

www.ti.com

SCDS276B-APRIL 2009-REVISED DECEMBER 2009

QUAD SPDT WIDE BANDWIDTH VIDEO SWITCH WITH LOW ON-STATE RESISTANCE

Check for Samples: TS5V330C

FEATURES D, DB, DBQ, OR PW PACKAGE Low Differential Gain and Phase (TOP VIEW) (Typical $D_G = 0.24\%$, Typical $D_P = 0.039^\circ$) V_{CC} Wide Bandwidth (Typical BW > 288 MHz) IN 16 S_{1A} Low Cross-Talk (Typical $X_{TALK} = -87 \text{ dB}$) 2 15 FN S_{2A} S_{1D} 3 14 Low Power Consumption D_A S_{2D} 13 4 (Maximum $I_{CC} = 3 \mu A$) S_{1B} 5 12 Π DD **Bidirectional Data Flow, With Near-Zero** S_{2B} S_{1C} 6 11 Propagation Delay D_B 10 S2_C Low ON-State Resistance (Typical $r_{ON} = 3 \Omega$) D_C GND 9 V_{CC} Operating Range From 4.5 V to 5.5 V 8 Ioff Supports Partial-Power-Down Mode Operation **RGY PACKAGE** (TOP VIEW) **Data and Control Inputs Provide Undershoot** 200 Clamp Diode Z Control Inputs Can be Driven by TTL or (16) [1] 5-V/3.3-V CMOS Outputs S_{1A} 2 15 EN Latch-Up Performance Exceeds 100 mA Per S_{2A} 3 14 S_{1D} JESD 78, Class II D_A 4 S_{2D} (13 ESD Performance Tested Per JESD 22 S_{1B} D_D 5 12 2000-V Human-Body Model S_{1C} S_{2B} 6 īī (A114-B, Class II) D_B 7 S2_C

- 1000-V Charged-Device Model (C101)
- Suitable for Both RGB and Composite Video Switching

DESCRIPTION/ORDERING INFORMATION

The TS5V330C is a 4-bit 1-of-2 multiplexer/demultiplexer video switch with a single switch-enable (EN) input. The select (IN) input controls the data path of the multiplexer/demultiplexer. When EN is low, the switch is enabled and the D port is connected to the S port. When EN is high, the switch is disabled and a high impedance state exists between the D and S ports.

Low differential gain and phase makes this switch ideal for video applications. The device has a wide bandwidth and low cross talk which makes it suitable for high frequency video applications. The device can be used for RGB and composite video switching applications.

This device is fully specified for partial-power-down applications using Ioff. The Ioff feature ensures that damaging current will not backflow through the device when it is powered down. The device has isolation during power off.

To ensure the high-impedance state during power up or power down, \overline{EN} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

10

(a

Ъ

(8)

GND

SCDS276B-APRIL 2009-REVISED DECEMBER 2009

EXAS

NSTRUMENTS

www.ti.com

ORDERING INFORMATION

T _A	PACK	AGE ^{(1) (2)}	ORDERABLE PART NUMBER	TOP-SIDE MARKING		
	QFN – RGY	Tape and reel	TS5V330CRGYR	TE330C		
	SOIC – D	Tube	TS5V330CD	T05\/2200		
	50IC - D	Tape and reel	TS5V330CDR	- TS5V330C		
–40°C to 85°C	SSOP – DB	Tape and reel	TS5V330CDBR	TE330C		
	SSOP (QSOP) – DBQ	Tape and reel	TS5V330CDBQR	TE330C		
		Tube	TS5V330CPW	TE220C		
	TSSOP – PW	Tape and reel	TS5V330CPWR	TE330C		

(1) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

(2) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

INP	UTS	INPUT/OUTPUT	FUNCTION					
EN IN		Α	FUNCTION					
L	L	S1	D port = S1 port					
L	Н	S2	D port = S2 port					
н	Х	Z	Disconnect					

Table 1. FUNCTION TABLE

Table 2. PIN DESCRIPTIONS

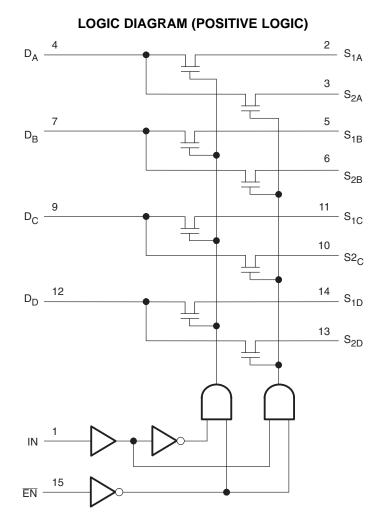
PIN NAME	DESCRIPTION				
S1, S2	Analog video I/Os				
D	Analog video I/Os				
IN	Select input				
EN	Switch-enable input				

TS5V330C

SCDS276B - APRIL 2009 - REVISED DECEMBER 2009

www.ti.com

Texas Instruments


PARAMETER DEFINITIONS

PARAMETER	DESCRIPTION
r _{ON}	Resistance between the D and S ports with the switch in the ON-state
I _{OZ}	Output leakage current measured at the D and S ports with the switch in the OFF-state
I _{OS}	Short circuit current measured at the I/O pins.
V _{IN}	Voltage at the IN pin
V _{EN}	Voltage at the EN pin
CIN	Capacitance at the control inputs (EN, IN)
C _{OFF}	Capacitance at the analog I/O port when the switch is OFF
C _{ON}	Capacitance at the analog I/O port when the switch is ON
V _{IH}	Minimum input voltage for logic high for the control inputs (EN, IN)
V _{IL}	Minimum input voltage for logic low for the control inputs (EN, IN)
V _H	Hysteresis voltage at the control inputs (EN, IN)
V _{IK}	I/O and control inputs diode clamp voltage (EN, IN)
VI	Voltage applied to the D or S pins when D or S is the switch input.
Vo	Voltage applied to the D or S pins when D or S is the switch output.
I _{IH}	Input high leakage current of the control inputs (EN, IN)
I _{IL}	Input low leakage current of the control inputs (EN, IN)
I _I	Current into the D or S pins when D or S is the switch input.
Ι _Ο	Current into the D or S pins when D or S is the switch output.
I _{off}	Output leakage current measured at the D and S ports with $V_{CC} = 0$
t _{ON}	Propagation delay measured between 50% of the digital input to 90% of the analog output when switch is turned ON.
t _{OFF}	Propagation delay measured between 50% of the digital input to 90% of the analog output when switch is turned OFF.
BW	Frequency response of the switch in the ON-state measured at -3 dB
X _{TALK}	Unwanted signal coupled from channel to channel. Measured in $-dB$. $X_{TALK} = 20 \text{ LOG } V_{OUT}/V_{IN}$. This is a non-adjacent crosstalk.
O _{IRR}	Off-isolation is the resistance (measured in –dB) between the input and output with the switch OFF.
D_{G}	Magnitude variation between analog input and output pins when the switch is ON and the DC offset of composite video signal varies at the analog input pin. In NTSC standard the frequency of the video signal is 3.58 MHz and DC offset is from 0 to 0.714 V.
D _P	Phase variation between analog input and output pins when the switch is ON and the DC offset of composite video signal varies at the analog input pin. In NTSC standard the frequency of the video signal is 3.58 MHz and DC offset is from 0 to 0.714 V.
I _{CC}	Static power supply current
I _{CCD}	Variation of I_{CC} for a change in frequency in the control inputs (\overline{EN} , IN)
ΔI _{CC}	This is the increase in supply current for each control input that is at the specified voltage level, rather than V _{CC} or GND.

SCDS276B - APRIL 2009 - REVISED DECEMBER 2009

www.ti.com

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	7	V
V _{IN}	Control input voltage range ⁽²⁾ (3)		-0.5	7	V
V _{I/O}	Output voltage range ^{(2) (3) (4)}		-0.5	7	V
I _{IK}	Control input clamp current	V _{IN} < 0		-50	mA
I _{I/OK}	I/O port clamp current	V _{I/O} < 0		-50	mA
I _{I/O}	ON-state switch current ⁽⁵⁾			±128	mA
	Continuous current through V _{CC} or GND			±100	mA
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltages are with respect to ground unless otherwise specified.

(3) The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

(4) V_{I} and V_{O} are used to denote specific conditions for $V_{I/O}$.

(5) I_I and I_O are used to denote specific conditions for $I_{I/O}$.

SCDS276B - APRIL 2009 - REVISED DECEMBER 2009

www.ti.com

PACKAGE THERMAL IMPEDANCE

over operating free-air temperature range (unless otherwise noted)

				UNIT
		D package ⁽¹⁾	73	
		DB package ⁽¹⁾	82	
θ_{JA}	Package thermal impedance	DBQ package ⁽¹⁾	90	°C/W
		PW package ⁽¹⁾	108	
		RGY package ⁽²⁾	39	

(1) The package thermal impedance is calculated in accordance with JESD 51-7.

(2) The package thermal impedance is calculated in accordance with JESD 51-5.

RECOMMENDED OPERATING CONDITIONS⁽¹⁾

		MIN	MAX	UNIT
V _{CC}	Supply voltage	4	5.5	V
V _{IH}	High-level control input voltage (EN, IN)	2	5.5	V
V _{IL}	Low-level control input voltage (EN, IN)	0	0.8	V
V _{ANALOG}	Analog input/output voltage	0	Vcc	V
T _A	Operating free-air temperature	-40	85	°C

(1) All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

www.ti.com

ELECTRICAL CHARACTERISTICS⁽¹⁾

over recommended operating free-air temperature range (unless otherwise noted)

PAR	AMETER		TEST CONDITIO	NS	MIN TYP ⁽²⁾	MAX	UNIT
V _{IK}	EN, IN	V _{CC} = 4.5 V,	I _{IN} = -18 mA			-1.8	V
V _H	EN, IN					400	mV
I _{IH}	EN, IN	V _{CC} = 5.5 V,	V_{IN} and $V_{EN} = V_{CC}$			±1	μA
I _{IL}	EN, IN	V _{CC} = 5.5 V,	V_{IN} and V_{EN} = GND			±1	μA
I _{OZ} ⁽³⁾		V _{CC} = 5.5 V,	$V_{O} = 0$ to 5.5 V, $V_{I} = 0$,	Switch OFF		±10	μA
I _{OS}		V _{CC} = 5.5 V,	$V_{O} = 0$ to 5.5 V, $V_{I} = 0$,	Switch ON		±110	mA
l _{off}		$V_{CC} = 0,$	$V_{\rm O} = 0$ to 5.5 V,	V ₁ = 0		±1	μA
I _{CC}		$V_{\rm CC} = 5.5 \rm V,$	$I_{I/O} = 0,$	Switch ON or OFF		3	μA
∆l _{CC}	EN, IN	$V_{\rm CC} = 5.5 \rm V,$	One input at 3.4 V,	Other inputs at V_{CC} or GND		2.5	mA
I _{CCD}		$V_{CC} = 5.5 V,$ $V_{EN} = GND,$	D and S ports are open,	$V_{\rm IN}$ switching 50% duty cycle		0.25	mA/ MHz
C _{in}	EN, IN	V_{IN} or $V_{EN} = 0$	f = 1 MHz		3.5		pF
0	D port	N 2 M 2 7 0	Switch OFF,		8.5		
C _{OFF}	S port	$V_{I/O} = 3 V \text{ or } 0,$	Switch ON,	$V_{IN} = V_{CC}$ or GND	5.5		pF
C _{ON}		$V_{I} = 0,$	f = 1 MHz, outputs open,	Switch ON	16.5		pF
• (4)		V 4 E V	V _I = 1 V,	I_O = 13 mA, R_L = 75 Ω	3	7	0
r _{ON} ⁽⁴⁾		$V_{CC} = 4.5 V$	V _I = 2 V,	I_0 = 26 mA, R _L = 75 Ω	3	10	Ω

(1)

 $V_{\rm I}$, $V_{\rm O}$, $I_{\rm I}$, and $I_{\rm O}$ refer to the I/O pins. All typical values are at V_{CC} = 5 V (unless otherwise noted), $T_{\rm A}$ = 25°C. For I/O ports, the parameter I_{OZ} includes the input leakage current. (2)

(3)

Measured by the voltage drop between the D and S terminals at the indicated current through the switch. ON-state resistance is determined by the lower of the voltages of the two (S or D) terminals. (4)

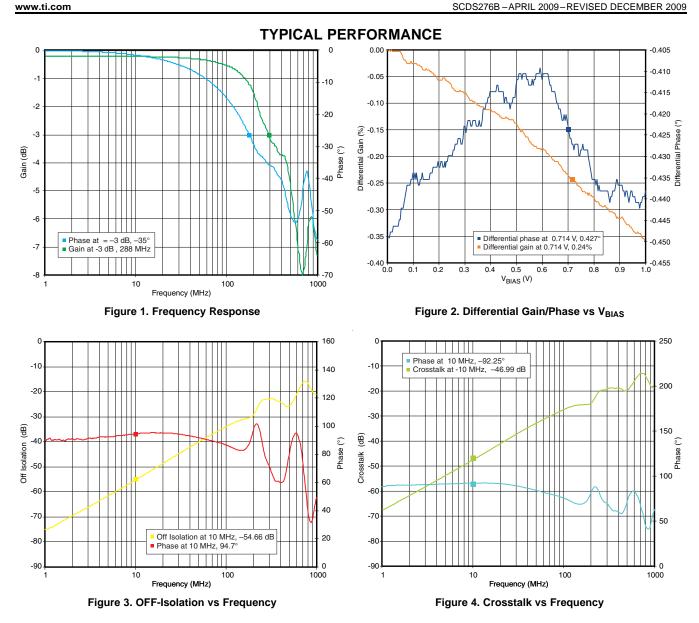
SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range, V_{CC} = 5 V ±10%, R_L = 75 Ω , C_L = 20 pF (unless otherwise noted) (see Figure 5)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	TYP MAX	UNIT
t _{ON}	S	D	1.5	6.0	ns
t _{OFF}	S	D	1.5	5.9	ns

DYNAMIC CHARACTERISTICS

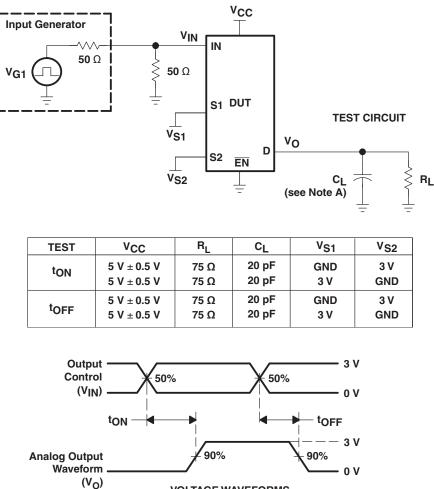
over recommended operating free-air temperature range, $V_{CC} = 5 \text{ V} \pm 10\%$ (unless otherwise noted)


PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
D _G	$R_L = 150 \Omega$, f = 3.58 MHz, see Figure 6		0.24		%
D _P	$R_L = 150 \Omega$, f = 3.58 MHz, see Figure 6		0.039		0
BW	$R_L = 150 \Omega$, see Figure 7		250		MHz
X _{TALK}	R_{IN} = 10 Ω,R_{L} = 150 Ω,f = 10 MHz, see Figure 7		-87		dB
O _{IRR}	$R_L = 150 \Omega$, f = 10 MHz, see Figure 7		-54		dB

(1) All typical values are at V_{CC} = 5 V (unless otherwise noted), T_A = 25°C.

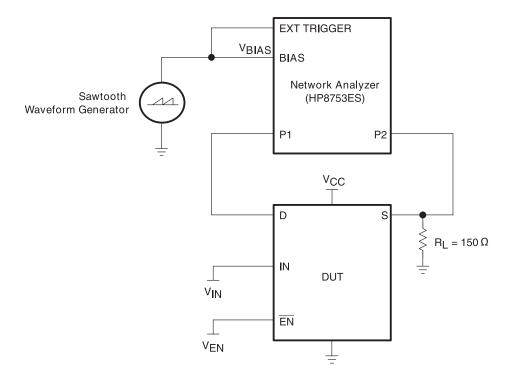
TS5V330C

SCDS276B-APRIL 2009-REVISED DECEMBER 2009



SCDS276B-APRIL 2009-REVISED DECEMBER 2009

www.ti.com


VOLTAGE WAVEFORMS t_{ON} and t_{OFF} TIMES

- A. C_L includes probe and jig capacitance.
- B. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_0 = 50 Ω , $t_r \le 2.5$ ns, $t_f \le 2.5$ ns.
- C. The outputs are measured one at a time with one transition per measurement.

Figure 5. Test Circuit and Voltage Waveforms

www.ti.com

PARAMETER MEASUREMENT INFORMATION (continued)

For additional information, refer to the TI application report, *Measuring Differential Gain and Phase*, literature number SLOA040.

Figure 6. Test Circuit for Differential Gain/Phase Measurement

The differential gain and phase is measured at the output of the ON channel. For example, when $V_{IN} = 0$, $V_{EN} = 0$, and D_A is the input, the output is measured at S_{1A} .

HP8753ES Setup

Average = 20 RBW = 300 Hz Smoothing = 2% $V_{BIAS} = 0 \text{ to } 1 \text{ V}$ ST = 1.381 s. P1 = -7 dBM CW frequency = 3.58 MHz

Texas Instruments

SCDS276B-APRIL 2009-REVISED DECEMBER 2009

www.ti.com

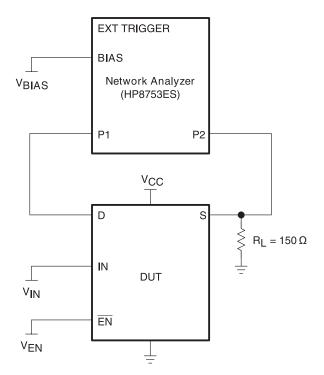


Figure 7. Test Circuit for Frequency Response, Crosstalk, and OFF-Isolation

The frequency response is measured at the output of the ON channel. For example, when $V_{IN} = 0$, $V_{EN} = 0$, and D_A is the input, the output is measured at S_{1A} . All unused analog I/O ports are held at V_{CC} or GND.

The crosstalk is measured at the output of the non-adjacent ON channel. For example, when $V_{IN} = 0$, $V_{EN} = 0$, and D_A is the input, the output is measured at S_{1B} . All unused analog I/O ports are held at V_{CC} or GND.

The off-isolation is measured at the output of the OFF channel. For example, when $V_{IN} = 0$, $V_{EN} = V_{CC}$, and D_A is the input, the output is measured at S_{1A} . All unused analog I/O ports are held at V_{CC} or GND.

HP8753ES Setup

Average = 4 RBW = 3 kHz Smoothing = 0% $V_{BIAS} = 0.35 V$ ST = 2 s

P1 = 0 dBM

16-Sep-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TS5V330CD	PREVIEW	SOIC	D	16	40	TBD	Call TI	Call TI	-40 to 85		
TS5V330CDBQR	ACTIVE	SSOP	DBQ	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	TE330C	Samples
TS5V330CDBR	PREVIEW	SSOP	DB	16	2000	TBD	Call TI	Call TI	-40 to 85		
TS5V330CDR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TS5V330C	Samples
TS5V330CPW	PREVIEW	TSSOP	PW	16	90	TBD	Call TI	Call TI	-40 to 85		
TS5V330CPWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TE330C	Samples
TS5V330CRGYR	PREVIEW	VQFN	RGY	16	3000	TBD	Call TI	Call TI	-40 to 85		

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

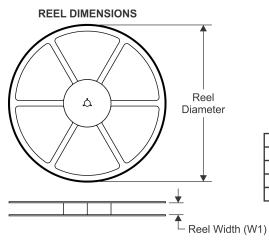
www.ti.com

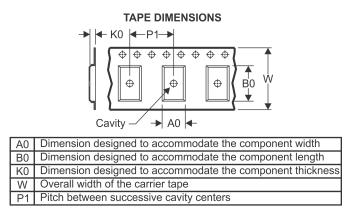
PACKAGE OPTION ADDENDUM

16-Sep-2015

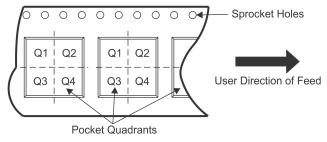
⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

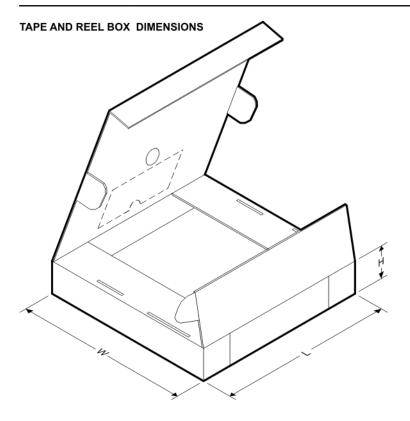

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TS5V330CDBQR	SSOP	DBQ	16	2500	330.0	12.5	6.4	5.2	2.1	8.0	12.0	Q1
TS5V330CDR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
TS5V330CPWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

18-Oct-2016

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TS5V330CDBQR	SSOP	DBQ	16	2500	340.5	338.1	20.6
TS5V330CDR	SOIC	D	16	2500	333.2	345.9	28.6
TS5V330CPWR	TSSOP	PW	16	2000	367.0	367.0	35.0

D (R-PDSO-G16)

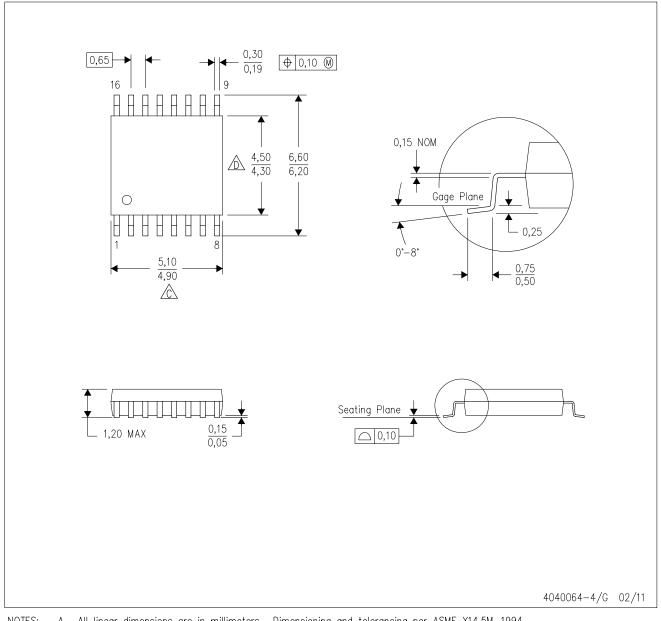
PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

4211283-4/E 08/12

D (R-PDSO-G16) PLASTIC SMALL OUTLINE Stencil Openings (Note D) Example Board Layout (Note C) –16x0,55 -14x1,27 -14x1,27 16x1,50 5,40 5.40 Example Non Soldermask Defined Pad Example Pad Geometry (See Note C) 0,60 .55 Example 1. Solder Mask Opening (See Note E) -0,07 All Around

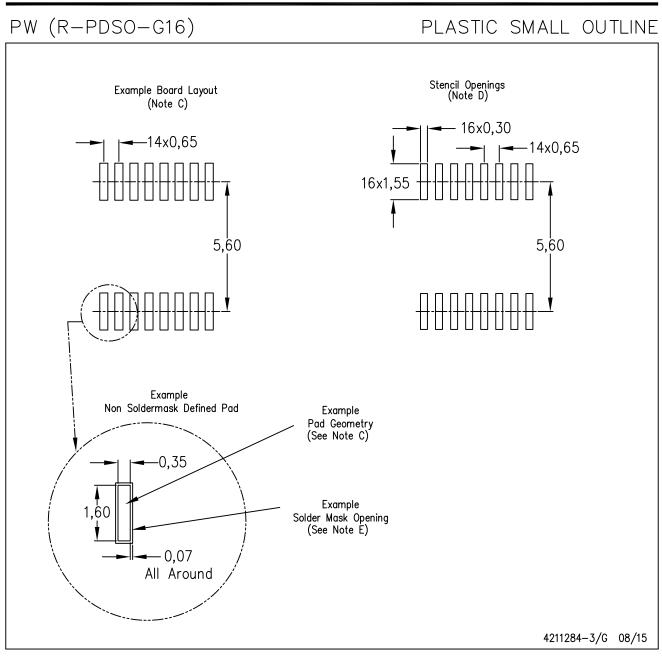

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES:


A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. β . This drawing is subject to change without notice.

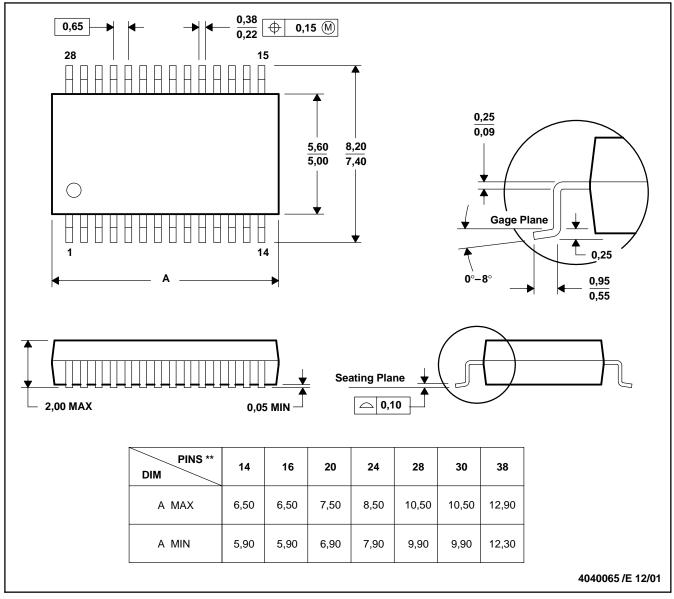
Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

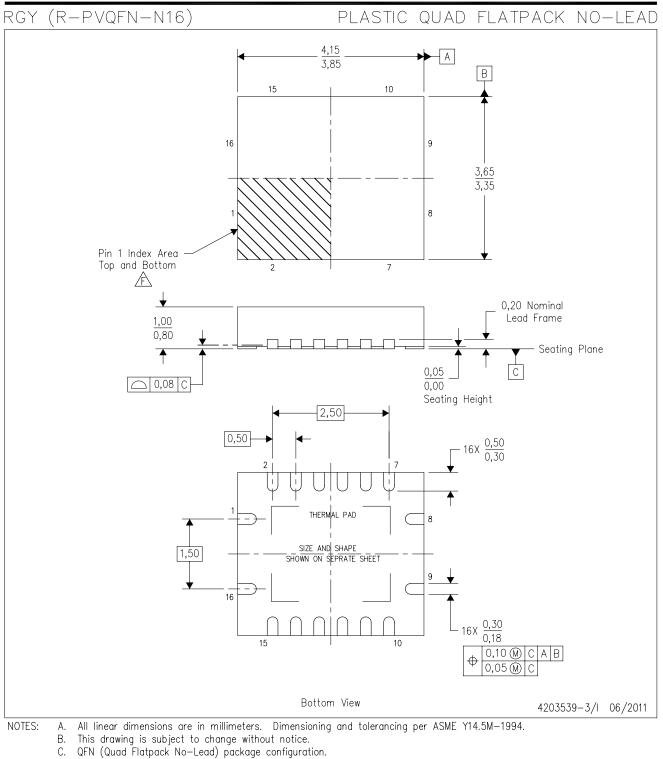

MECHANICAL DATA

MSSO002E - JANUARY 1995 - REVISED DECEMBER 2001

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

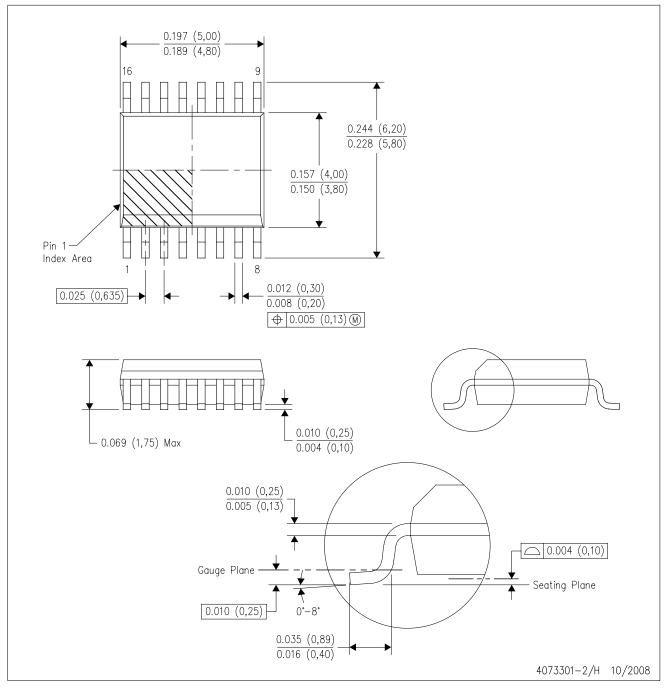
28 PINS SHOWN



NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-150

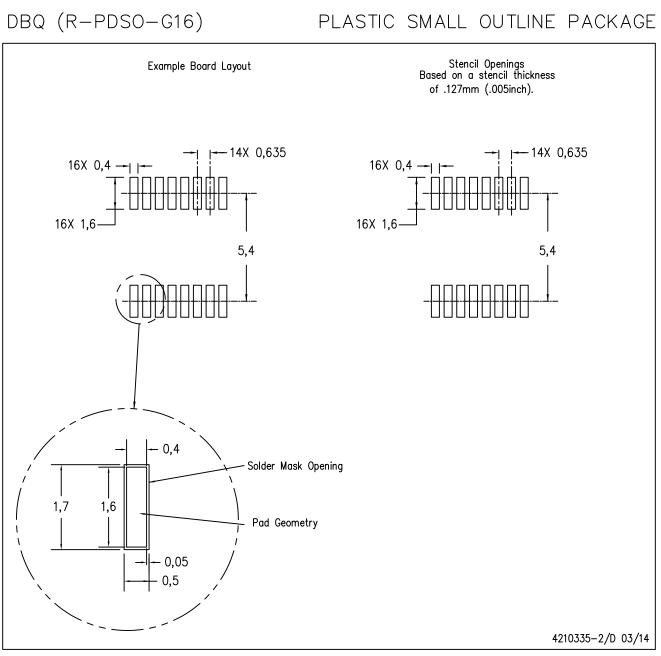
MECHANICAL DATA



- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- Æ Pin 1 identifiers are located on both top and bottom of the package and within the zone indicated.
- The Pin 1 identifiers are either a molded, marked, or metal feature.
- G. Package complies to JEDEC MO-241 variation BA.

DBQ (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE


NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15) per side.

D. Falls within JEDEC MO-137 variation AB.

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications			
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive		
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications		
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers		
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps		
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy		
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial		
Interface	interface.ti.com	Medical	www.ti.com/medical		
Logic	logic.ti.com	Security	www.ti.com/security		
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense		
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video		
RFID	www.ti-rfid.com				
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com		
Wireless Connectivity	www.ti.com/wirelessconnectivity				

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated