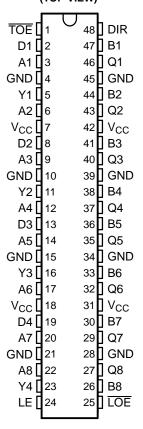
SCES435B-APRIL 2003-REVISED SEPTEMBER 2004

FEATURES

- Member of the Texas Instruments Widebus™
 Family
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)


DESCRIPTION/ORDERING INFORMATION

This device contains four independent noninverting buffers and an 8-bit noninverting bus transceiver and D-type latch, designed for 1.65-V to 3.6-V $V_{\rm CC}$ operation.

The SN74ALVCH16973 is particularly suitable for demultiplexing an address/data bus into a dedicated address bus and dedicated data bus. The device is used where there is asynchronous bidirectional communication between the A and B data bus, and the address signals are latched and buffered on the Q bus. The control-function implementation minimizes external timing requirements.

This device can be used as one 4-bit buffer, one 8-bit transceiver, or one 8-bit latch. It allows data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The transceiver output-enable (TOE) input can be used to disable the transceivers so that the A and B buses effectively are isolated.

DGG, DGV, OR DL PACKAGE (TOP VIEW)

ORDERING INFORMATION

T _A	PACKAGE ⁽¹⁾		ORDERABLE PART NUMBER	TOP-SIDE MARKING
	SSOP - DL	Tube	SN74ALVCH16973DL	ALVCH16973
-40°C to 85°C	330P - DL	Tape and reel	SN74ALVCH16973DLR	ALVON10973
	TSSOP - DGG	Tape and reel	SN74ALVCH16973DGGR	ALVCH16973
	TVSOP - DGV	Tape and reel	SN74ALVCH16973DGVR	VH973

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus is a trademark of Texas Instruments.

SCES435B-APRIL 2003-REVISED SEPTEMBER 2004

DESCRIPTION/ORDERING INFORMATION (CONTINUED)

When the latch-enable (LE) input is high, the Q outputs follow the data (A) inputs. When LE is taken low, the Q outputs are latched at the levels set up at the A inputs. The latch output-enable (LOE) input can be used to place the nine Q outputs in either a normal logic state (high or low logic level) or the high-impedance state. In the high-impedance state, the Q outputs neither drive nor load the bus lines significantly. LOE does not affect internal operations of the latch. Old data can be retained or new data can be entered while the Q outputs are in the high-impedance state.

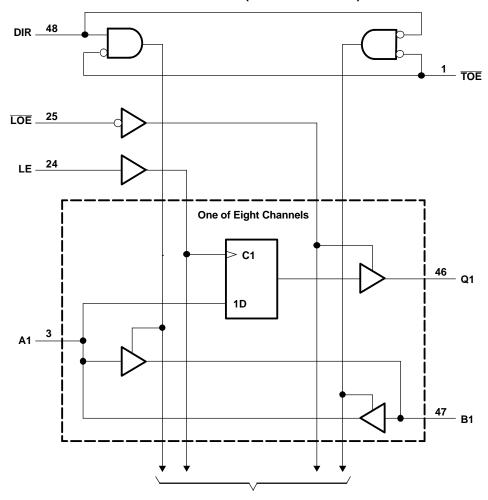
To ensure the high-impedance state during power up or power down, $\overline{\text{LOE}}$ and $\overline{\text{TOE}}$ should be tied to V_{CC} through pullup resistors; the minimum values of the resistors are determined by the current-sinking capability of the drivers.

The four independent noninverting buffers perform the Boolean function Y = D and are independent of the state of DIR, \overline{TOE} , LE, and \overline{LOE} .

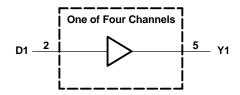
The A and B I/Os and D inputs have bus-hold circuitry. Active bus-hold circuitry holds unused or undriven data inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

FUNCTION TABLES

INP	UTS	OPERATION
TOE	DIR	OPERATION
L	L	B data to A bus
L	Н	A data to B bus
Н	Х	A bus and B bus isolation


	OUTPUT		
LOE	LE	Α	Q
L	Н	Н	Н
L	Н	L	L
L	L	X	Q_0
Н	X	X	Z

INPUT D	OUTPUT Y
L	L
Н	Н



SCES435B-APRIL 2003-REVISED SEPTEMBER 2004

LOGIC DIAGRAM (POSITIVE LOGIC)

To Seven Other Channels

SCES435B-APRIL 2003-REVISED SEPTEMBER 2004

ABSOLUTE MAXIMUM RATINGS(1)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	4.6	V
.,	lanut voltage range	Except I/O and D input ports (2)	-0.5	4.6	V
V _I	Input voltage range	I/O and D input ports (2)(3)	-0.5 V _{CC} + 0.		V
Vo	Output voltage range ⁽²⁾⁽³⁾	·	-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V _I < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
Io	Continuous output current			±50	mA
	Continuous current through each V _{CC} or GN	ID		±100	mA
		DGG package		70	
θ_{JA}	Package thermal impedance (4)	DGV package		58	°C/W
		DL package		63	
T _{stg}	Storage temperature range		-65	150	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS⁽¹⁾

			MIN	MAX	UNIT	
V _{CC}	Supply voltage		1.65	3.6	V	
		V _{CC} = 1.65 V to 1.95 V	0.65 × V _{CC}			
V_{IH}	High-level input voltage	V _{CC} = 2.3 V to 2.7 V	1.7		V	
		V _{CC} = 3 V to 3.6 V	2			
		V _{CC} = 1.65 V to 1.95 V		$0.35 \times V_{CC}$		
V _{IL} Lo	Low-level input voltage	V _{CC} = 2.3 V to 2.7 V		0.7	V	
		V _{CC} = 3 V to 3.6 V		0.8		
VI	Input voltage		0	V_{CC}	V	
Vo	Output voltage		0	V_{CC}	V	
		V _{CC} = 1.65 V		-4		
	High-level output current	V _{CC} = 2.3 V		-12	^	
I _{OH}		V _{CC} = 2.7 V		-12	mA	
		V _{CC} = 3 V		-24		
		V _{CC} = 1.65 V		4		
	Lavor lavor Lavorand accommend	V _{CC} = 2.3 V		12	4	
l _{OL}	Low-level output current	V _{CC} = 2.7 V		12	mA	
		V _{CC} = 3 V		24		
Δt/Δν	Input transition rise or fall rate			10	ns/V	
T _A	Operating free-air temperature		-40	85	°C	

⁽¹⁾ All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

⁽²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ This value is limited to 4.6 V maximum.

⁽⁴⁾ The package thermal impedance is calculated in accordance with JESD 51-7.

SCES435B-APRIL 2003-REVISED SEPTEMBER 2004

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted)

PA	RAMETER	TEST CONDITIONS	V _{cc}	MIN TYP(1) MA	X UNIT	
		I _{OH} = -100 μA	1.65 V to 3.6 V	V _{CC} - 0.2		
		I _{OH} = -4 mA	1.65 V	1.2		
		I _{OH} = -6 mA	2.3 V	2		
VOH OH OH IOH IOL IOL		2.3 V	1.7	V		
		I _{OH} = -12 mA	2.7 V	2.2		
			3 V	2.4		
		I _{OH} = -24 mA	3 V	2		
		I _{OL} = 100 μA	1.65 V to 3.6 V	0.	2	
		I _{OL} = 4 mA	1.65 V	0.4	5	
.,		I _{OL} = 6 mA	2.3 V	0.	4 V	
V _{OL}		10	2.3 V	0.	7 V	
I _I		1 _{OL} = 12 mA	2.7 V	0.	4	
		I _{OL} = 24 mA	3 V	0.5	5	
I _I		$V_I = V_{CC}$ or GND	3.6 V	<u>+</u>	5 μΑ	
		V _I = 0.57 V	1.65 V	25		
$I_{BHL}^{(2)}$		V _I = 0.7 V	2.3 V	45	μΑ	
22	V _I = 0.8 V	3 V	75			
		V _I = 1.07 V	1.65 V	-25		
I _{BHH} (3)		V _I = 1.7 V	2.3 V -45		μΑ	
	внн ⁽³⁾	V _I = 2 V	3 V	-75		
			1.95 V	200		
I _{BHLO} ⁽⁴⁾	OL BHL (2) BHL (3) BHLO (4) BHLO (5) DZ (6) CC Alcc Control inputs D A ports	$V_I = 0$ to V_{CC}	2.7 V	300	μΑ	
			2.3 V 2.4 2.3 V 2.4 3 V 2.4 3 V 2.4 3 V 2 1.65 V to 3.6 V 1.65 V 2.3 V 2.7 V 3V 3 V 25 2.3 V 30 3.6 V 25 2.3 V 30 3.6 V 200 2.7 V 300 3.6 V 500 1.95 V 200 2.7 V 300 3.6 V 500 3.6 V 500 3.6 V 300 3.	500		
			1.95 V	-200		
$V_{OH} = \frac{I_{OH} = -100 \mu A}{I_{OH} = -4 mA}$ $I_{OH} = -6 mA$ $I_{OH} = -12 mA$ $I_{OH} = -24 mA$ $I_{OL} = 100 \mu A$ $I_{OL} = 4 mA$ $I_{OL} = 6 mA$ $I_{OL} = 12 mA$ $I_{OL} = 12 mA$ $I_{OL} = 24 mA$ $I_{OL} = 24 mA$ $I_{OL} = 12 mA$ $I_{OL} = 10 $	$V_I = 0$ to V_{CC}	2.7 V	-300	μΑ		
			3.6 V	-500		
I _{OZ} ⁽⁶⁾		$V_O = V_{CC}$ or GND	3.6 V	±1	0 μΑ	
I _{CC}		$V_I = V_{CC}$ or GND, $I_O = 0$	3.6 V	3	0 μΑ	
		One input at V _{CC} - 0.6 V, Other inputs at V _{CC} or GND	3 V to 3.6 V	75	0 μΑ	
0	Control inputs		0.01/	3		
C _i	D	$v_1 = v_{CC}$ or GND	3.3 V	4	pF	
_	A ports	V V 0ND	0.01/	4.5	_	
C _{io}		$v_0 = v_{CC}$ or GND	3.3 V	4.5	pF	
Co	Q	$V_O = V_{CC}$ or GND	3.3 V	3	pF	

 ⁽¹⁾ All typical values are at V_{CC} = 3.3 V, T_A = 25°C.
 (2) The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to V_{IL} max.

The bus-hold circuit can source at least the minimum high sustaining current at V_{IH} min. I_{BHH} should be measured after raising V_{IN} to V_{CC} and then lowering it to V_{IH} min.

An external driver must source at least I_{BHLO} to switch this node from low to high.

An external driver must sink at least I_{BHHO} to switch this node from high to low. For I/O ports, the parameter I_{OZ} includes the input leakage current.

SCES435B-APRIL 2003-REVISED SEPTEMBER 2004

TIMING REQUIREMENTS

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

		V _{CC} = 1.8 V	V _{CC} = 2.5 V ± 0.2 V	V _{CC} = 3.3 V ± 0.3 V	UNIT
		MIN MA	MIN MAX	MIN MAX	
t _w	Pulse duration, LE high	2	2	2	ns
t _{su}	Setup time, data before LE \downarrow	0.9	0.9	0.9	ns
t _h	Hold time, data after LE↓	0.9	0.9	0.9	ns

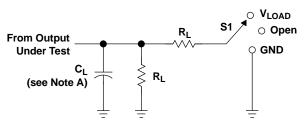
SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	TO (OUTPUT)	V _{CC} = 1.8 V	V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 3.3 V ± 0.3 V		UNIT
	(INPUT)	(OUTPUT)	TYP	MIN	MAX	MIN	MAX	
	D	Υ	2.2	0.5	3.2	0.5	3	
	Α	0	2.2	0.5	3.2	0.5	3	ns
t _{pd}	LE	Q	2.8	0.5	3.3	0.5	3	
	A or B	B or A	2.2	0.5	3.2	0.5	3	
	LOE	Q	2.9	0.7	4.9	0.7	4.7	
t _{en}	TOE	A == D	3	0.7	4.6	0.7	4.4	ns
	DIR	A or B	3.4	0.7	4.9	0.7	4.7	
	LOE	Q	2.8	0.5	4.3	0.5	4.1	
t _{dis}	TOE	A or D	3.2	0.5	4.3	0.5	4.1	ns
	DIR	A or B	3.4	0.5	4.9	0.5	4.7	

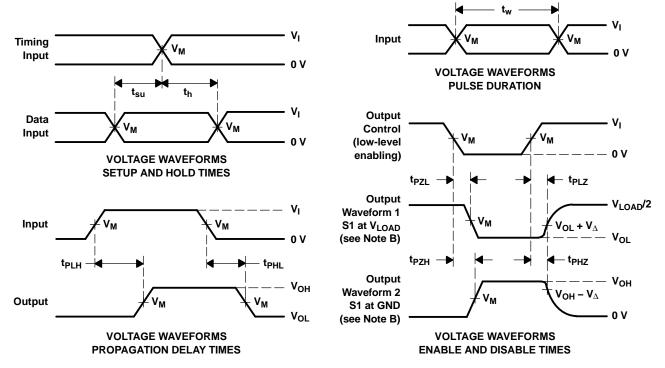
SCES435B-APRIL 2003-REVISED SEPTEMBER 2004

OPERATING CHARACTERISTICS(1)


 $T_A = 25^{\circ}C$

PARAMETER		TEST CONDITIONS	V _{CC} = 1.8 V	V _{CC} = 2.5 V	V _{CC} = 3.3 V	UNIT	
	PARAMEI	EK	TEST CONDITIONS	TYP TYP TYP		TYP	UNII
C _{pd} ⁽²⁾ (each output)		A outputs enabled, Q outputs disabled, One A output switching	$\label{eq:control_approx} \begin{split} &\text{One } f_A = 10 \text{ MHz}, \\ &\text{One } f_B = 10 \text{ MHz}, \\ &\overline{\text{TOE}} = \text{GND}, \\ &\overline{\text{LOE}} = \text{V}_{\text{CC}}, \\ &\text{DIR} = \text{GND}, \\ &C_L = 0 \text{ pF} \end{split}$	12	14	19	
	Power dissipation capacitance	B outputs enabled, Q outputs disabled, One B output switching	$\label{eq:continuous_problem} \begin{split} &\text{One } f_A = 10 \text{ MHz}, \\ &\text{One } f_B = 10 \text{ MHz}, \\ &\overline{\text{TOE}} = \text{GND}, \\ &\overline{\text{LOE}} = \text{V}_{\text{CC}}, \\ &\text{DIR} = \text{GND}, \\ &C_L = 0 \text{ pF} \end{split}$	12	14	21	pF
		Q outputs enabled, A and B I/Os isolated, One Q output switching	$\label{eq:controller} \begin{split} &\text{One } f_A = 10 \text{ MHz}, \\ &\text{One } f_{LE} = 20 \text{ MHz}, \\ &\text{One } f_Q = 10 \text{ MHz}, \\ &\overline{\text{TOE}} = V_{CC}, \\ &\overline{\text{LOE}} = \text{GND}, \\ &C_L = 0 \text{ pF} \end{split}$	11	13	19	·
		One Y output switching, A and B I/Os isolated, Q outputs disabled	$\label{eq:constraints} \begin{split} &\text{One f}_D = 10 \text{ MHz},\\ &\text{One f}_Y = 10 \text{ MHz},\\ &\overline{\text{TOE}} = V_{CC},\\ &\overline{\text{LOE}} = V_{CC},\\ &C_L = 0 \text{ pF} \end{split}$	7	8	12	
C _{pd (Z)}	Power dissipation capacitance	A and B I/Os isolated, Q outputs disabled, One LE and one A data input switching	$\label{eq:continuous_section} \begin{split} &\text{One } f_A = 10 \text{ MHz}, \\ &\text{One } f_{LE} = 20 \text{ MHz}, \\ &f_Q \text{ not switching}, \\ &\overline{\text{TOE}} = V_{CC}, \\ &\overline{\text{LOE}} = V_{CC}, \\ &C_L = 0 \text{ pF} \end{split}$	4	5	11	pF
C _{pd} ⁽³⁾ (each LE)	Power dissipation capacitance	A and B I/Os isolated, Q outputs disabled, One LE input switching	$\begin{aligned} &f_A \text{ not switching,} \\ &\text{One } f_{LE} = 20 \text{ MHz,} \\ &f_C \text{ not switching,} \\ &\overline{\text{TOE}} = V_{CC}, \\ &\overline{\text{LOE}} = V_{CC}, \\ &C_L = 0 \text{ pF} \end{aligned}$	6	7	9	pF

 ⁽¹⁾ Total device C_{pd} for multiple (m) outputs switching and (n) LE inputs switching = [m * C_{pd} (each output)] + [n * C_{pd} (each LE)].
 (2) C_{pd} (each output) is the C_{pd} for each data bit (input and output circuitry) when it operates at 10 MHz (Note: the LE is operating at 20 MHz in this test, but its I_{CC} component has been subtracted).
 (3) C_{pd} (each LE) is the C_{pd} for the clock circuitry only when it operates at 20 MHz.


PARAMETER MEASUREMENT INFORMATION

TEST	S1
t _{pd}	Open
t _{PLZ} /t _{PZL}	V _{LOAD}
t _{PHZ} /t _{PZH}	GND

LOAD CIRCUIT

V	INPUT		V	v	(R_L	v
V _{CC}	VI	t _r /t _f	V _M	V _{LOAD}	LOAD C _L		$V_{\!\scriptscriptstyle \Delta}$
1.8 V	V _{CC}	≤2 ns	V _{CC} /2	2×V _{CC}	30 pF	1 k Ω	0.15 V
2.5 V \pm 0.2 V	V _{CC}	≤2 ns	V _{CC} /2	2×V _{CC}	30 pF	500 Ω	0.15 V
3.3 V \pm 0.3 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_{O} = 50 \Omega$.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PLH} and t_{PHL} are the same as t_{pd}.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGE OPTION ADDENDUM

11-Sep-2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_	Pins	_	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
SN74ALVCH16973DGGR	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ALVCH16973	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

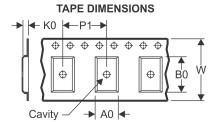
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


11-Sep-2016

PACKAGE MATERIALS INFORMATION

www.ti.com 10-Aug-2016

TAPE AND REEL INFORMATION

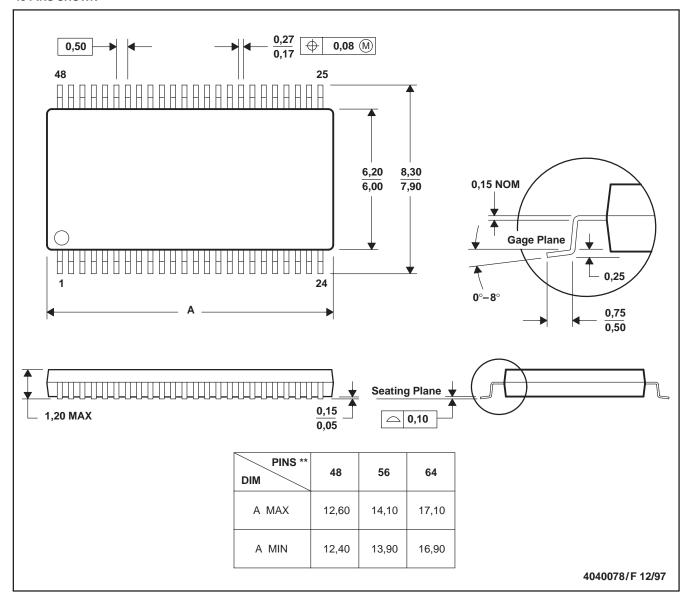
_		
		Dimension designed to accommodate the component width
	B0	Dimension designed to accommodate the component length
	K0	Dimension designed to accommodate the component thickness
	W	Overall width of the carrier tape
ı	P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74ALVCH16973DGGR	TSSOP	DGG	48	2000	330.0	24.4	8.6	15.8	1.8	12.0	24.0	Q1

www.ti.com 10-Aug-2016


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
SN74ALVCH16973DGGR	TSSOP	DGG	48	2000	367.0	367.0	45.0	

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity