

SN74LVTH16373-EP

SCBS778B-NOVEMBER 2003-REVISED JUNE 2016

SN74LVTH16373-EP 3.3-V ABT 16-Bit Transparent D-Type Latch With Tri-State Outputs

Technical

Documents

Sample &

Buv

1 Features

- Controlled Baseline
 - One Assembly/Test Site, One Fabrication Site
- Enhanced Diminishing Manufacturing Sources
 (DMS) Support
- Enhanced Product-Change Notification
- Qualification Pedigree ⁽¹⁾
- Member of the Texas Instruments Widebus™ Family
- State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V Operation and Low Static-Power Dissipation
- Supports Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V $\rm V_{CC})$
- Supports Unregulated Battery Operation Down to 2.7 V
- Typical V_{OLP} (Output Ground Bounce) < 0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Ioff and Power-Up Tri-State Support Hot Insertion
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Distributed V_{CC} and GND Pins Minimize High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- Latch-Up Performance Exceeds 500 mA Per JESD 17
- ESD Protection Exceeds JESD 22
 - 4000-V Human Body Model (A114-A)
 - 200-V Machine Model (A115-A)

2 Applications

Tools &

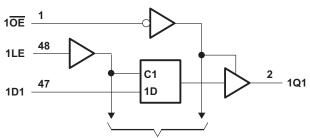
Software

- Data Buffer
- Bus Driver
- Display Driver

3 Description

The SN74LVTH16373 is a 16-bit transparent D-type latch with tri-state outputs designed for low-voltage (3.3 V) V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment.

Support &


Community

20

This device is particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers. This device can be used as two 8-bit latches or one 16-bit latch. When the latchenable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is taken low, the Q outputs are latched at the levels set up at the D inputs.

PART NUMBER	PACKAGE	BODY SIZE (NOM)	
	TSSOP (48)	12.50 mm × 6.10 mm	
SN74LVTH16373-EP	SSOP (48)	15.88 mm × 7.49 mm	
	BGA MICROSTAR JUNIOR (56)	4.50 mm × 7.00 mm	

- (1) Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.
- (2) For all available packages, see the orderable addendum at the end of the data sheet.

SN74LVTH16373-EP Single Channel Block Diagram

To Seven Other Channels

Copyright © 2003–2016, Texas Instruments Incorporated

Table of Contents

1	Features 1
2	Applications 1
3	Description 1
4	Revision History 2
5	Pin Configuration and Functions 3
6	Specifications 4
	6.1 Absolute Maximum Ratings 4
	6.2 ESD Ratings 4
	6.3 Recommended Operating Conditions5
	6.4 Thermal Information 5
	6.5 Electrical Characteristics
	6.6 Timing Requirements (I Version) 7
	6.7 Switching Characteristics (I Version) 7
	6.8 Timing Requirements (M Version) 8
	6.9 Switching Characteristics (M Version) 8
	6.10 Typical Characteristics 10
7	Parameter Measurement Information 11
8	Detailed Description 12

	8.1	Overview	12
	8.2	Functional Block Diagram	
	8.3	Feature Description	
	8.4	Device Functional Modes	12
9	App	lication and Implementation	13
	9.1	Application Information	13
	9.2	Typical Application	13
10	Pow	er Supply Recommendations	15
11	Lay	out	15
	11.1	Layout Guidelines	15
	11.2	Layout Example	15
12		ice and Documentation Support	
	12.1	Receiving Notification of Documentation Updates	
	12.2	Community Resources	16
	12.3	Trademarks	16
	12.4	Electrostatic Discharge Caution	16
	12.5	Glossary	16
13	Mec	hanical, Packaging, and Orderable	
-		mation	16

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

C	hanges from Revision A (March 2004) to Revision B	Page
•	Added Pin Functions table, ESD Ratings table, Thermal Information table, Typical Characteristics section, Detailed Description section, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section	า 1
•	Corrected table notes for Absolute Maximum Ratings table	4
•	Added new device temperature range to Recommended Operating Conditions table	5
•	Added new device specifications in Timing Requirements (M Version) and Switching Characteristics (M Version) tab	oles <mark>8</mark>
•	Added Figure 1 to Specifications section	9

SCBS778B – NOVEMBER 2003 – REVISED JUNE 2016

5 Pin Configuration and Functions

DGG or DL Package 48-Pin TSSOP or SSOP Top View						
10E [1Q1 [1Q2 [1 2 3	48 47 46] 1LE] 1D1] 1D2			
GND [1Q3 [1Q4]	4 5 6	45 44 43	GND 1D3			
V _{CC} 1Q5 1Q6	7 8 9	42 41 40	V _{CC} 1D5			
GND [1Q7 [1Q8]	10 11 12	39 38 37	GND 1D7 1D8			
2Q1 [2Q2 [13 14 15	36 35 34	2D1 2D2			
GND [2Q3 [2Q4 [16 17	34 33 32	GND 2D3 2D4			
V _{CC} [2Q5 [2Q6 [18 19 20	31 30 29	V _{CC} 2D5 2D6			
GND [2Q7 [2Q8 [21 22 23	28 27 26] GND] 2D7] 2D8			
20E [24	25	2LE			

Table 1. Pin Assignments '	Table	1.	Pin	Assignments ⁽¹⁾
----------------------------	-------	----	-----	----------------------------

	1	2	3	4	5	6
А	1 0E	NC	NC	NC	NC	1LE
В	1Q2	1Q1	GND	GND	1D1	1D2
С	1Q4	1Q3	VCC	VCC	1D3	1D4
D	1Q6	1Q5	GND	GND	1D5	1D6
Е	1Q8	1Q7			1D7	1D8
F	2Q1	2Q2			2D2	2D1
G	2Q3	2Q4	GND	GND	2D4	2D3
н	2Q5	2Q6	VCC	VCC	2D6	2D5
J	2Q7	2Q8	GND	GND	2D8	2D7
к	2 <mark>0E</mark>	NC	NC	NC	NC	2LE

(1) NC - No internal connection.

SN74LVTH16373-EP SCBS778B – NOVEMBER 2003 – REVISED JUNE 2016

www.ti.com

STRUMENTS

XAS

Pin Functions

PIN		I/O	DESCRIPTION	
NAME	NO.	10	DESCRIPTION	
1Dn ⁽¹⁾	37, 38, 49, 41, 43, 44, 46, 47	I	Data input pins	
1LE	48	I	Latch enable pin to control 1Qn output states	
1 0E	1	I	Active low enable pin for 1Qn pins	
1Qn ⁽¹⁾	2, 3, 5, 6, 8, 9, 11, 12	0	Output pins	
2Dn ⁽¹⁾	26, 27, 29, 30, 32, 33, 35, 36	I	Data input pins	
2LE	25	I	Latch enable pin to control 2Qn output states	
2Qn ⁽¹⁾	13, 14, 16, 17, 19, 20, 22, 23	0	Output pins	
2 0E	24	I	Active low enable pin for 2Qn pins	
GND	4, 10, 15, 21, 28, 34, 39, 45	_	Ground	
VCC	7, 18, 31, 42	I	Power supply input for internal circuits	

(1) "n" denotes numbering (1 to 8) for data input and output pins.

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
V _{CC}	Supply voltage	-0.5	4.6	V
VI	Input voltage ⁽²⁾	-0.5	7	V
Vo	Voltage applied to any output in the high-impedance or power-off state $^{(2)}$	-0.5	7	V
Vo	Voltage applied to any output in the high state ⁽²⁾	-0.5	V_{CC} + 0.5 V	V
I _O	Current into any output in the low state		128	mA
I _O	Current into any output in the high state ⁽³⁾		64	mA
I _{IK}	Input clamp current (V _I < 0)	-50		mA
I _{OK}	Output clamp current (V _O < 0)	-50		mA
T _{stg}	Storage temperature	-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

(3) This current flows only when the output is in the high state and $V_0 > V_{CC}$.

6.2 ESD Ratings

			VALUE	UNIT
V _(ESD)		Human body model (HBM), per A114-A	±4000	V
	-	Charged device model (CDM), per JEDEC specification JESD22-C101 ⁽¹⁾	±3000	V
		Machine model (MM), per A115-A	200	V

(1) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
V _{CC}	Supply voltage	2.7	3.6	V	
V _{IH}	High-level input voltage	2		V	
V _{IL}	Low-level input voltage		0.8	V	
VI	Input voltage		5.5	V	
I _{OH}	High-level output current		-32	mA	
I _{OL}	Low-level output current			64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate, outputs enabled			10	ns/V
$\Delta t / \Delta V_{CC}$	Power-up ramp rate		200		μs/V
T _A	Operating embient temperature	I version	-40	85	°C
	Operating ambient temperature	M version	-55	125	°C

(1) All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, SCBA004.

6.4 Thermal Information

			SN74LVTH16373-EP					
	THERMAL METRIC ⁽¹⁾⁽²⁾	DGG (TSSOP)	DL (SSOP)	GQL (BGA MICROSTAR JUNIOR)	UNIT			
		48 PINS	48 PINS	56 PINS				
R_{\thetaJA}	Junction-to-ambient thermal resistance	68.9	60.3	62.5	°C/W			
R _{0JC(top)}	Junction-to-case (top) thermal resistance	14.6	31	24.7	°C/W			
$R_{\theta JB}$	Junction-to-board thermal resistance	35.8	32.1	28.9	°C/W			
ΨJT	Junction-to-top characterization parameter	2.4	9.3	0.9	°C/W			
ΨJB	Junction-to-board characterization parameter	35.5	31.8	28	°C/W			

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

(2) The package thermal impedance is calculated in accordance with JESD 51-7.

SN74LVTH16373-EP

SCBS778B-NOVEMBER 2003-REVISED JUNE 2016

www.ti.com

STRUMENTS

EXAS

6.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted); all typical values are at V_{CC} = 3.3 V, T_A = 25°C

PARAMETER		TEST CON	DITIONS	MIN	TYP MAX	UNIT
VIK		V _{CC} = 2.7 V,	I _I = −18 mA		-1.2	V
		$V_{CC} = 2.7 V \text{ to } 3.6 V,$	I _{OH} = −100 μA	V _{CC} - 0.2		V
V _{OH}		V _{CC} = 2.7 V,	I _{OH} = -8 mA	2.4		V
		V _{CC} = 3 V,	I _{OH} = -32 mA	2		V
		V _{CC} = 2.7 V	I _{OL} = 100 μA		0.2	V
		$v_{\rm CC} = 2.7 v$	I _{OL} = 24 mA		0.5	V
V _{OL}			I _{OL} = 16 mA		0.4	V
		V _{CC} = 3 V,	I _{OL} = 32 mA		0.5	V
			I _{OL} = 64 mA		0.55	V
		V _{CC} = 0 or 3.6 V,	V _I = 5.5 V		10	μA
	Control inputs	V _{CC} = 3.6 V,	$V_I = V_{CC}$ or GND		±1	μA
I _I	Data inputs	V _{CC} = 3.6 V	$V_I = V_{CC}$		1	μA
Data inputs		$v_{\rm CC} = 5.0$ v	$V_I = 0$		-5	μA
I _{off}		V _{CC} = 0,	$V_{I} \text{ or } V_{O} = 0 \text{ to } 4.5 \text{ V}$		±100	μA
	$V_{CC} = 3 V$	V _I = 0.8 V	75		μA	
I _{I(hold)}	Data inputs	VCC = 5 V	V ₁ = 2 V	-75		μA
		$V_{CC} = 3.6 V^{(1)},$	$V_{I} = 0$ to 3.6 V		±650	μA
I _{OZH}		V _{CC} = 3.6 V,	V _O = 3 V		5	μA
I _{OZL}		V _{CC} = 3.6 V,	V _O = 0.5 V		-5	μA
I _{OZPU}		V_{CC} = 0 to 1.5 V, V_{O} = 0.5 to 3	V, \overline{OE} = don't care		±100	μA
I _{OZPD}		V_{CC} = 1.5 V to 0, V_{O} = 0.5 to 3	V, \overline{OE} = don't care		±100	μA
			Outputs high		0.19	mA
I _{CC}		$V_{CC} = 3.6 \text{ V}, I_{O} = 0, V_{I} = V_{CC}$ or GND	Outputs low		5	mA
			Outputs disabled		0.19	mA
		V_{CC} = 3 to 3.6 V, One input at at V_{CC} or GND		0.2	mA	
Ci		$V_I = 3 V \text{ or } 0$			3	pF
Co		$V_0 = 3 V \text{ or } 0$			9	pF

(1) This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

(2) This is the increase in supply current for each input that is at the specified TTL voltage level, rather than V_{CC} or GND.

Copyright © 2003–2016, Texas Instruments Incorporated

6.6 Timing Requirements (I Version)

over recommended operating conditions (unless otherwise noted); $T_A = -40^{\circ}C$ to 85°C

			MIN	MAX	UNIT
+	Dulas duration LE high	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	3		ns
۱ _w	v Pulse duration, LE high	$V_{CC} = 2.7 V$	3		ns
	Satur time, data bafara LEL	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1		ns
ι _{su}	Setup time, data before LE↓	$V_{CC} = 2.7 V$	0.6		ns
		$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1		ns
τ _h	Hold time, data after LE \downarrow	V _{CC} = 2.7 V	1.1		ns

6.7 Switching Characteristics (I Version)

over recommended operating conditions (unless otherwise noted); $T_A = -40$ °C to 85°C; all typical values are at $V_{CC} = 3.3$ V, $T_A = 25$ °C

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	МАХ	UNIT
	D	0	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.5	2.7	3.8	ns
t _{PLH}	D	Q	V _{CC} = 2.7 V			4.2	ns
	D	Q	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.5	2.5	3.6	ns
t _{PHL}	D	Q	V _{CC} = 2.7 V			4	ns
		Q	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	2.1	3	4.3	ns
t _{PLH}	LE	Q	V _{CC} = 2.7 V			4.8	ns
		6	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	2.1	2.9	4	ns
t _{PHL}	LE	Q	V _{CC} = 2.7 V			4	ns
	OE	0	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.5	2.8	4.3	ns
t _{PZH}	ÛE	Q	V _{CC} = 2.7 V			5.1	ns
			$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.5	2.8	4.3	ns
t _{PZL}	ŌĒ	Q	V _{CC} = 2.7 V			4.7	ns
		0	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	2.4	3.5	5	ns
t _{PHZ}	ŌĒ	Q	V _{CC} = 2.7 V			5.4	ns
	ŌĒ	0	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	2	3.2	4.7	ns
t _{PLZ}	UE	Q	V _{CC} = 2.7 V			4.8	ns
t _{sk(o)}			$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	0.5			ns

SN74LVTH16373-EP

SCBS778B-NOVEMBER 2003-REVISED JUNE 2016

www.ti.com

STRUMENTS

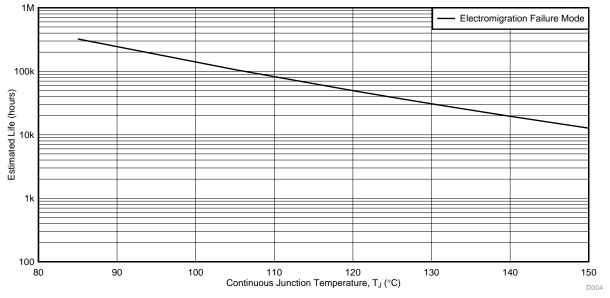
EXAS

6.8 Timing Requirements (M Version)

over recommended operating conditions (unless otherwise noted); $T_A = -55^{\circ}C$ to $125^{\circ}C$

			MIN	MAX	UNIT
	Dulco durotion I E high	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	3		ns
۱ _w	Pulse duration, LE high	$V_{CC} = 2.7 V$	3		ns
	Cotup time, doto hoforo El	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.6		ns
ι _{su}	Setup time, data before LE \downarrow	V _{CC} = 2.7 V	1		ns
		$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.4		ns
τ _h	Hold time, data after LE↓	$V_{CC} = 2.7 V$	1.5		ns

6.9 Switching Characteristics (M Version)


over recommended operating conditions (unless otherwise noted); $T_A = -55^{\circ}C$ to 125°C; all typical values are at $V_{CC} = 3.3$ V, $T_A = 25^{\circ}C$

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	ТҮР	МАХ	UNIT
	D	0	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.5	2.7	5	ns
t _{PLH}	D	Q	V _{CC} = 2.7 V			5.5	ns
	D	Q	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.5	2.5	4.8	ns
t _{PHL}	D	Q	V _{CC} = 2.7 V			5.3	ns
4	LE	Q	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	2.1	3	5.4	ns
t _{PLH}		Q	V _{CC} = 2.7 V			5.9	ns
4	LE	0	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	2.1	2.9	4.9	ns
t _{PHL}		LE	Q	V _{CC} = 2.7 V			4.9
	OE	0	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.5	2.8	7	ns
t _{PZH}	UE	Q	V _{CC} = 2.7 V			7.9	ns
	OE	-	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.5	2.8	6.2	ns
t _{PZL}	OE	Q	V _{CC} = 2.7 V			7.2	ns
	OE	-	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.8	3.5	7.2	ns
t _{PHZ}	UE	Q	V _{CC} = 2.7 V			7.9	ns
	OE	0	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	2	3.2	5.2	ns
t _{PLZ}	UE	Q	V _{CC} = 2.7 V			5.4	ns
t _{sk(o)}			$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	0.5			ns

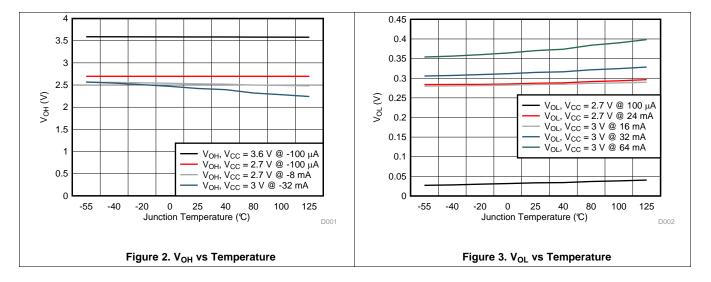
8

Copyright © 2003–2016, Texas Instruments Incorporated

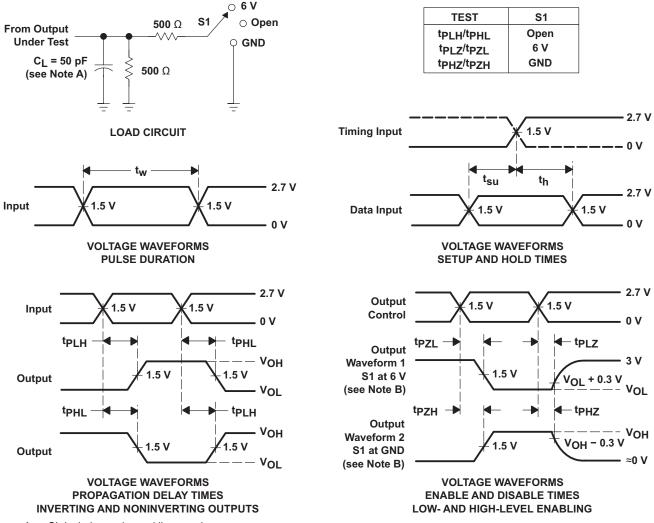
(1) See data sheet for absolute maximum and minimum recommended operating conditions.

(2) Silicon operating life design goal is 10 years at 105°C junction temperature (does not include package interconnect life).

(3) Enhanced plastic product disclaimer applies.


Figure 1. Derating Chart for SN74LVTH16373-EP

SN74LVTH16373-EP SCBS778B – NOVEMBER 2003 – REVISED JUNE 2016


www.ti.com

6.10 Typical Characteristics

7 Parameter Measurement Information

- A. CL includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_0 = 50 Ω , t_r ≤ 2.5 ns, t_f ≤ 2.5 ns.
- D. The outputs are measured one at a time, with one transition per measurement.

Figure 4. Load Circuit and Voltage Waveforms

TEXAS INSTRUMENTS

8 Detailed Description

8.1 Overview

The SN74LVTH16373 is a 16-bit transparent D-type latch with tri-state outputs designed for low-voltage (3.3-V) VCC operation, but with the capability to provide a TTL interface to a 5-V system environment. This device is particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers. This device can be used as two 8-bit latches or one 16-bit latch. When the latchenable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is taken low, the Q outputs are latched at the levels set up at the D inputs.

A buffered output-enable (OE) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high impedance state and the increased drive provide the capability to drive bus lines without interface or pullup components. OE does not affect internal operations of the latch. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

8.2 Functional Block Diagram

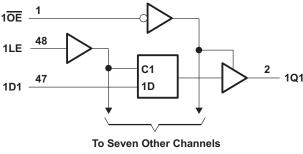


Figure 5. Logic Diagram (Positive Logic)

 $2\overline{OE}$ 24 2LE 25 2D1 C1 13 2Q1 To Seven Other Channels

Figure 6. Logic Diagram (Positive Logic)

8.3 Feature Description

The SN74LVTH16373 included active bus-hold circuitry that holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended. Additionally, it features power up three state that will keep the outputs in high-impedance state during power up or power down when VCC is between 0 and 1.5 V. This prevents driver conflict during power up.

To ensure the high-impedance state above 1.5 V, OE should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

This device is fully specified for hot-insertion applications using I_{off} and power-up tri-state. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

	INPUTS										
OE	LE	D	Q								
L	Н	Н	Н								
L	Н	L	L								
L	L	х	Q ₀								
Н	Х	Х	Z								

Table 2. Function Table (Each 8-Bit Section)

8.4 Device Functional Modes

Device functions as tristatable 8 or 16-bit latch per function table defined in Table 2.

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The specially designed 3-V LVTH family uses the 0.8-µ BiCMOS process technology for bus-interface functions. Like its 5-V ABT counterpart, LVHT provides up to 64 mA of drive, low propagation delays. The bus-hold feature eliminates requirements for external pullup resistors and I/Os that can handle up to 7 V, which allows them to act as 5-V/3-V translators.

9.2 Typical Application

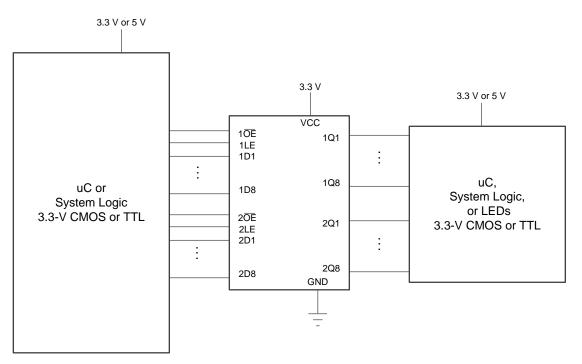


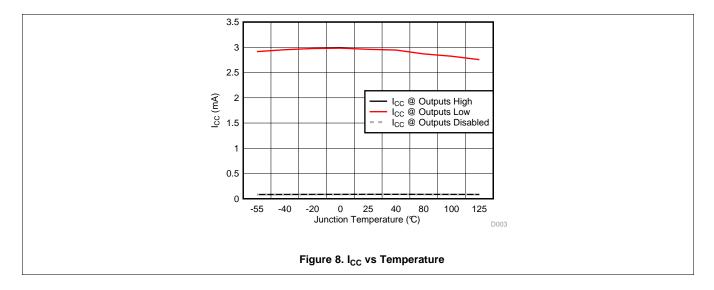
Figure 7. Application Diagram

9.2.1 Design Requirements

The SN54LVTH16373 utilizes BiCMOS technology with high-drive currents. Care must be taken to avoid bus contention that can disrupt system functionality and/or cause violation of absolute maximum ratings.

9.2.2 Detailed Design Procedure

- Recommended input conditions
 - Rise time and fall time specifications. See $\Delta t / \Delta V$ in Recommended Operating Conditions.
 - Specified high and low levels. See V_{IH} and V_{IL} in Recommended Operating Conditions.
 - Inputs are overvoltage tolerant, which allows them to go as high as 5.5 V independent of V_{CC}.
- Recommend output conditions
 - Avoid buss contention.
 - Do not exceed I_{OH} and I_{OL} current limits in Recommended Operating Conditions.
 - Outputs that are being driven high may not be pulled above V_{CC} by more they 0.5 V.


SCBS778B-NOVEMBER 2003-REVISED JUNE 2016

www.ti.com

Typical Application (continued)

9.2.3 Application Curves

10 Power Supply Recommendations

The power supply can be any voltage between the MIN and MAX supply voltage rating located in the *Recommended Operating Conditions* table.

Each V_{CC} pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, 0.1 μ F is recommended. If there are multiple V_{CC} pins, 0.01 μ F or 0.022 μ F is recommended for each power pin. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. A 0.1 μ F and 1 μ F are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results.

11 Layout

11.1 Layout Guidelines

When using multiple bit logic devices, inputs should not float. In many cases, functions or parts of functions of digital logic devices are unused. Some examples are when only two inputs of a triple-input AND gate are used, or when only 3 of the 4-buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states.

Specified in Figure 9 are rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or V_{CC} , whichever makes more sense or is more convenient. It is acceptable to float outputs unless the part is a transceiver. If the transceiver has an output enable pin, it will disable the outputs section of the part when asserted. This will not disable the input section of the I/Os so they also cannot float when disabled.

11.2 Layout Example

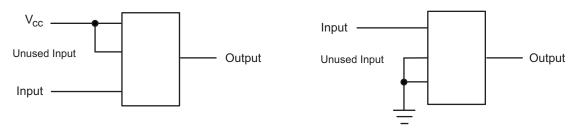


Figure 9. Layout Diagram

12 Device and Documentation Support

12.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.3 Trademarks

Widebus, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

12.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Copyright © 2003–2016, Texas Instruments Incorporated

5-Oct-2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
CLVTH16373IDGGREP	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LH16373EP	Samples
CLVTH16373IDLREP	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LH16373EP	Samples
CLVTH16373MGQLREP	ACTIVE	BGA MICROSTAR JUNIOR	GQL	56	2000	TBD	SNPB	Level-1-235C-UNLIM	-55 to 125	H16373MEP	Samples
V62/04712-01XE	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LH16373EP	Samples
V62/04712-01YE	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LH16373EP	Samples
V62/04712-02ZA	ACTIVE	BGA MICROSTAR JUNIOR	GQL	56	2000	TBD	SNPB	Level-1-235C-UNLIM	-55 to 125	H16373MEP	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

PACKAGE OPTION ADDENDUM

5-Oct-2016

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

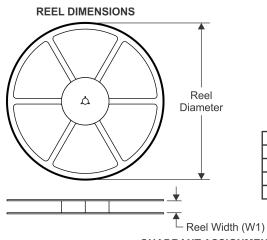
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

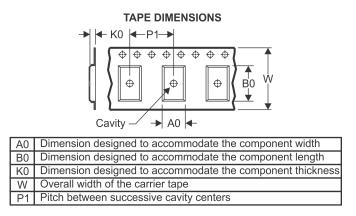
OTHER QUALIFIED VERSIONS OF SN74LVTH16373-EP :

• Catalog: SN74LVTH16373

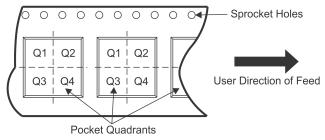
• Military: SN54LVTH16373

NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

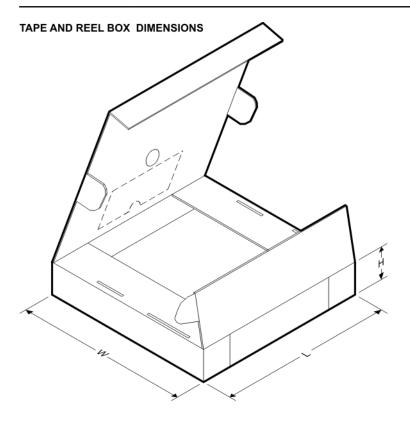

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

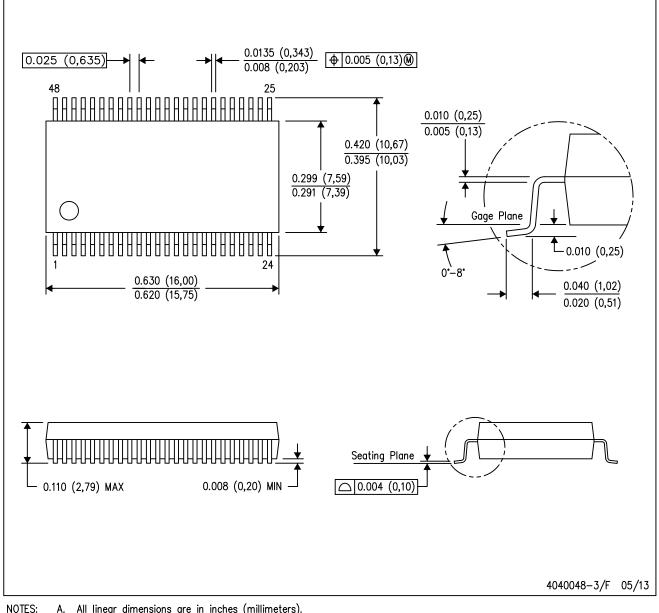

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CLVTH16373IDGGREP	TSSOP	DGG	48	2000	330.0	24.4	8.6	15.8	1.8	12.0	24.0	Q1
CLVTH16373IDLREP	SSOP	DL	48	1000	330.0	32.4	11.35	16.2	3.1	16.0	32.0	Q1
CLVTH16373MGQLREP	BGA MI CROSTA R JUNI OR	GQL	56	2000	330.0	16.4	4.8	7.3	1.5	8.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

2-Jul-2016

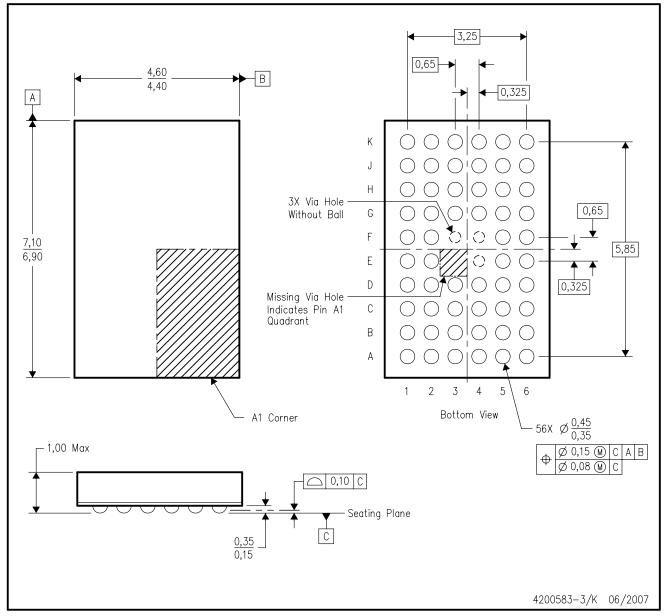


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CLVTH16373IDGGREP	TSSOP	DGG	48	2000	367.0	367.0	45.0
CLVTH16373IDLREP	SSOP	DL	48	1000	367.0	367.0	55.0
CLVTH16373MGQLREP	BGA MICROSTAR JUNIOR	GQL	56	2000	336.6	336.6	28.6

DL (R-PDSO-G48)

PLASTIC SMALL-OUTLINE PACKAGE


- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118

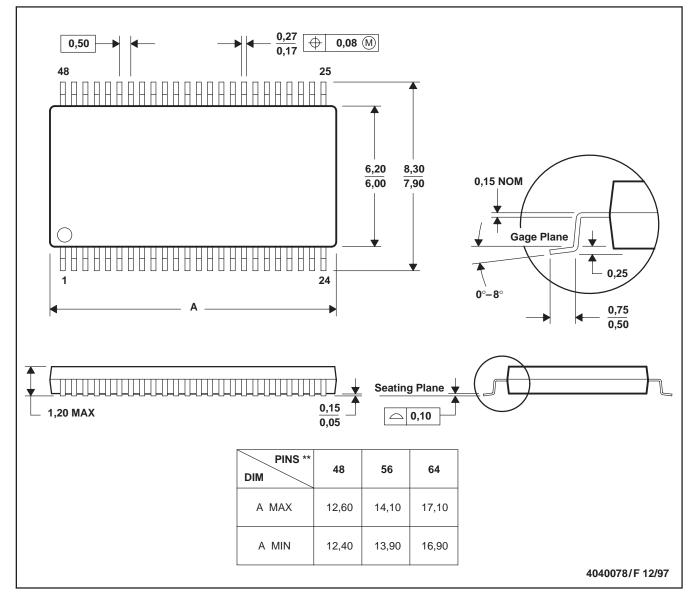
PowerPAD is a trademark of Texas Instruments.

GQL (R-PBGA-N56)

PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-285 variation BA-2.
- D. This package is tin-lead (SnPb). Refer to the 56 ZQL package (drawing 4204437) for lead-free.


MECHANICAL DATA

MTSS003D - JANUARY 1995 - REVISED JANUARY 1998

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated