not been defined.

**Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

<sup>(3)</sup> MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

<sup>(4)</sup> There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(<sup>5)</sup> Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

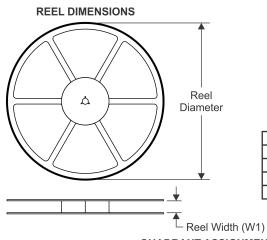


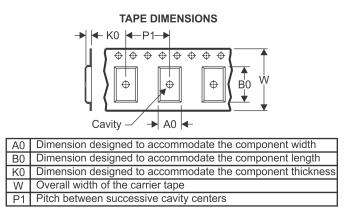
# PACKAGE OPTION ADDENDUM

24-Aug-2014

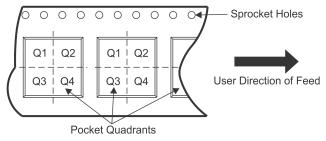
<sup>(6)</sup> Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

**Important Information and Disclaimer:**The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


# PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

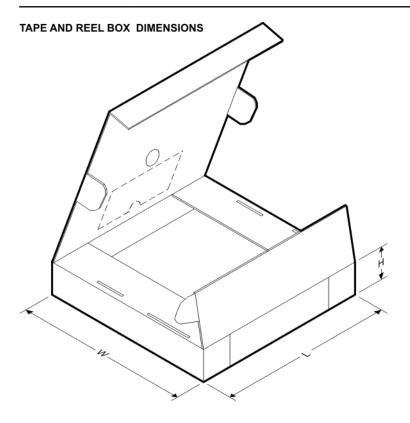
### TAPE AND REEL INFORMATION





# QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



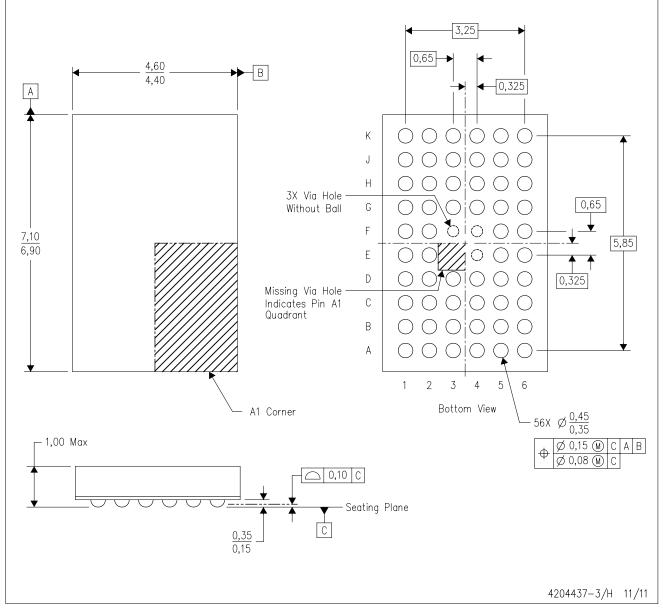

| *All dimensions are nominal |                                  |                    |    |      |                          |                          |            |            |            |            |           |                  |
|-----------------------------|----------------------------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| Device                      | Package<br>Type                  | Package<br>Drawing |    | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
| SN74LVCR16245ADGGR          | TSSOP                            | DGG                | 48 | 2000 | 330.0                    | 24.4                     | 8.6        | 15.8       | 1.8        | 12.0       | 24.0      | Q1               |
| SN74LVCR16245ADGVR          | TVSOP                            | DGV                | 48 | 2000 | 330.0                    | 16.4                     | 7.1        | 10.2       | 1.6        | 12.0       | 16.0      | Q1               |
| SN74LVCR16245ADLR           | SSOP                             | DL                 | 48 | 1000 | 330.0                    | 32.4                     | 11.35      | 16.2       | 3.1        | 16.0       | 32.0      | Q1               |
| SN74LVCR16245AZQLR          | BGA MI<br>CROSTA<br>R JUNI<br>OR | ZQL                | 56 | 1000 | 330.0                    | 16.4                     | 4.8        | 7.3        | 1.5        | 8.0        | 16.0      | Q1               |

TEXAS INSTRUMENTS

www.ti.com

# PACKAGE MATERIALS INFORMATION

6-May-2014




\*All dimensions are nominal

| Device             | Package Type            | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|--------------------|-------------------------|-----------------|------|------|-------------|------------|-------------|
| SN74LVCR16245ADGGR | TSSOP                   | DGG             | 48   | 2000 | 367.0       | 367.0      | 45.0        |
| SN74LVCR16245ADGVR | TVSOP                   | DGV             | 48   | 2000 | 367.0       | 367.0      | 38.0        |
| SN74LVCR16245ADLR  | SSOP                    | DL              | 48   | 1000 | 367.0       | 367.0      | 55.0        |
| SN74LVCR16245AZQLR | BGA MICROSTAR<br>JUNIOR | ZQL             | 56   | 1000 | 336.6       | 336.6      | 28.6        |

ZQL (R-PBGA-N56)

PLASTIC BALL GRID ARRAY

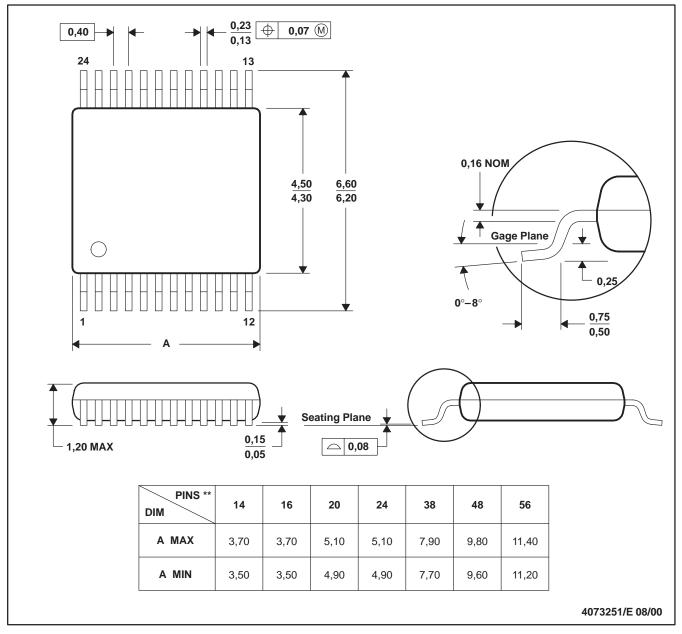


NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-285 variation BA-2.
- D. This package is Pb-free. Refer to the 56 GQL package (drawing 4200583) for tin-lead (SnPb).

MicroStar Junior is a trademark of Texas Instruments




# **MECHANICAL DATA**

PLASTIC SMALL-OUTLINE

MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

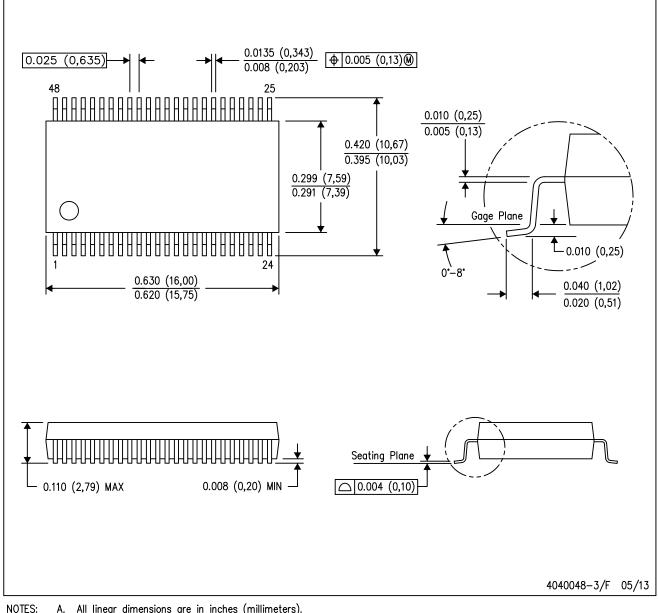
### DGV (R-PDSO-G\*\*)

24 PINS SHOWN



NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.


- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
- D. Falls within JEDEC: 24/48 Pins MO-153

14/16/20/56 Pins – MO-194



DL (R-PDSO-G48)

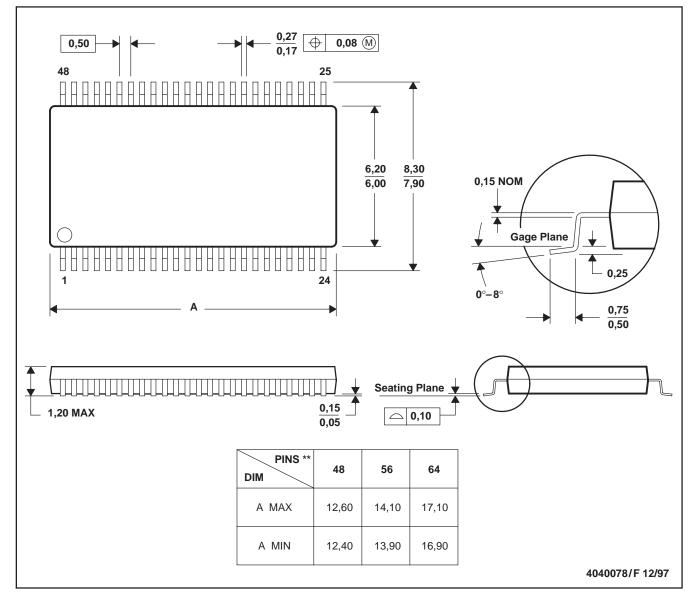
PLASTIC SMALL-OUTLINE PACKAGE



- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118

PowerPAD is a trademark of Texas Instruments.




# **MECHANICAL DATA**

MTSS003D - JANUARY 1995 - REVISED JANUARY 1998

### DGG (R-PDSO-G\*\*)

### PLASTIC SMALL-OUTLINE PACKAGE

**48 PINS SHOWN** 



NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153



### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

| Products                     |                          | Applications                  |                                   |
|------------------------------|--------------------------|-------------------------------|-----------------------------------|
| Audio                        | www.ti.com/audio         | Automotive and Transportation | www.ti.com/automotive             |
| Amplifiers                   | amplifier.ti.com         | Communications and Telecom    | www.ti.com/communications         |
| Data Converters              | dataconverter.ti.com     | Computers and Peripherals     | www.ti.com/computers              |
| DLP® Products                | www.dlp.com              | Consumer Electronics          | www.ti.com/consumer-apps          |
| DSP                          | dsp.ti.com               | Energy and Lighting           | www.ti.com/energy                 |
| Clocks and Timers            | www.ti.com/clocks        | Industrial                    | www.ti.com/industrial             |
| Interface                    | interface.ti.com         | Medical                       | www.ti.com/medical                |
| Logic                        | logic.ti.com             | Security                      | www.ti.com/security               |
| Power Mgmt                   | power.ti.com             | Space, Avionics and Defense   | www.ti.com/space-avionics-defense |
| Microcontrollers             | microcontroller.ti.com   | Video and Imaging             | www.ti.com/video                  |
| RFID                         | www.ti-rfid.com          |                               |                                   |
| OMAP Applications Processors | www.ti.com/omap          | TI E2E Community              | e2e.ti.com                        |
| Wireless Connectivity        | www.ti.com/wirelessconne | ectivity                      |                                   |

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated