

Sample &

Buv

TPS22963C, TPS22964C

SLVSBS6A – JUNE 2013 – REVISED JANUARY 2015

TPS2296xC 5.5-V, 3-A, 13-mΩ On-Resistance Load Switch With Reverse Current Protection and Controlled Turn-On

Technical

Documents

1 Features

- Integrated N-Channel Load Switch
- Input Voltage Range: 1 V to 5.5 V
- Internal Pass-FET R_{DSON} = 8 mΩ (Typ)
- Ultra-Low ON-Resistance
 - $R_{ON} = 13 \text{ m}\Omega$ (Typ) at $V_{IN} = 5 \text{ V}$
 - $R_{ON} = 14 \text{ m}\Omega$ (Typ) at $V_{IN} = 3.3 \text{ V}$
 - R_{ON} = 18 mΩ (Typ) at V_{IN} = 1.8 V
- 3A Maximum Continuous Switch Current
- Reverse Current Protection (When Disabled)
- Low Shutdown Current (760 nA)
- Low Threshold 1.3-V GPIO Control Input
- Controlled Slew-Rate to Avoid Inrush Current
- Quick Output Discharge (TPS22964 only)
- Six Terminal Wafer-Chip-Scale Package (Nominal Dimensions Shown - See Addendum for Details)
 - 0.9 mm x 1.4 mm, 0.5 mm Pitch, 0.5 mm Height (YZP)
- ESD Performance Tested Per JESD 22
 - 2-kV Human-Body Model (A114-B, Class II)
 - 500-V Charged-Device Model (C101)

2 Applications

- Smartphones
- Notebook Computer and Ultrabook™
- Tablet PC Computer
- Solid State Drives (SSD)
- DTV/IP Set Top Box
- POS Terminals and Media Gateways

4 Simplified Schematic

3 Description

Tools &

Software

The TPS22963/64 is a small, ultra-low R_{ON} load switch with controlled turn on. The device contains a low R_{DSON} N-Channel MOSFET that can operate over an input voltage range of 1 V to 5.5 V and switch currents of up to 3 A. An integrated charge pump biases the NMOS switch in order to achieve a low switch ON-Resistance. The switch is controlled by an on/off input (ON), which is capable of interfacing directly with low-voltage GPIO control signals. The rise time of the TPS22963/64 device is internally controlled in order to avoid inrush current.

Support &

Community

....

The TPS22963/64 provides reverse current protection. When the power switch is disabled, the device will not allow the flow of current towards the input side of the switch. The reverse current protection feature is active only when the device is disabled so as to allow for intentional reverse current (when the switch is enabled) for some applications.

The TPS22963/64 is available in a small, spacesaving 6-pin WCSP package and is characterized for operation over the free air temperature range of -40° C to 85°C.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TPS2296xC	DSBGA (6)	1.40 mm x 0.90 mm

(1) For all available packages, see the orderable addendum at the end of the datasheet.

Table of Contents

11.1

11.2

13.1 13.2

15

1	Feat	tures 1						
2	Applications 1							
3	Des	cription 1						
4	Sim	plified Schematic1						
5	Rev	ision History 2						
6	Dev	ice Comparison Table 3						
7	Pin	Configuration and Functions 3						
8	Spe	cifications 4						
	8.1	Absolute Maximum Ratings 4						
	8.2	ESD Ratings 4						
	8.3	Recommended Operating Conditions 4						
	8.4	Thermal Information 4						
	8.5	Electrical Characteristics 5						
	8.6	Switching Characteristics 6						
	8.7	Typical Electrical Characteristics 7						
	8.8	Typical Switching Characteristics9						
	8.9	Typical AC Scope Captures at $T_A = 25^{\circ}C$ 10						
9	Para	ametric Measurement Information 13						

5 Revision History

Changes from Original (June 2013) to Revision A

Added Pin Configuration and Functions section, ESD Ratings table, Feature Modes, Application and Implementation section, Power Supply Recommendation and Documentation Support section, and Mechanical, Packaging, and Orde

ble Information section	 . 1

10 Detailed Description 14 10.2 Functional Block Diagram 14 10.3 Feature Description...... 15 10.4 Device Functional Modes...... 15 11 Application and Implementation...... 15

12 Power Supply Recommendations 19 13 Layout...... 19

14 Device and Documentation Support 20 14.1 Related Links 20 14.2 Trademarks 20 14.3 Electrostatic Discharge Caution 20

Application Information..... 15

Typical Application 17

Layout Guidelines 19

Layout Example 19

www.ti.com

14.4 Glo	ossary	20
Mechan Informat	ical, Packaging, and Orderable tion	20
		_
	F	age
Feature D	Description section, Device Functional ions section, Layout section, Device	

2

6 Device Comparison Table

	R _{ON} (Typ) at 3.3 V	Rise Time (Typ) at 3.3 V ⁽¹⁾	Quick Output Discharge (QOD) ⁽²⁾	Maximum Output Current	Enable
TPS22963C	14 mΩ	715 µs	No	3 A	Active High
TPS22964C	14 mΩ	715 µs	Yes	3 A	Active High

(1) Additional rise time options are possible. Contact factory for more information.

(2) This feature discharges the output of the switch to ground through a 273 Ω resistor, preventing the output from floating (only in TPS22964C).

7 Pin Configuration and Functions

Pin Assignments (YZP Package)

C	GND	ON
В	VOUT	VIN
Α	VOUT	VIN
	1	2

Pin Functions

PIN		1/0	DESCRIPTION	
TPS22963/64	NAME	1/0	DESCRIPTION	
C1	GND	-	Ground	
C2	ON	I	witch control input, active high. Do not leave floating	
A1, B1	VOUT	0	Switch output	
A2, B2	VIN	I	Switch input. Use a bypass capacitor to ground (ceramic)	

SLVSBS6A-JUNE 2013-REVISED JANUARY 2015

www.ti.com

8 Specifications

8.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V _{IN}	Input voltage range	-0.3	6	V
V _{OUT}	Output voltage range	-0.3	6	V
V _{ON}	ON pin voltage range	-0.3	6	V
I _{MAX}	Maximum continuous switch current		3	А
I _{PLS}	Maximum pulsed switch current, 100 μ s pulse, 2% duty cycle, T _A = -40°C to 85°C		4	А
T _A	Operating free air temperature range	-40	85	°C
TJ	Maximum junction temperature		125	°C
T _{stg}	Storage temperature range	-65	150	°C

8.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 $^{\left(2\right)}$	±500	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible with the necessary precautions.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary precautions.

8.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	ΤΥΡ	MAX	UNIT
VIN	Input voltage range		1		5.5	V
V _{OUT}	Output voltage range		0		5.5	V
V	V _{IH, ON} High-level ON voltage	V _{IN} = 2.5 V to 5.5 V	1.3		5.5	V
VIH, ON		V _{IN} = 1 V to 2.49 V	1.1		5.5	
V _{IL, ON} Low-level ON volt		V _{IN} = 2.5 V to 5.5 V	0		0.6	V
	Low-level ON voltage	V _{IN} = 1 V to 2.49 V	0		0.4	v
C _{IN}	Input capacitor			1 ⁽¹⁾		μF

(1) Refer to the application section

8.4 Thermal Information

		TPS2296xC	
	THERMAL METRIC ⁽¹⁾	YZP	UNIT
		6 PINS	
R_{\thetaJA}	Junction-to-ambient thermal resistance	132.0	
R _{0JCtop}	Junction-to-case (top) thermal resistance	1.4	
$R_{ extsf{ heta}JB}$	Junction-to-board thermal resistance	22.8	°C/W
Ψ _{JT}	Junction-to-top characterization parameter	5.7	
Ψ _{JB}	Junction-to-board characterization parameter	22.6	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

8.5 Electrical Characteristics

 V_{IN} = 1 V to 5.5 V, T_{A} = –40°C to 85°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TA	MIN	TYP	MAX	UNIT
		$I_{OUT} = 0, V_{ON} = V_{IN} = 5 V$	Full		66.5	96	
		$I_{OUT} = 0, V_{ON} = V_{IN} = 4.5 V$	Full		57	82	
		$I_{OUT} = 0, V_{ON} = V_{IN} = 3.3 V$	Full		38	60	
	Quiescent current	$I_{OUT} = 0, V_{ON} = V_{IN} = 2.5 V$	Full		33.3	55	μA
IQ, VIN		I _{OUT} = 0, V _{ON} = V _{IN} = 1.8 V	Full		28.3	45	
		I _{OUT} = 0, V _{ON} = V _{IN} = 1.2 V	Full		22.8	36	
		$I_{OUT} = 0, V_{ON} = V_{IN} = 1.1 V$	Full		21.6	34	
		$I_{OUT} = 0, V_{ON} = V_{IN} = 1 V$	Full		20.3	33	
	Shut down ourront	$V_{ON} = 0$, $V_{IN} = 5$ V, $V_{OUT} = 0$ V	Full		0.76	2	
ISD, VIN	Shut down current	$V_{ON}=0, \ V_{IN}=1 \ V, \ V_{OUT}=0 \ V$	Full		0.07	0.8	μΑ
		V = 5 V = -200 m	25°C		13.3	21	
		$v_{\rm IN} = 5 v$; $v_{\rm OUT} = -200 \text{ mA}$	Full			26	11122
		$V_{-} = 4 E V_{-} = -200 m A$	25°C		13.3	21	
	On-resistance	$v_{IN} = 4.5 v, I_{OUT} = -200 IIIA$	Full			26	11122
		$V_{-2} = 2.2 V_{-1} = -200 m$	25°C		13.8	22	
		$v_{IN} = 3.3 \text{ V}, I_{OUT} = -200 \text{ mA}$	Full			27	mu
		$V_{IN} = 2.5 \text{ V}, I_{OUT} = -200 \text{ mA}$	25°C		15.4	24	mΩ
R _{ON}			Full			29	
		V _{IN} = 1.8 V, I _{OUT} = -200 mA	25°C		18.2	28	
			Full			33	11152
		V _{IN} = 1.2 V, I _{OUT} = -200 mA	25°C		25.6	37	mO
			Full			44	11152
		V _{IN} = 1.1 V, I _{OUT} = -200 mA	25°C		28.7	41	mO
			Full			50	11122
		V _{IN} = 1 V, I _{OUT} = -200 mA	25°C		33.8	48	mO
			Full			60	11122
		V _{IN} = 5 V	Full		115		
		V _{IN} = 4.5 V	Full		105		
		V _{IN} = 3.3 V	Full		80		
Vince	ON nin hystoresis	V _{IN} = 2.5 V	Full		65		m\/
VHYS, ON	ON pin hysteresis	V _{IN} = 1.8 V	Full		50		mv
		V _{IN} = 1.2 V	Full		35		
		V _{IN} = 1.1 V	Full		30		
		V _{IN} = 1 V	Full		30		
I _{ON}	ON pin leakage current	V _{ON} = 1.1 V to 5.5 V	Full			150	nA
	Reverse current when disabled	$V_{\rm H} = V_{\rm OM} = 0 V V_{\rm OM} = 5 V$	25°C		-0.02		цA
IRC, VIN	Reverse current when disabled	$v_{IN} = v_{ON} = 0 v, v_{OUT} = 5 v$	85°C		-2.1		μΑ
$R_{PD}^{(1)}$	Output pulldown resistance	$V_{ON} = 0 V$, $I_{OUT} = 2 mA$	Full		273	325	Ω

(1) Available in TPS22964 only.

TPS22963C, **TPS22964C**

SLVSBS6A-JUNE 2013-REVISED JANUARY 2015

www.ti.com

8.6 Switching Characteristics

	DADAMETED	TEST CONDITION	TPS22963/64	UNIT	
	PARAMETER	TEST CONDITION	ТҮР		
V _{IN} =	5.0 V, T _A = 25°C (unless oth	erwise noted)	· · ·		
t _{ON}	Turn-ON time	$R_{OUT} = 10\Omega, C_{IN} = 1\mu F, C_{OUT} = 0.1\mu F$	928		
t _{OFF}	Turn-OFF time	$R_{OUT} = 10\Omega, C_{IN} = 1\mu F, C_{OUT} = 0.1\mu F$	2.5		
t _R	VOUT rise time	$R_{OUT} = 10\Omega, C_{IN} = 1\mu F, C_{OUT} = 0.1\mu F$	890	μs	
t _F	VOUT fall time	$R_{OUT} = 10\Omega, C_{IN} = 1\mu F, C_{OUT} = 0.1\mu F$	2.1		
t _D	Delay time	$R_{OUT} = 10\Omega, C_{IN} = 1\mu F, C_{OUT} = 0.1\mu F$	561		
V _{IN} =	4.5 V, T _A = 25°C (unless oth	erwise noted)	łł		
t _{ON}	Turn-ON time	$R_{OUT} = 10 \ \Omega, C_{IN} = 1 \ \mu F, C_{OUT} = 0.1 \ \mu F$	905		
t _{OFF}	Turn-OFF time	$R_{OUT} = 10 \Omega, C_{IN} = 1 \mu F, C_{OUT} = 0.1 \mu F$	2.6		
t _R	VOUT rise time	$R_{OUT} = 10 \Omega, C_{IN} = 1 \mu F, C_{OUT} = 0.1 \mu F$	859	μs	
t _F	VOUT fall time	$R_{OUT} = 10 \ \Omega, C_{IN} = 1 \ \mu F, C_{OUT} = 0.1 \ \mu F$	2.1		
t _D	Delay time	$R_{OUT} = 10 \Omega, C_{IN} = 1 \mu F, C_{OUT} = 0.1 \mu F$	560		
V _{IN} =	3.3 V, T _A = 25°C (unless oth	erwise noted)			
t _{ON}	Turn-ON time	$R_{OUT} = 10 \Omega, C_{IN} = 1 \mu F, C_{OUT} = 0.1 \mu F$	836		
t _{OFF}	Turn-OFF time	$R_{OUT} = 10 \ \Omega, C_{IN} = 1 \ \mu F, C_{OUT} = 0.1 \ \mu F$	2.8		
t _R	VOUT rise time	$R_{OUT} = 10 \ \Omega, C_{IN} = 1 \ \mu F, C_{OUT} = 0.1 \ \mu F$	715	μs	
t _F	VOUT fall time	$R_{OUT} = 10 \ \Omega, \ C_{IN} = 1 \ \mu F, \ C_{OUT} = 0.1 \ \mu F$	2		
t _D	Delay time	$R_{OUT} = 10 \ \Omega, C_{IN} = 1 \ \mu F, C_{OUT} = 0.1 \ \mu F$	553		
V _{IN} =	1.8 V, T _A = 25°C (unless oth	erwise noted)	i		
t _{ON}	Turn-ON time	$R_{OUT} = 10 \ \Omega, \ C_{IN} = 1 \ \mu F, \ C_{OUT} = 0.1 \ \mu F$	822		
t _{OFF}	Turn-OFF time	$R_{OUT} = 10 \ \Omega, C_{IN} = 1 \ \mu F, C_{OUT} = 0.1 \ \mu F$	2.8		
t _R	VOUT rise time	$R_{OUT} = 10 \ \Omega, \ C_{IN} = 1 \ \mu F, \ C_{OUT} = 0.1 \ \mu F$	651	μs	
t _F	VOUT fall time	$R_{OUT} = 10 \ \Omega, C_{IN} = 1 \ \mu F, C_{OUT} = 0.1 \ \mu F$	2		
t _D	Delay time	$R_{OUT} = 10 \ \Omega, C_{IN} = 1 \ \mu F, C_{OUT} = 0.1 \ \mu F$	558		
V _{IN} =	1.2 V, T _A = 25°C (unless oth	erwise noted)			
t _{ON}	Turn-ON time	$R_{OUT} = 10 \ \Omega, \ C_{IN} = 1 \ \mu F, \ C_{OUT} = 0.1 \ \mu F$	852		
t _{OFF}	Turn-OFF time	$R_{OUT} = 10 \ \Omega, C_{IN} = 1 \ \mu F, C_{OUT} = 0.1 \ \mu F$	3.2		
t _R	VOUT rise time	$R_{OUT} = 10 \ \Omega, C_{IN} = 1 \ \mu F, C_{OUT} = 0.1 \ \mu F$	535	μs	
t _F	VOUT fall time	$R_{OUT} = 10 \ \Omega, C_{IN} = 1 \ \mu F, C_{OUT} = 0.1 \ \mu F$	1.8		
t _D	Delay time	$R_{OUT} = 10 \ \Omega, C_{IN} = 1 \ \mu F, C_{OUT} = 0.1 \ \mu F$	594		
V _{IN} =	1.1 V, T _A = 25°C (unless oth	erwise noted)			
t _{ON}	Turn-ON time	$R_{OUT} = 10 \ \Omega, \ C_{IN} = 1 \ \mu F, \ C_{OUT} = 0.1 \ \mu F$	861		
t _{OFF}	Turn-OFF time	$R_{OUT} = 10 \ \Omega, \ C_{IN} = 1 \ \mu F, \ C_{OUT} = 0.1 \ \mu F$	3.5		
t _R	VOUT rise time	R_{OUT} = 10 Ω, C_{IN} = 1 μF, C_{OUT} = 0.1 μF	518	μs	
t _F	VOUT fall time	R_{OUT} = 10 Ω, C_{IN} = 1 μF, C_{OUT} = 0.1 μF	1.9		
t _D	Delay time	$R_{OUT} = 10 \ \Omega, \ C_{IN} = 1 \ \mu F, \ C_{OUT} = 0.1 \ \mu F$	604		

8.7 Typical Electrical Characteristics

TEXAS INSTRUMENTS

www.ti.com

Typical Electrical Characteristics (continued)

8.8 Typical Switching Characteristics

8.9 Typical AC Scope Captures at $T_A = 25^{\circ}C$

TPS22963C, TPS22964C SLVSBS6A – JUNE 2013 – REVISED JANUARY 2015

www.ti.com

Typical AC Scope Captures at $T_A = 25^{\circ}C$ (continued)

Typical AC Scope Captures at $T_A = 25^{\circ}C$ (continued)

9 Parametric Measurement Information

A. Rise and fall times of the control signal are 100 ns.

Figure 37. Timing Waveforms

10 Detailed Description

10.1 Overview

The TPS22963/64 is a single channel, 3-A load switch in a small, space saving CSP-6 package. These devices implement an N-channel MOSFET to provide an ultra-low On-resistance for a low voltage drop across the device. A controlled rise time is used in applications to limit the inrush current.

10.2 Functional Block Diagram

10.3 Feature Description

10.3.1 On/Off Control

The ON pin controls the state of the switch. It is an active "High" pin and has a low threshold making it capable of interfacing with low voltage GPIO control signals. It can be used with any microcontroller with 1.2 V, 1.8 V, 2.5 V, 3.3 V or 5.5 V GPIOs. Applying V_{IH} on the ON pin will put the switch in the ON-state and V_{IL} will put the switch in the OFF-state.

10.3.2 Quick Output Discharge

The TPS22964 includes the Quick Output Discharge (QOD) feature. When the switch is disabled, a discharge resistance with a typical value of 273Ω is connected between the output and ground. This resistance pulls down the output and prevents it from floating when the device is disabled.

10.4 Device Functional Modes

ON	VIN to VOUT	OUTPUT DISCHARGE ⁽¹⁾ ⁽²⁾
L	OFF	ACTIVE
Н	ON	DISABLED

Table 1. Function Table

(1) This feature discharges the output of the switch to ground through a 273 Ω resistor, preventing the output from floating.

(2) This feature is in the TPS22964 device only (not in the TPS22963).

11 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

11.1 Application Information

11.1.1 Input Capacitor

It is recommended to place a capacitor (C_{IN}) between VIN and GND pins of TPS22963/64. This capacitor helps to limit the voltage drop on the input voltage supply when the switch turns ON into a discharged load capacitor. A 1-µF ceramic capacitor that is placed close to the IC pins is usually sufficient. Higher values of C_{IN} can be used to further reduce the voltage drop in high current applications.

11.1.2 Output Capacitor

It is recommended to place a capacitor (C_{OUT}) between VOUT and GND pins of TPS22963/64. This capacitor acts as a low pass filter along with the switch ON-resistance to remove any voltage glitches coming from the input voltage source. It is generally recommended to have C_{IN} greater than C_{OUT} so that once the switch is turned ON, C_{OUT} can charge up to V_{IN} without V_{IN} dropping significantly. A 0.1-µF ceramic capacitor that is placed close to the IC pins is usually sufficient.

FXAS

Application Information (continued)

11.1.3 Standby Power Reduction

Figure 38. Standby Power Reduction

Any end equipment that is being powered from the battery has a need to reduce current consumption in order to keep the battery charged for a longer time. TPS22963/64 helps to accomplish this by turning off the supply to the modules that are in standby state and hence significantly reduces the leakage current overhead of the standby modules.

11.1.4 Reverse Current Protection

The reverse current protection feature prevents the current to flow from VOUT to VIN when TPS22963/64 is disabled. This feature is particularly useful when the output of TPS22963/64 needs to be driven by another voltage source after TPS22963/64 is disabled (for example in a power multiplexer application). In order for this feature to work, TPS22963/64 has to be disabled and either of the following conditions shall be met: $V_{IN} > 1$ V or $V_{OUT} > 1$ V.

Figure 39 demonstrates the ideal behavior of reverse current protection circuit in TPS22963/64. After the device is disabled via the ON pin and VOUT is forced to an external voltage V_{FORCE} , a very small amount of current given by $I_{RC,VIN}$ will flow from VOUT to VIN. This will prevent any extra current loading on the voltage source supplying the V_{FORCE} voltage.

 I_{VIN} = Current through VIN pin.

 V_{SRC} = Input voltage applied to the device.

V_{FORCE} = External voltage source forced at VOUT pin of the device.

I_{OUT} = Output load current.

Figure 39. Reverse Current Protection

ISTRUMENTS

Application Information (continued)

11.1.5 Power Supply Sequencing Without a GPIO Input

Figure 40. Power Supply Sequencing Without a GPIO Input

In many end equipments, there is a need to power up various modules in a pre-determined manner. TPS22963/64 can solve the problem of power sequencing without adding any complexity to the overall system. Figure 40 shows the configuration required for powering up two modules in a fixed sequence. The output of the first load switch is tied to the enable of the second load switch, so when Module 1 is powered the second load switch is enabled and Module 2 is powered.

11.2 Typical Application

TPS22963/64 is an ultra-low ON-resistance, 3-A integrated load switch that is capable of interfacing directly with 1S battery in portable consumer devices such as smartphones, tablets etc. Its wide input voltage range (1 V to 5.5 V) makes it suitable to be used for lower voltage rails as well inside different end equipments to accomplish power sequencing, inrush current control and reducing leakage current in sub-systems that are in standby mode. Figure 41 shows the typical application circuit of TPS22963/64.

Figure 41. Typical Application Circuit

11.2.1 Design Requirements

DESIGN PARAMETER	EXAMPLE VALUE
V _{IN}	3.3 V
CL	4.7 μF
Maximum Acceptable Inrush Current	30 mA

11.2.2.1 Managing Inrush Current

When the switch is enabled, the output capacitors must be charged up from 0 V to the set value (3.3 V in this example). This charge arrives in the form of inrush current. Inrush current can be calculated using the following equation:

$$I_{\text{INRUSH}} = C_{\text{L}} \times \frac{dV_{\text{OUT}}}{dt}$$

where

- C = output capacitance
- dV = output voltage

• dt = rise time

The TPS22963/64 offers a controlled rise time for minimizing inrush current. This device can be selected based upon the minimum acceptable rise time which can be calculated using the design requirements and the inrush current equation. An output capacitance of 4.7 μ F will be used since the amound of inrush current increases with output capacitance:

30 mA = 4.7 µF x 3.3 V / dt dt = 517 µs

To ensure an inrush current of less than 30 mA, a device with a rise time greater than 517 μ s must be used. The TPS22963/64 has a typical rise time of 715 μ s at 3.3 V which meets the above design requirements.

11.2.3 Application Curves

(1)

(2)

(3)

12 Power Supply Recommendations

The device is designed to operate with a VIN range of 1 V to 5.5 V. This supply must be well regulated and placed as close to the device terminal as possible with the recommended 1 μ F bypass capacitor. If the supply is located more than a few inches from the device terminals, additional bulk capacitance may be required in addition to the ceramic bypass capacitors. If additional bulk capacitance is required, an electrolytic, tantalum, or ceramic capacitor of 10 μ F may be sufficient

13 Layout

13.1 Layout Guidelines

For best performance, all traces should be as short as possible. To be most effective, the input and output capacitors should be placed close to the device to minimize the effects that parasitic trace inductances may have on normal operation. Using wide traces for VIN, VOUT and GND will help minimize the parasitic electrical effects.

For higher reliability, the maximum IC junction temperature, $T_{J(max)}$, should be restricted to 125°C under normal operating conditions. Junction temperature is directly proportional to power dissipation in the device and the two are related by Equation 4.

$$\mathbf{T}_{J} = \mathbf{T}_{A} + \boldsymbol{\Theta}_{JA} \times \mathbf{P}_{D}$$

where

- T_J = Junction temperature of the device
- T_A = Ambient temperature
- P_D = Power dissipation inside the device
- Θ_{JA} = Junction to ambient thermal resistance. See Thermal Information section of the datasheet. This parameter is highly dependent on board layout.

(4)

13.2 Layout Example

VIA to Power Ground Plane

Figure 43. Layout Example

Copyright © 2013-2015, Texas Instruments Incorporated

14 Device and Documentation Support

14.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
TPS22963C	Click here	Click here	Click here	Click here	Click here
TPS22964C	Click here	Click here	Click here	Click here	Click here

Table 2. Related Links

14.2 Trademarks

Ultrabook is a trademark of Intel Corporation in the U.S. and/or other countries. All other trademarks are the property of their respective owners.

14.3 Electrostatic Discharge Caution

20

Submit Documentation Feedback

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

14.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

15 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

13-Oct-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TPS22963CYZPR	ACTIVE	DSBGA	YZP	6	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	BD	Samples
TPS22963CYZPT	ACTIVE	DSBGA	YZP	6	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	BD	Samples
TPS22964CYZPR	ACTIVE	DSBGA	YZP	6	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	DK	Samples
TPS22964CYZPT	ACTIVE	DSBGA	YZP	6	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	DK	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

13-Oct-2014

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal												
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS22963CYZPR	DSBGA	YZP	6	3000	180.0	8.4	1.04	1.54	0.56	4.0	8.0	Q1
TPS22963CYZPT	DSBGA	YZP	6	250	180.0	8.4	1.04	1.54	0.56	4.0	8.0	Q1
TPS22964CYZPR	DSBGA	YZP	6	3000	180.0	8.4	1.04	1.54	0.56	4.0	8.0	Q1
TPS22964CYZPT	DSBGA	YZP	6	250	180.0	8.4	1.04	1.54	0.56	4.0	8.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

17-Jun-2015

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS22963CYZPR	DSBGA	YZP	6	3000	182.0	182.0	20.0
TPS22963CYZPT	DSBGA	YZP	6	250	182.0	182.0	20.0
TPS22964CYZPR	DSBGA	YZP	6	3000	182.0	182.0	20.0
TPS22964CYZPT	DSBGA	YZP	6	250	182.0	182.0	20.0

YZP0006

PACKAGE OUTLINE

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES:

NanoFree Is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.
- 3. NanoFree[™] package configuration.

YZP0006

EXAMPLE BOARD LAYOUT

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SBVA017 (www.ti.com/lit/sbva017).

YZP0006

EXAMPLE STENCIL DESIGN

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconr	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2015, Texas Instruments Incorporated