

Sample &

Buy

TS5A22362

SCDS364B – JUNE 2015 – REVISED SEPTEMBER 2015

TS5A22362 0.65-Ω 2-channel SPDT Analog Switches With Negative Signaling Capability

Technical

Documents

1 Features

- Specified Break-Before-Make Switching
- Negative Signaling Capability: Maximum Swing from –2.75 V to 2.75 V (V_{CC} = 2.75 V)
- Low ON-State Resistance (0.65 Ω Typical)
- Low Charge Injection
- Excellent ON-State Resistance Matching
- 2.3-V to 5.5-V Power Supply (V_{CC})
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
 - 2500-V Human-Body Model (A114-B, Class II)
 - 1500-V Charged-Device Model (C101)
 - 200-V Machine Model (A115-A)

2 Applications

- Cell Phones
- PDAs
- Portable Instrumentation
- Audio Routing
- Medical Imaging

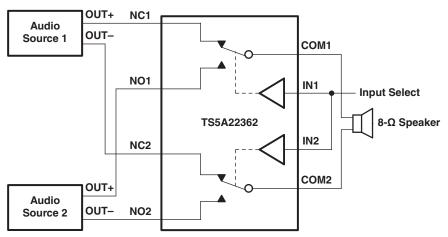
3 Description

Tools &

Software

The TS5A22362 is a bidirectional, 2-channel singlepole double-throw (SPDT) analog switch designed to operate from 2.3 V to 5.5 V. The device features negative signal swing capability that allows signals below ground to pass through the switch without distortion. The break-before-make feature prevents signal distortion during the transferring of a signal from one path to another. Low ON-state resistance, excellent channel-to-channel ON-state resistance matching, and minimal total harmonic distortion (THD) performance are ideal for audio applications. The 3.00 mm \times 3.00 mm DRC package is also available as a nonmagnetic package for medical imaging application.

Support &


Community

20

Device Information⁽¹⁾

ACKAGE BODY SIZE (NO	PACKAG	PART NUMBER				
(10) 3.00 mm × 3.00	/SON (10)					
A (10) 1.86 mm × 1.36	OSBGA (10)	TS5A22362				
P (10) 3.00 mm × 3.00	/SSOP (10)					
P (10) 3.00 mm × 3.00	VSSOP (10)					

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Typical Application Schematic

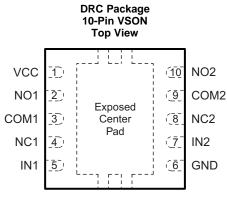
NSTRUMENTS

Texas

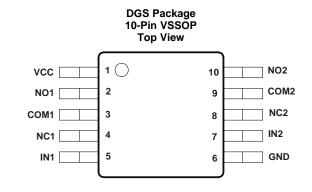
Table of Contents

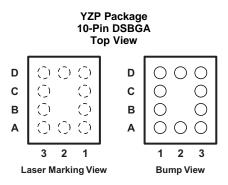
1	Feat	tures 1
2	Арр	lications 1
3	Des	cription 1
4	Rev	ision History 2
5	Pin	Configuration and Functions 3
6	Spe	cifications 4
	6.1	Absolute Maximum Ratings 4
	6.2	ESD Ratings 4
	6.3	Recommended Operating Conditions 4
	6.4	Thermal Information 5
	6.5	Electrical Characteristics for 2.5-V Supply5
	6.6	Electrical Characteristics for 3.3-V Supply 6
	6.7	Electrical Characteristics for 5-V Supply7
	6.8	Typical Characteristics 9
7	Para	ameter Measurement Information 11
8	Deta	ailed Description 15
	8.1	Overview 15

	8.2	Functional Block Diagram	15
	8.3	Feature Description	15
		Device Functional Modes	
9		lication and Implementation	
	9.1	Application Information	16
	9.2	Typical Application	16
10	Pow	er Supply Recommendations	18
11	Lay	out	18
		Layout Guidelines	
	11.2	Layout Example	18
12	Dev	ice and Documentation Support	19
	12.1	Community Resources	19
	12.2	Trademarks	19
	12.3	Electrostatic Discharge Caution	19
	12.4	Glossary	19
13	Mec Infor	hanical, Packaging, and Orderable mation	19


4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


Changes from Revision A (August 2015) to Revision B	Page
 Changed C_L TEST CONDITION value for all THD PARAMETERs from 15 pf to 35 pf 	
Changes from Original (June 2015) to Revision A	Page
Changed the Functional Block Diagram	



5 Pin Configuration and Functions

*The exposed center pad, if used, must be connected as a secondary GND or left electrically open.

Pin Functions

		PIN		ТҮРЕ	DECODIDITION	
NAME	VSON	VSSOP	DSBGA	ITPE	DESCRIPTION	
VCC	1	1	A2	—	Power Supply	
NO1	2	2	A3	I/O	Normally Open (NO) signal path, Switch 1	
COM1	3	3	B3	I/O	Common signal path, Switch 1	
NC1	4	4	C3	I/O	Normally Closed (NC) signal path, Switch 1	
IN1	5	5	D3	I	Digital control pin , Switch 1	
GND	6	6	D2	—	Ground	
IN2	7	7	D1	I	Digital control pin, Switch 2	
NC2	8	8	C1	I/O	Normally Closed (NC) signal path, Switch 2	
COM2	9	9	B1	I/O	Common signal path, Switch 2	
NO2	10	10	A1	I/O	Normally Open (NO) signal Path, Switch 2	

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) ⁽¹⁾

			MIN	MAX	UNIT
V _{CC} ⁽²⁾	Supply voltage ⁽³⁾		-0.5	6	V
V _{NC} V _{NO} V _{COM}	Analog voltage ^{(3) (4) (5)}		V _{CC} – 6	V _{CC} + 0.5	V
I _{I/OK}	Analog port diode current	V_{NC} , V_{NO} , $V_{COM} < 0$ or V_{NC} , V_{NO} , $V_{COM} > V_{CC}$	-50	50	mA
I _{NC} I _{NO} I _{COM}	ON-state switch current		-150	150	
	ON-state peak switch current (6)	V_{NC} , V_{NO} , $V_{COM} = 0$ to V_{CC}	-300	300	mA
I _{NC} (3) (7) (8) (2) (7) (8)	ON-state switch current		-350	350	
INC (3) (7) (8) INO (3) (7) (8) ICOM (3) (7) (8)	ON-state peak switch current ⁽⁶⁾	V_{NC} , V_{NO} , $V_{COM} = 0$ to V_{CC}	-500	500	mA
VI	Digital input voltage		-0.5	6.5	V
I _{IK}	Digital input clamp current (3) (4)	V ₁ < 0	-50	50	mA
I _{CC} I _{GND}	Continuous current through V _{CC} or GND		-100	100	mA
T _{stg}	Storage temperature		-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

(3) All voltages are with respect to ground, unless otherwise specified.

(4) The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

(5) This value is limited to 5.5 V maximum.

(6) Pulse at 1-ms duration < 10% duty cycle.

(7) $V_{CC} = 3.0 \text{ V to } 5.0 \text{ V}, T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}.$

(8) For YZP package only.

6.2 ESD Ratings

			VALUE	UNIT
	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±2500		
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 $\stackrel{(2)}{}$	±1500	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V _{CC}	Supply voltage	2.3	5.5	V
V _{NC} V _{NO} V _{COM}	Signal path voltage	V _{CC} – 5.5	V _{CC}	V
V _{IN}	Digital control	GND	V _{CC}	V

6.4 Thermal Information

	THERMAL METRIC ⁽¹⁾	DGS (VSSOP)	DRC (VSON)	YZP (DSBGA)	UNIT
		10 PINS	10 PINS	10 PINS	
R_{\thetaJA}	Junction-to-ambient thermal resistance	163.3	44.3	90.9	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	56.4	70.1	0.3	°C/W
$R_{\theta J B}$	Junction-to-board thermal resistance	83.1	19.3	8.3	°C/W
ΨJT	Junction-to-top characterization parameter	6.8	2.0	3.2	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	81.8	19.4	8.3	°C/W

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics for 2.5-V Supply

 V_{CC} = 2.3 V to 2.7 V, T_A = –40°C to 85°C (unless otherwise noted) $^{(1)}$

P	PARAMETER	TEST CONE	DITIONS	TA	V _{cc}	MIN	TYP	MAX	UNIT
Analog Sv	vitch								
V _{COM} , V _{NO} , V _{NC}	Analog signal range					V _{CC} – 5.5		V _{cc}	V
_	ON-state	V_{NC} or $V_{NO} = V_{CC}$, 1.5 V,	COM to NO or NC,	25°C			0.65	0.94	_
R _{on}	resistance	$V_{CC} - 5.5 V$ $I_{COM} = -100 \text{ mA},$	see Figure 13	Full	2.7 V			1.3	Ω
40	ON-state	V_{NC} or $V_{NO} = 1.5 V$,	COM to NO or NC,	25°C	071		0.023	0.11	0
ΔR _{on}	resistance match between channels	$I_{COM} = -100 \text{ mA},$	see Figure 13	Full	2.7 V			0.15	Ω
-	ON-state	V_{NC} or $V_{NO} = V_{CC}$, 1.5 V,	COM to NO or NC,	25°C	0.7.1		0.18	0.46	•
R _{on(flat)}	resistance flatness	$V_{CC} - 5.5 V$ $I_{COM} = -100 \text{ mA},$	see Figure 13	Full	2.7 V			0.5	Ω
		$V_{NC} = 2.25 V, V_{CC} - 5.5 V$		25°C	-	-50		50	
I _{NC(OFF)} , I _{NO(OFF)}	NC, NO OFF leakage current	$\begin{array}{l} V_{COM} = V_{CC} - 5.5 \ V, \ 2.25 \ V \\ V_{NO} = Open \\ COM \ to \ NO \\ or \\ V_{NO} = 2.25 \ V, \ V_{CC} - 5.5 \ V, \\ V_{COM} = V_{CC} - 5.5 \ V, \ 2.25 \ V \\ V_{NC} = Open \\ COM \ to \ NC \end{array}$	See Figure 14	Full	2.7	-375		375	nA
	СОМ	V_{NC} and V_{NO} = Floating,	ł	25°C	2.7 V	-50		50	
I _{COM(ON)}	ON leakage current	$V_{\text{COM}} = V_{\text{CC}}, V_{\text{CC}} - 5.5 \text{ V}$	See Figure 15	Full		-375		375	nA
Digital Co	ntrol Inputs (IN) ⁽²⁾								
V _{IH}	Input logic high			Full		1.4		5.5	V
V _{IL}	Input logic low			T UII				0.6	v
I _{IH} , I _{IL}	Input leakage	$V_{IN} = V_{CC}$ or 0		25°C	2.7 V	-250		250	nA
	current			Full		-250		250	
Dynamic				25°C	2.5 V		44	80	
t _{ON}	Turnon time		C _L = 35 pF, see Figure 17	Full	2.3 V to 2.7		44	120	ns
		L,		-	V			-	
+	Turnoff time	$V_{COM} = V_{CC},$	C _L = 35 pF,	25°C	2.5 V		22	70	ns
t _{OFF}	rumon ume	$R_{L} = 300 \Omega,$	see Figure 17	Full	2.3 V to 2.7 V			70	115
t _{BBM}	Break-before-make time	See Figure 18		25°C	2.5 V	1	7		ns
Q _C	Charge injection	$V_{GEN} = 0,$ $R_{GEN} = 0,$	C _L = 1 nF, see Figure 22	25°C	2.5 V		150		рС
C _{NC(OFF)} , C _{NO(OFF)}	NC, NO OFF capacitance	V_{NC} or $V_{NO} = V_{CC}$ or GND,	See Figure 16	25°C	2.5 V		70		pF
C _{COM(ON)}	NC, NO, COM ON capacitance	$V_{COM} = V_{CC}$ or GND, Switch ON, f = 10 MHz	See Figure 16	25°C	2.5 V		370		pF

The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum
 All unused digital inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, SCBA004.

UNIT рF MHz dB dB

μA

μA

Electrical Characteristics for 2.5-V Supply (continued)

	PARAMETER	TEST COND	ITIONS	TA	V _{cc}	MIN T	YP	MAX	l
CI	Digital input capacitance	$V_1 = V_{CC}$ or GND	See Figure 16	25°C	2.5 V		2.6		
BW	Bandwidth	$R_L = 50 \Omega, -3 dB$	See Figure 18	25°C	2.5 V		17		-
O _{ISO}	OFF isolation	$R_L = 50 \ \Omega$	f = 100 kHz, see Figure 20	25°C	2.5 V	-	-66		
X _{TALK}	Crosstalk	$R_L = 50 \Omega$	f = 100 kHz, see Figure 21	25°C	2.5 V	-	-75		
THD	Total harmonic distortion	$\begin{array}{l} R_{L} = 600 \ \Omega, \\ C_{L} = 35 \ pF \end{array}$	f = 20 Hz to 20 kHz, see Figure 23	25°C	2.5 V	0.0	1%		
Supply					·				
	Positive	V_{COM} and $V_{IN} = V_{CC}$ or GND,		25°C	2.7 V		0.2	1.1	
I _{CC}	supply current	V_{NC} and V_{NO} = Floating		Full	2.7 V			1.3	L
I _{CC}	Positive supply current	$\label{eq:V_CM} \begin{split} V_{COM} &= V_{CC} - 5.5 \text{ V}, \\ V_{IN} &= V_{CC} \text{ or GND}, \\ V_{NC} \text{ and } V_{NO} &= \text{Floating} \end{split}$		Full	2.7 V			3.3	

6.6 Electrical Characteristics for 3.3-V Supply

 V_{CC} = 3 V to 3.6 V, T_{A} = –40°C to 85°C (unless otherwise noted) $^{(1)}$

	PARAMETER	TEST CO	NDITIONS	TA	Vcc	MIN	TYP	MAX	UNIT	
ANALOG	SWITCH			÷						
V _{COM} , V _{NO} , V _{NC}	Analog signal range					V _{CC} – 5.5		V _{CC}	V	
		V_{NC} or $V_{NO} \le V_{CC}$,		25°C			0.61	0.87		
R _{on}	ON-state resistance	1.5 V, V _{CC} – 5.5 V, I _{COM} = –100 mA	COM to NO or NC, see Figure 13	Full	3 V			0.97	Ω	
	ON-state	V_{NC} or $V_{NO} = 1.5 V$,	COM to NO or NC,	25°C			0.024	0.13		
ΔR_{on}	resistance match between channels	$I_{COM} = -100 \text{ mA},$	see Figure 13	Full	3 V			0.13	Ω	
	ON-state	V_{NC} or $V_{NO} \le V_{CC}$,		25°C			0.12	0.46		
R _{on(flat)}	resistance flatness	1.5 V, V _{CC} – 5.5 V, I _{COM} = –100 mA	COM to NO or NC, see Figure 13	Full	3 V			0.5	.5	Ω
		$V_{\rm NC} = 3 \text{ V}, \text{ V}_{\rm CC} - 5.5 \text{ V}$		25°C		-50		50	nA	
I _{NC(OFF)} , I _{NO(OFF)}	NC, NO OFF leakage current		See Figure 14	Full	3.6 V	-375	375 37	375		
	COM	V_{NC} and V_{NO} = Floating,	COM to NO or NC,	25°C		-50		50		
I _{COM(ON)}	ON leakage current	$V_{\rm COM} = V_{\rm CC}, V_{\rm CC} - 5.5 \text{ V}$	see Figure 15	Full	3.6 V	-375		375	nA	
DIGITAL C	CONTROL INPUTS (IN)	2)								
V _{IH}	Input logic high	_		Full	_	1.4		5.5	V	
V _{IL}	Input logic low			1 Ull				0.8	v	
I _{IH} , I _{IL}	Input leakage current	$V_{IN} = V_{CC}$ or 0		25°C	3.6 V	-250		250	nA	
				Full		-250		250		
DYNAMIC		1			1 1					
	Turnen time	$V_{COM} = V_{CC},$	C _L = 35 pF,	25°C	3.3 V		34	80		
t _{ON}	Turnon time	$R_L = 300 \Omega$	see Figure 17	Full	3 V to 3.6 V			120	ns	

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum (2) All unused digital inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

Electrical Characteristics for 3.3-V Supply (continued)

V_{CC} = 3 V to 3.6 V, T_{A} = –40°C to 85°C (unless otherwise noted) $^{(1)}$
--

	PARAMETER	TEST COND	TA	Vcc	MIN	TYP	MAX	UNIT	
		$V_{COM} = V_{CC},$	C ₁ = 35 pF,	25°C	3.3 V		19	70	
t _{OFF}	Turnoff time	$v_{COM} = v_{CC},$ $R_L = 300 \Omega$	$G_L = 35 \text{ pF},$ see Figure 17	Full	3 V to 3.6 V			70	ns
t _{BBM}	Break-before-make time	See Figure 18		25°C	3.3 V	1	7		ns
Q _C	Charge injection	V _{GEN} = 0, R _{GEN} = 0	C _L = 1 nF, see Figure 22	25°C	3.3 V		150		рС
$\begin{array}{c} C_{NC(OFF)},\\ C_{NO(OFF)} \end{array}$	NC, NO OFF capacitance	V_{NC} or V_{NO} = V_{CC} or V_{CC} – 5.5 V	See Figure 16	25°C	3.3 V		70		pF
C _{COM(ON)}	NC, NO, COM ON capacitance	$V_{COM} = V_{CC}$ or GND, f = 10 MHz	See Figure 16	25°C	3.3 V		370		pF
Cı	Digital input capacitance	$V_{I} = V_{CC}$ or GND	See Figure 16	25°C	3.3 V		2.6		pF
BW	Bandwidth	$R_L = 50 \ \Omega, -3 \ dB$	Switch ON, see Figure 18	25°C	3.3 V		17.5		MHz
O _{ISO}	OFF isolation	R _L = 50 Ω	f = 100 kHz, see Figure 20	25°C	3.3 V		-68		dB
X _{TALK}	Crosstalk	R _L = 50 Ω	f = 100 kHz, see Figure 21	25°C	3.3 V		-76		dB
THD	Total harmonic distortion	$ \begin{array}{l} R_{L} = 600 \ \Omega, \\ C_{L} = 35 \ pF \end{array} $	f = 20 Hz to 20 kHz, see Figure 23	25°C	3.3 V		0.008%		
SUPPLY									
		V_{COM} and $V_{IN} = V_{CC}$ or GND,		25°C	2.0.1/		0.1	1.2	
	Positive	V_{NC} and V_{NO} = Floating		Full	3.6 V			1.3	μA
I _{CC}	supply current	$\label{eq:V_COM} \begin{split} & V_{COM} = V_{CC} - 5.5 \ V, \\ & V_{IN} = V_{CC} \ or \ GND, \\ & V_{NC} \ and \ V_{NO} = Floating \end{split}$		Full	3.6 V			3.4	μΑ

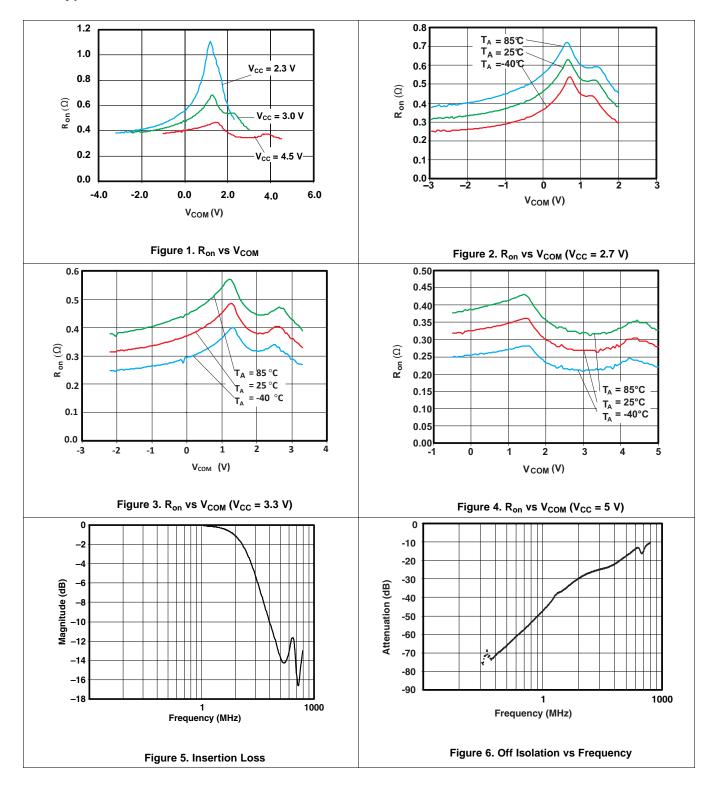
6.7 Electrical Characteristics for 5-V Supply

 V_{CC} = 4.5 V to 5.5 V, T_A = -40°C to 85°C (unless otherwise noted) ⁽¹⁾

Р	ARAMETER	TEST CON	DITIONS	TA	Vcc	MIN	TYP	MAX	UNIT
ANALOG	SWITCH								
V _{COM} , V _{NO} , V _{NC}	Analog signal range					V _{CC} – 5.5		V _{CC}	V
_	ON-state	V_{NC} or $V_{NO} = V_{CC}$, 1.6 V, COM to NO or NC,		25°C			0.52	0.74	-
R _{on}	resistance	$V_{CC} = -5.5 \text{ V},$ $I_{COM} = -100 \text{ mA}$	see Figure 13	Full	4.5 V			0.83	Ω
	ON-state	V_{NC} or $V_{NO} = 1.6 V$,	COM to NO or NC,	25°C	4 = 14		0.04	0.23	0
ΔR _{on}	resistance match between channels	$I_{COM} = -100 \text{ mA}$	see Figure 13	Full	4.5 V			0.30	Ω
	ON-state		COM to NO or NC,	25°C	4.5 V		0.076	0.46	Ω
R _{on(flat)}	resistance flatness	$V_{CC} = -5.5 V,$ $I_{COM} = -100 mA$	see Figure 13	Full				0.5	
		$V_{NC} = 4.5 \text{ V}, V_{CC} - 5.5 \text{ V},$		25°C		-50		50	
I _{NC(OFF)} , Ino(off)	NC, NO OFF leakage current	$\begin{array}{l} V_{COM} = V_{CC} - 5.5 \text{ V}, \ 4.5 \text{ V}, \\ V_{NO} = Open, \\ COM \text{ to NO} \\ \text{or} \\ V_{NO} = 4.5 \text{ V}, \ V_{CC} - 5.5 \text{ V}, \\ V_{COM} = V_{CC} - 5.5 \text{ V}, \ 4.5 \text{ V}, \\ V_{NC} = Open, \\ COM \text{ to NC} \end{array}$	See Figure 14	Full	5.5 V	-375		375	nA
	COM	Vue and Vue – Floating		25°C		-50		50	
COM(ON)	ON leakage current	$V_{COM} = V_{CC}, V_{CC} - 5.5 V$	See Figure 15	Full	5.5 V	-375		375	nA
DIGITAL C	ONTROL INPUTS (IN)	(2)						·	

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum (2) All unused digital inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report,

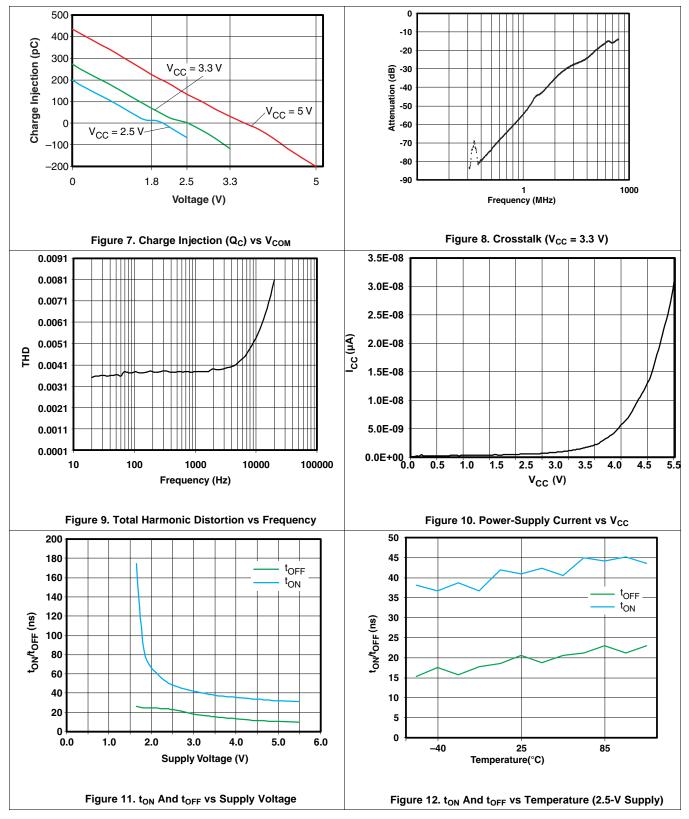
Implications of Slow or Floating CMOS Inputs, SCBA004.


Electrical Characteristics for 5-V Supply (continued)

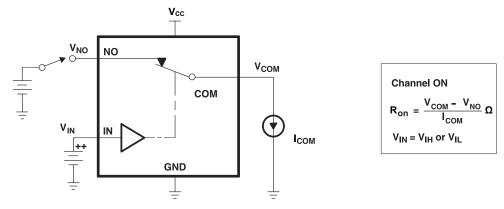
$V_{CC} = 4.5 \text{ V}$ to 5.5 V, $T_A = -40^{\circ}\text{C}$ to 85°C	(unless otherwise noted) $^{(1)}$
$V_{12} = 1.0 V (0 0.0 V, T_A = 10 0 (0 00 0)$	

F	PARAMETER	TEST CONE	DITIONS	TA	Vcc	MIN	TYP	MAX	UNIT
V _{IH}	Input logic high			E		2.4		5.5	V
VIL	Input logic low			Full				0.8	V
	Input leakage	$V_{IN} = V_{CC}$ or 0		25°C	5.5 V —	-250		250	nA
I _{IH} , I _{IL}	current	VIN = VCC OI O		Full	5.5 V	-250		250	ПА
DYNAMIC					<u> </u>				
		$V_{COM} = V_{CC},$	C ₁ = 35 pF,	25°C	5 V		27	80	
t _{ON}	Turnon time	$R_L = 300 \Omega$	see Figure 17	Full	4.5 V to 5.5 V			80	ns
		$V_{COM} = V_{CC},$	C _I = 35 pF,	25°C	5 V		13	70	
t _{OFF}	Turnoff time	$R_L = 300 \Omega$	see Figure 17	Full	4.5 V to 5.5 V			70	ns
t _{BBM}	Break-before-make time	$V_{NC} = V_{NO} = V_{CC}/2$ R _L = 300 Ω	C _L = 35 pF, see Figure 18	25°C	5 V	1	3.5		ns
Q _C	Charge injection	V _{GEN} = 0, R _{GEN} = 0	C _L = 1 nF, see Figure 22	25°C	5 V		10		рС
C _{NC(OFF)} , C _{NO(OFF)}	NC, NO OFF capacitance	V_{NC} or $V_{NO} = V_{CC}$ or $V_{CC} - 5.5 \text{ V}$	See Figure 16	25°C	5 V		70		pF
C _{COM(ON)}	NC, NO, COM ON capacitance	$V_{COM} = V_{CC}$ or GND,	See Figure 16	25°C	5 V		370		pF
Cı	Digital input capacitance	$V_I = V_{CC}$ or GND	See Figure 16	25°C	5 V		2.6		pF
BW	Bandwidth	R _L = 50 Ω	See Figure 18	25°C	5 V		18.3		MHz
O _{ISO}	OFF isolation	$R_L = 50 \ \Omega$	f = 100 kHz, see Figure 20	25°C	5 V		-70		dB
X _{TALK}	Crosstalk	$R_L = 50 \ \Omega$	f = 100 kHz, see Figure 21	25°C	5 V		-78		dB
THD	Total harmonic distortion	$ \begin{array}{l} R_{L} = 600 \ \Omega, \\ C_{L} = 35 \ pF \end{array} $	f = 20 Hz to 20 kHz, see Figure 23	25°C	5 V		0.009%		
SUPPLY				·					
		V_{COM} and $V_{IN} = V_{CC}$ or GND,		25°C			0.2	1.3	
	Positive	V_{NC} and V_{NO} = Floating		Full				3.5	
I _{CC}	supply current	$V_{COM} = V_{CC} - 5.5 V,$ $V_{IN} = V_{CC} \text{ or GND},$ $V_{NC} \text{ and } V_{NO} = \text{Floating}$		Full	5.5 V			5	μA

6.8 Typical Characteristics



TS5A22362 SCDS364B – JUNE 2015 – REVISED SEPTEMBER 2015


www.ti.com

Typical Characteristics (continued)

7 Parameter Measurement Information

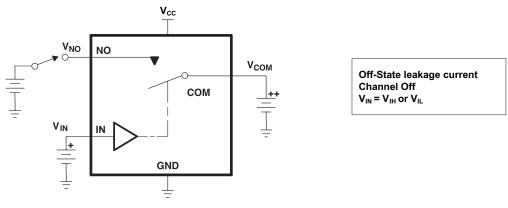
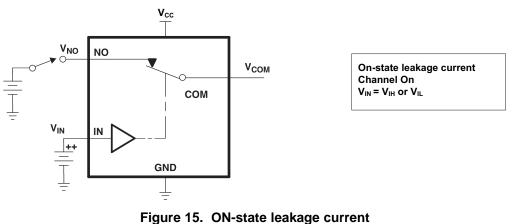
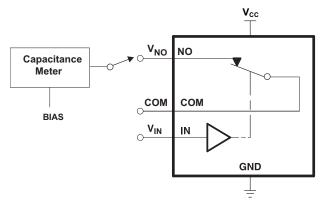
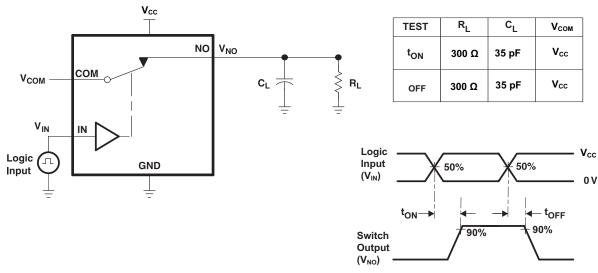



Figure 14. OFF-state leakage current (I_{COM(OFF)}, I_{NO(OFF)})



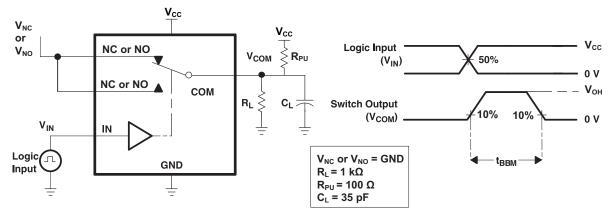
 $(I_{COM(ON)}, I_{NO(ON)})$

TEXAS INSTRUMENTS

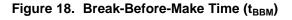

www.ti.com

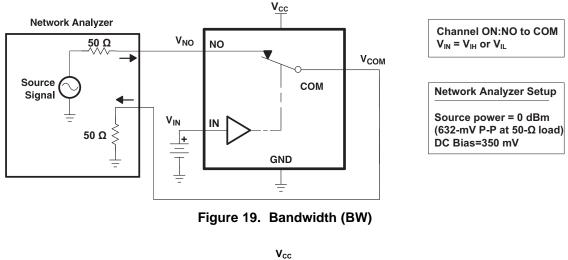
 $\begin{array}{l} V_{\text{BIAS}} = V_{\text{CC}} \text{ or GND and} \\ V_{\text{IN}} = V_{\text{IH}} \text{ or } V_{\text{IL}} \\ \text{Capacitance is measured at NO,} \\ \text{COM, and IN inputs during ON} \\ \text{and OFF conditions.} \end{array}$

Figure 16. Capacitance (C_I, C_{COM(OFF)}, C_{COM(ON)}, C_{NO(OFF)}, C_{NO(ON)})



- A. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω, t_r < 5 ns, t_f < 5 ns.
- B. C_L includes probe and jig capacitance.


Figure 17. Turnon (t_{ON}) and Turnoff time (t_{OFF})



Parameter Measurement Information (continued)

- A. C_L includes probe and jig capacitance.
- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω , t_r < 5 ns, t_f < 5 ns.

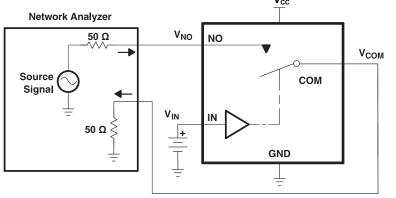


Figure 20. OFF isolation (O_{ISO})

Channel OFF: NO to COM

<u>NetworkAnalyzerSetup</u> Source power = 0 dBm (632-mV P-P at 50-Ω load)

DC bias = 350 mV

 $V_{IN} = V_{IH} \text{ or } V_{IL}$

TEXAS INSTRUMENTS

www.ti.com

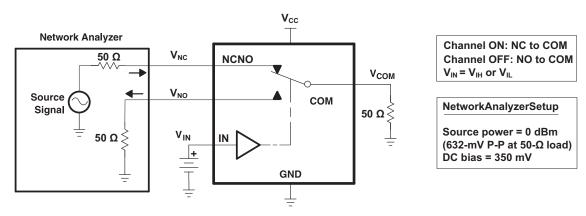
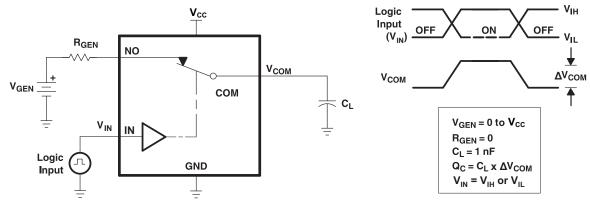
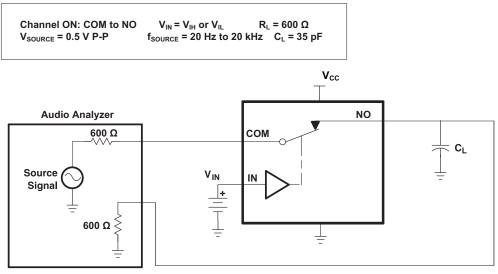
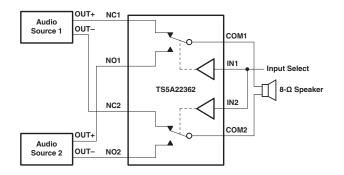




Figure 21. Crosstalk (X_{TALK})

- A. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r < 5 ns, t_f < 5 ns.
- B. C_L includes probe and jig capacitance.

A. C_L includes probe and jig capacitance.

Figure 23. Total Harmonic Distortion (THD)



8 Detailed Description

8.1 Overview

The TS5A22362 is a bidirectional, 2-channel single-pole double-throw (SPDT) analog switches designed to operate from 2.3 V to 5.5 V. The devices feature negative signal capability that allows signals below ground to pass through the switch without distortion. The break-before-make feature prevents signal distortion during the transferring of a signal from one path to another. Low ON-state resistance, excellent channel-to-channel ON-state resistance matching, and minimal total harmonic distortion (THD) performance are ideal for audio applications

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Negative Signaling Capacity

The TS5A22362 dual SPDT switches feature negative signal capability that allows signals below ground to pass through without distortion. These analog switches operate from a single +2.3-V to +5.5-V supply. The input and output signal swing of the device is dependent of the supply voltage V_{CC} : the devices pass signals as high as V_{CC} and as low as V_{CC} – 5.5 V, including signals below ground with minimal distortion.

Table 1 shows the input/output signal swing the user can get with different supply voltages.

SUPPLY VOLTAGE, V _{CC}	$\begin{array}{l} \text{MINIMUM} \\ (\text{V}_{\text{NC}}, \text{V}_{\text{NO}}, \text{V}_{\text{COM}}) = \text{V}_{\text{CC}} - 5.5 \end{array}$	MAXIMUM (V _{NC} , V _{NO} , V _{COM}) = V _{CC}
5.5 V	0 V	5.5 V
4.5 V	–1.9 V	4.5 V
3.6 V	–2.5 V	3.6 V
3.0 V	–2.5 V	3.0 V
2.7 V	–2.8 V	2.7 V
2.3 V	–3.2 V	2.3 V

Table 1. Input/Output signal swing

8.4 Device Functional Modes

The function table for TS5A22362 is shown in Table 2

Table 2. Function Table											
IN NC TO COM, NO TO COM, COM TO NC COM TO NO											
L	ON	OFF									
Н	H OFF ON										

Copyright © 2015, Texas Instruments Incorporated

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

Ensure that the device is powered up with a supply voltage on VCC before a voltage can be applied to the signal paths NC and NO.

Tie the digitally controlled inputs select pins IN1 and IN2 to V_{CC} or GND to avoid unwanted switch states that could result if the logic control pins are left floating.

All unused digital inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, SCBA004.

9.2 Typical Application

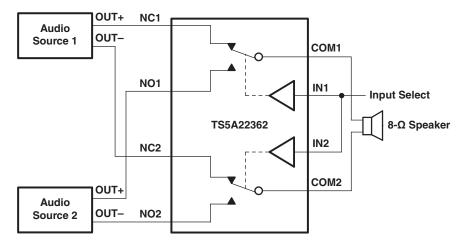


Figure 24. Typical Application

9.2.1 Design Requirements

Tie the digitally controlled inputs select pins IN1 and IN2 to V_{CC} or GND to avoid unwanted switch states that could result if the logic control pins are left floating.

9.2.2 Detailed Design Procedure

Select the appropriate supply voltage to cover the entire voltage swing of the signal passing through the switch because the TS5A22362 operates from a single +2.3-V to +5.5-V supply and the input/output signal swing of the device is dependant of the supply voltage V_{CC} . The device will pass signals as high as V_{CC} and as low as V_{CC} – 5.5 V. Use table 2 as a guide for selecting supply voltage based on the signal passing through the switch.

Ensure that the device is powered up with a supply voltage on VCC before a voltage can be applied to the signal paths NC and NO.

Typical Application (continued)

9.2.3 Application Curve

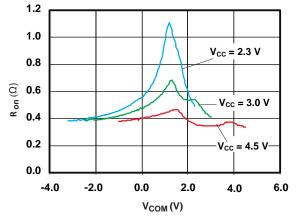
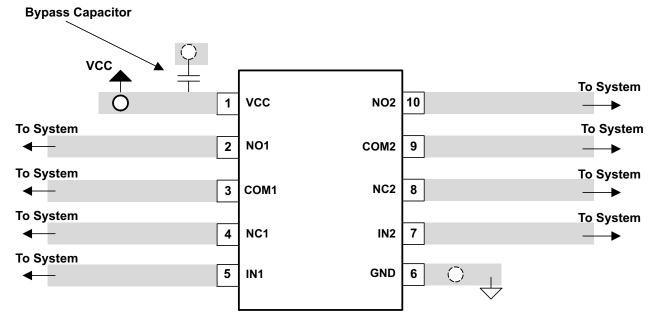


Figure 25. $R_{on} vs V_{COM}$

10 Power Supply Recommendations

The TS5A22362 operates from a single 2.3-V to 5.5-V supply. The device must be powered up with a supply voltage on VCC before a voltage can be applied to the signal paths NC and NO. It is recommended to include a 100- μ s delay after VCC is at voltage before applying a signal on NC and NO paths. It is also good practice to place a 0.1- μ F bypass capacitor on the supply pin VCC to GND to smooth out lower frequency noise to provide better load regulation across the frequency spectrum.

11 Layout


11.1 Layout Guidelines

TI recommends placing a bypass capacitor as close to the supply pin VCC as possible to help smooth out lower frequency noise to provide better load regulation across the frequency spectrum.

Minimize trace lengths and vias on the signal paths in order to preserve signal integrity.

11.2 Layout Example

12 Device and Documentation Support

12.1 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.2 Trademarks

E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

12.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TS5A22362DGSR	ACTIVE	VSSOP	DGS	10	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	39R	Samples
TS5A22362DGSRG4	ACTIVE	VSSOP	DGS	10	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	39R	Samples
TS5A22362DRCR	ACTIVE	VSON	DRC	10	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ZVG	Samples
TS5A22362DRCT-NM	ACTIVE	VSON	DRC	10	250	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	-40 to 85	ZVGNM	Samples
TS5A22362YZPR	ACTIVE	DSBGA	YZP	10	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	(39 ~ 392)	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

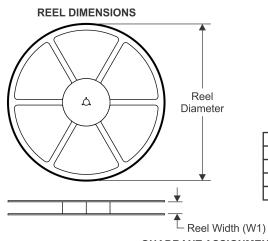
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

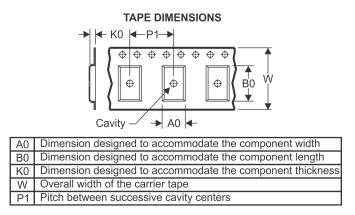
PACKAGE OPTION ADDENDUM

1-Dec-2015

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

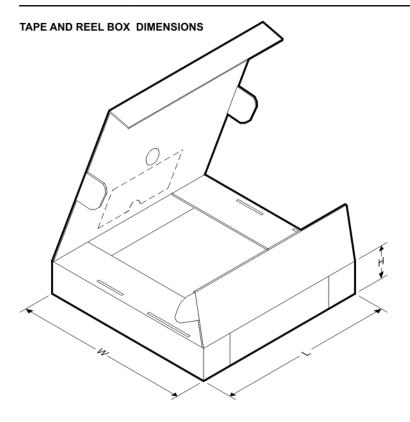

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

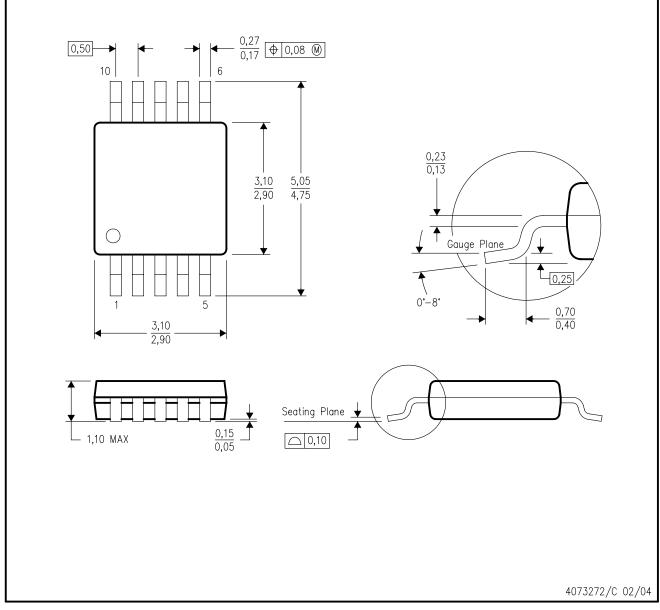

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TS5A22362DGSR	VSSOP	DGS	10	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TS5A22362DRCR	VSON	DRC	10	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TS5A22362DRCT-NM	VSON	DRC	10	250	180.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TS5A22362YZPR	DSBGA	YZP	10	3000	178.0	9.2	1.49	1.99	0.63	4.0	8.0	Q2

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

3-Sep-2015

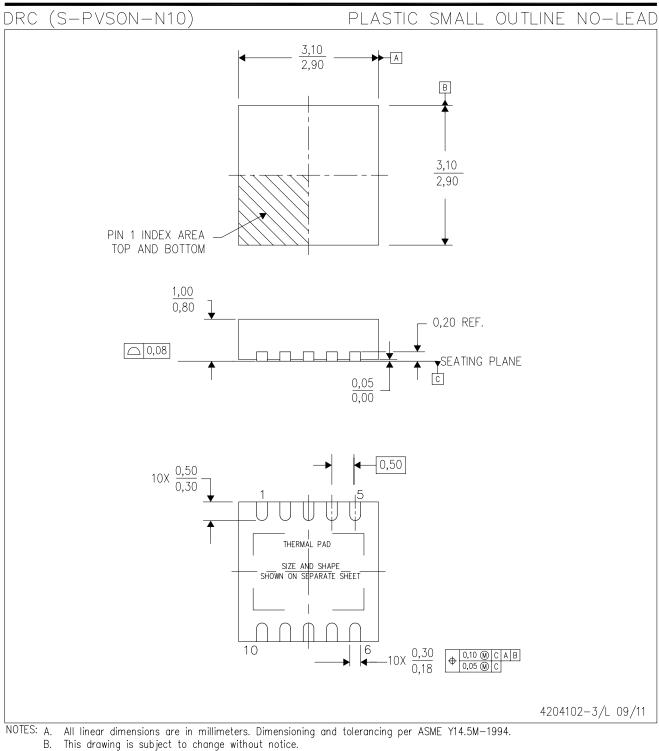


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TS5A22362DGSR	VSSOP	DGS	10	2500	358.0	335.0	35.0
TS5A22362DRCR	VSON	DRC	10	3000	367.0	367.0	35.0
TS5A22362DRCT-NM	VSON	DRC	10	250	210.0	185.0	35.0
TS5A22362YZPR	DSBGA	YZP	10	3000	220.0	220.0	35.0

DGS (S-PDSO-G10)

PLASTIC SMALL-OUTLINE PACKAGE



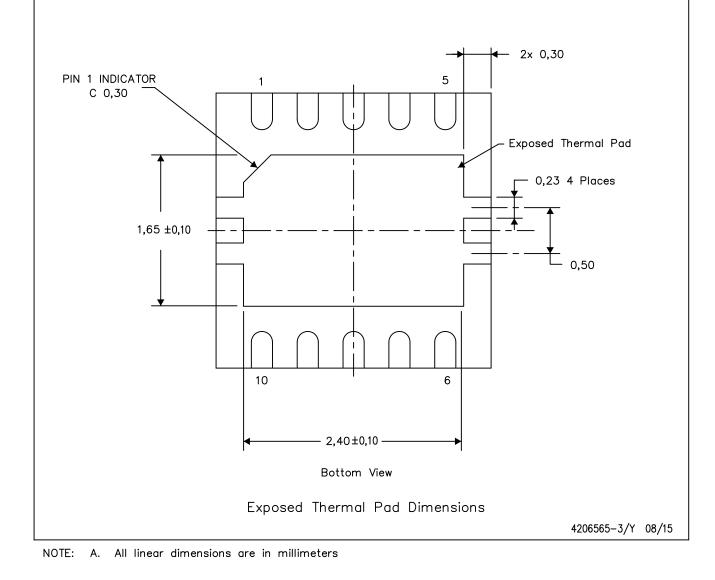
NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-187 variation BA.

MECHANICAL DATA

- C. Small Outline No-Lead (SON) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance, if present.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features
- and dimensions, if present

DRC (S-PVSON-N10)


PLASTIC SMALL OUTLINE NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

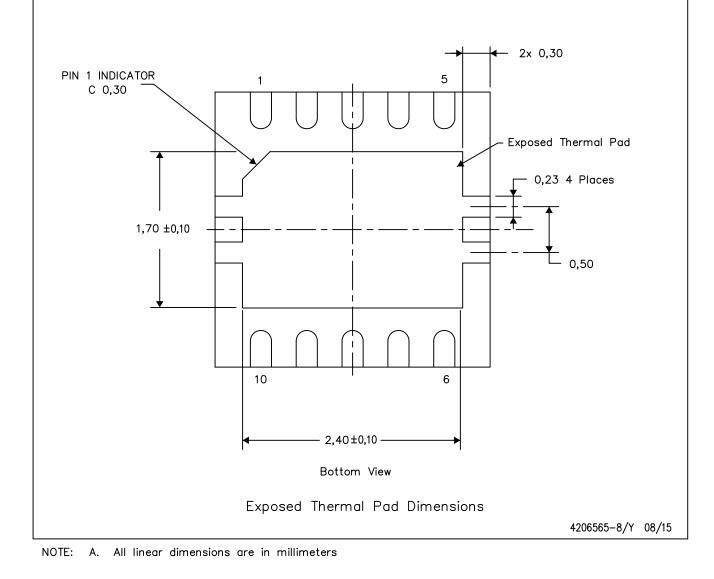
4206987-2/P 04/16

DRC (S-PVSON-N10) PLASTIC SMALL OUTLINE NO-LEAD Example Stencil Design **Example Board Layout** (Note E) Note D -🗕 8x0,5 8x0,5 4x1 38 4x0,26 4X 2x0,22 0.5 3,8 2,1 1,65 2,15 3,75 2x0,22 0,25 4x1,05 4x0,68 10x0,8 -10x0,23 2,40 72% solder coverage on center pad Exposed Pad Geometry Non Solder Mask Defined Pad 5xø0,3 Solder Mask Opening 4x0,28 R0,14 0,08 (Note F) 0.5 0,5 1,0 Pad Geometry 0,85 0.28 (Note C) 0,07 -All around 4x 0.75 0,7 1.5

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

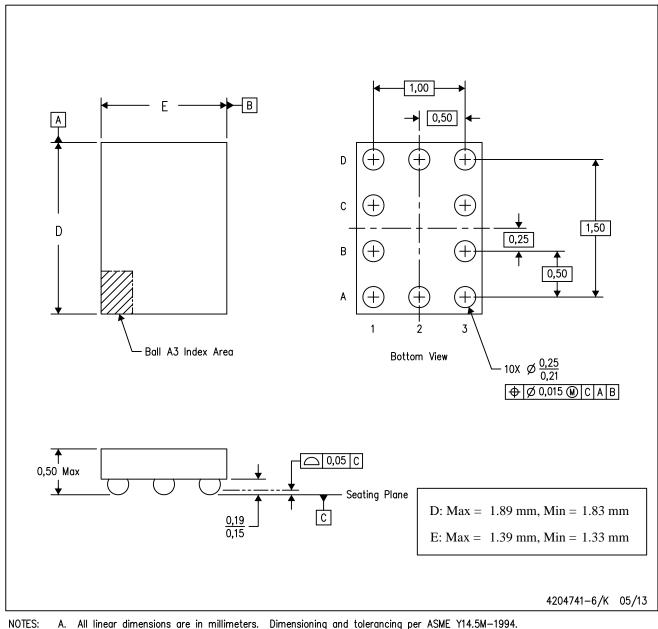
DRC (S-PVSON-N10)


PLASTIC SMALL OUTLINE NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.


The exposed thermal pad dimensions for this package are shown in the following illustration.

YZP (R-XBGA-N10)

(CUSTOM) DIE-SIZE BALL GRID ARRAY

All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. Α.

This drawing is subject to change without notice. Β.

C. NanoFree™ package configuration.

NanoFree is a trademark of Texas Instruments.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated