

TS5A23166

SCDS196H-MAY 2005-REVISED MAY 2015

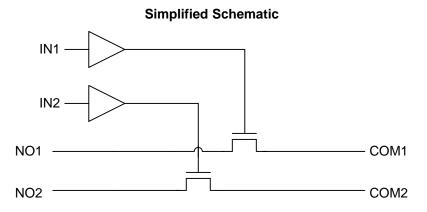
TS5A23166 0.9-Ω Dual-SPST Analog Switch 5-V and 3.3-V 2-Channel Analog Switch

Features 1

- Isolation in Powered-Down Mode, $V_{+} = 0$
- Low ON-State Resistance (0.9 Ω)
- Control Inputs are 5.5-V Tolerant
- Low Charge Injection
- Excellent ON-State Resistance Matching
- Low Total Harmonic Distortion (THD)
- 1.65-V to 5.5-V Single-Supply Operation
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
 - 2000-V Human-Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)

Applications 2

- **Cell Phones**
- Portable Instrumentation
- Audio and Video Signal Routing
- Low-Voltage Data-Acquisition Systems
- **Communication Circuits**
- Modems
- Hard Drives
- **Computer Peripherals**
- Wireless Terminals and Peripherals


3 Description

The TS5A23166 device is a dual single-pole singlethrow (SPST) analog switch that is designed to operate from 1.65 V to 5.5 V. The TS5A23166 device offers a low ON-state resistance and an excellent channel-to-channel ON-state resistance matching. The TS5A23166 device has excellent total harmonic distortion (THD) performance and consumes very low power. These features make this device suitable for portable audio applications.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
T05400466	VSSOP (8)	2.30 mm × 2.00 mm
TS5A23166	DSBGA (8)	1.91 mm × 0.91 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

STRUMENTS www.ti.com

EXAS

Table of Contents

1		ures 1									
2	Applications 1										
3	Description 1										
4	Revi	sion History 2									
5	Pin	Configuration and Functions 3									
6	Spe	cifications 3									
	6.1	Absolute Maximum Ratings 3									
	6.2	ESD Ratings 4									
	6.3	Recommended Operating Conditions 4									
	6.4	Thermal Information 4									
	6.5	Electrical Characteristics: 5-V Supply 4									
	6.6	Electrical Characteristics: 3.3-V Supply 6									
	6.7	Electrical Characteristics: 2.5-V Supply7									
	6.8	Electrical Characteristics: 1.8-V Supply									
	6.9	Switching Characteristics: 5-V Supply 10									
	6.10	Switching Characteristics: 3.3-V Supply 10									
	6.11	Switching Characteristics: 2.5-V Supply 11									
	6.12										
	6.13	Typical Characteristics 12									
7	Para	meter Measurement Information 14									

8	Deta	iled Description	18
	8.1	Overview	18
	8.2	Functional Block Diagram	18
	8.3	Feature Description	18
	8.4	Device Functional Modes	18
9	App	lication and Implementation	19
	9.1	Application Information	19
	9.2	Typical Application	19
10	Pow	ver Supply Recommendations	20
11	Lay	out	20
	11.1	Layout Guidelines	20
	11.2	Layout Example	20
12	Dev	ice and Documentation Support	21
	12.1		
	12.2	Community Resources	22
	12.3	Trademarks	22
	12.4	Electrostatic Discharge Caution	22
	12.5	Glossary	22
13	Mec	hanical, Packaging, and Orderable	
	Info	mation	22

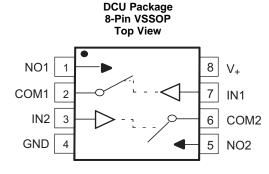
4 Revision History

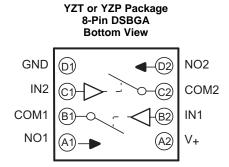
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision G (February 2013) to Revision H

Page
Page

Page


•	Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section
•	Updated document to new TI data sheet format - no specification changes 1
•	Removed Ordering Information table 1


Changes from Revision F (September 2012) to Revision G

Changed pin numbers for YZT or YZP package pinout.

5 Pin Configuration and Functions

Pin Functions

	PIN		TYPE	DESCRIPTION	
NAME	TSSOP NO.	DSBGA NO.	ITPE	DESCRIPTION	
COM1	2	B1	I/O	Common port for switch 1	
COM2	6	C2	I/O	Common port for switch 2	
GND	4	D1	GND	Ground	
IN1	7	B2	I	Active-high control pin connecting NO1 to COM1.	
IN2	3	C1	I	Active-high control pin connecting NO2 to COM2.	
NO1	1	A1	I/O	Normally open switch path 1	
NO2	5	D2	I/O	Normally open switch path 2	
V+	8	A2	PWR	Power supply pin	

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾⁽²⁾

			MIN	MAX	UNIT
V ₊	Supply voltage ⁽³⁾		-0.5	6.5	V
V _{NO} V _{COM}	Analog voltage ⁽³⁾⁽⁴⁾⁽⁵⁾		-0.5	V ₊ + 0.5	V
Ι _Κ	Analog port diode current	$V_{NO}, V_{COM} < 0$	-50		mA
I _{NO}	ON-state switch current	$V_{NO,} V_{COM} = 0$ to V_{+}	-200	200	mA
ICOM	ON-state peak switch current ⁽⁶⁾	$V_{NO,} V_{COM} = 0$ to V_{+}	-400	400	mA
VI	Digital input voltage ⁽³⁾⁽⁴⁾		-0.5	6.5	V
I _{IK}	Digital input clamp current	V ₁ < 0	-50		mA
l+	Continuous current through V ₊			100	mA
I _{GND}	Continuous current through GND		-100	100	mA

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.

(3) All voltages are with respect to ground, unless otherwise specified.

(4) The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

(5) This value is limited to 5.5 V maximum.

(6) Pulse at 1-ms duration < 10% duty cycle.

SCDS196H-MAY 2005-REVISED MAY 2015

www.ti.com

STRUMENTS

EXAS

6.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	+2000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 $^{(2)}$	+1000	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V _{I/O}	Input/output voltage	0	V+	V
V+	Supply voltage	1.65	5.5	V
VI	Control Input Voltage	0	5.5	V
T _A	Operating free-air temperature	-40	85	°C

6.4 Thermal Information

THERMAL METRIC ⁽¹⁾		TS5A23166				
		DCU (VSSOP)	YZP (DSBGA)	YZT (DSBGA)	UNIT	
		8 PINS	8 PINS	8 PINS		
R_{\thetaJA}	Junction-to-ambient thermal resistance	227	102	102	°C/W	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics: 5-V Supply

 $V_{+} = 4.5 \text{ V}$ to 5.5 V, $T_{A} = -40^{\circ}\text{C}$ to 85°C (unless otherwise noted)⁽¹⁾

P	ARAMETER	TEST CONDIT	TIONS	TA	۷.	MIN	TYP	MAX	UNIT		
Analog Switc	h										
V _{COM} , V _{NO}	Analog signal					0		V+	V		
r .	Peak ON resistance	$0 \leq V_{NO} \leq V_{+},$	Switch ON,	25°C	4.5 V		0.9	1.1	Ω		
r _{peak}		$I_{COM} = -100 \text{ mA},$	see Figure 11	Full	4.0 V			1.2	32		
r	ON-state resistance	V _{NO} = 2.5 V,	Switch ON,	25°C	4.5 V		0.75	0.9	Ω		
r _{on}	UN-State resistance	$I_{COM} = -100 \text{ mA},$	see Figure 11	Full	4.5 V			1	12		
	ON-state resistance	V _{NO} = 2.5 V,	Switch ON,	25°C			0.04	0.1	0.1 0.1 Ω		
∆r _{on}	match between channels	$I_{\rm COM} = -100 \text{ mA},$	see Figure 11	Full	4.5 V			0.1			
	ON-state resistance	$\begin{array}{l} 0 \leq V_{\rm NO} \leq V_{+}, \\ I_{\rm COM} = -100 \ {\rm mA}, \end{array}$	Switch ON, see Figure 11	25°C	4.5 V		0.2				
r _{on(flat)}	flatness	V _{NO} = 1 V, 1.5 V, 2.5 V,	Switch ON,	25°C		4.5 V	4.5 V	4.5 V		0.15	0.25
		$I_{COM} = -100 \text{ mA},$	see Figure 11	Full				0.25			
		$V_{NO} = 1 V,$		25°C		0 V	4	20			
I _{NO(OFF)}	NO OFF leakage current	$\label{eq:V_COM} \begin{array}{l} V_{COM} = 4.5 \ V, \\ \text{or} \\ V_{NO} = 4.5 \ V, \\ V_{COM} = 1 \ V, \end{array}$	Switch OFF, see Figure 12	Full	5.5 V	-150		150	nA		
l		$V_{NO} = 0$ to 5.5 V,	Switch OFF,	25°C	0 V	-10	0.2	10			
I _{NO(PWROFF)}		$V_{COM} = 5.5 V \text{ to } 0,$	see Figure 12	Full	0 V	-50		50	μA		

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.

Electrical Characteristics: 5-V Supply (continued)

$V_{+} = 4.5 \text{ V}$ to 5.5 V, $T_{A} = -4$	0°C to 85°C (unless	otherwise noted) ⁽¹⁾
--	---------------------	---------------------------------

P	ARAMETER	TEST CON	DITIONS	T _A	V.	MIN	TYP	MAX	UNIT
I _{COM(OFF)}	COM OFF leakage current		Switch OFF, see Figure 12	25°C Full	5.5 V	0 V -150	4	20 150	nA
I _{COM(PWROFF)}		$V_{COM} = 0 \text{ to } 5.5 \text{ V},$ $V_{NO} = 5.5 \text{ V to } 0,$	Switch OFF, see Figure 12	25°C Full	0 V	-10 -50	0.2	10 50	μA
I _{NO(ON)}	NO ON leakage current	$\label{eq:VNO} \begin{array}{l} V_{NO} = 1 \ V, \\ V_{COM} = Open, \\ or \\ V_{NO} = 4.5 \ V, \\ V_{COM} = Open, \end{array}$	Switch ON, see Figure 13	25°C Full	5.5 V	-5 -50	0.4	5 50	nA
		$V_{COM} = 1 V,$		25°C		-5	0.4	5	
I _{COM(ON)}	COM ON leakage current	$\label{eq:VNO} \begin{array}{l} V_{NO} = Open, \\ or \\ V_{COM} = 4.5 \ V, \\ V_{NO} = Open, \end{array}$	Switch ON, see Figure 13	Full	5.5 V	-50		50	nA
Digital Contro	ol Inputs (IN1, IN2) ⁽²⁾	T			1	1			
V _{IH}	Input logic high			Full		2.4		5.5	V
V _{IL}	Input logic low			Full		0		0.8	V
I _{IH} , I _{IL}	Input leakage current	V _I = 5.5 V or 0		25°C Full	5.5 V	-2 -20	0.3	2 20	nA
Dynamic		l				1			
Q _C	Charge injection	$V_{GEN} = 0,$ $R_{GEN} = 0,$	C _L = 1 nF, see Figure 19	25°C	5 V		6		рС
C _{NO(OFF)}	NO OFF capacitance	$V_{NO} = V_{+} \text{ or GND},$ Switch OFF,	See Figure 14	25°C	5 V		19		pF
C _{COM(OFF)}	COM OFF capacitance	$V_{COM} = V_+ \text{ or GND},$ Switch OFF,	See Figure 14	25°C	5 V		18		pF
C _{NO(ON)}	NO ON capacitance	$V_{NO} = V_+ \text{ or GND},$ Switch ON,	See Figure 14	25°C	5 V		35.5		pF
C _{COM(ON)}	COM ON capacitance	$V_{COM} = V_+ \text{ or GND},$ Switch ON,	See Figure 14	25°C	5 V		35.5		pF
CI	Digital input capacitance	$V_I = V_+ \text{ or } GND,$	See Figure 14	25°C	5 V		2		pF
BW	Bandwidth	$R_L = 50 \Omega$, Switch ON,	See Figure 16	25°C	5 V		150		MHz
O _{ISO}	OFF isolation	$R_L = 50 \Omega,$ f = 1 MHz,	Switch OFF, see Figure 17	25°C	5 V		-62		dB
X _{TALK}	Crosstalk	$R_L = 50 \Omega,$ f = 1 MHz,	Switch ON, see Figure 18	25°C	5 V		-85		dB
THD	Total harmonic distortion	$ \begin{aligned} R_{L} &= 600 \ \Omega, \\ C_{L} &= 50 \ pF, \end{aligned} $	f = 20 Hz to 20 kHz, see Figure 20	25°C	5 V		0.00 5%		

(2) All unused digital inputs of the device must be held at V₊ or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

Electrical Characteristics: 5-V Supply (continued)

 V_{+} = 4.5 V to 5.5 V, T_{A} = -40°C to 85°C (unless otherwise noted)⁽¹⁾

PARAMETER		TEST CON	IDITIONS	T _A V ₊ N		MIN	TYP	MAX	UNIT
Supply									
	Positive supply		Switch ON or	25°C	5.5 V		0.01	0.1	
1 ₊	+ $V_{l} = V_{+} \text{ or GND},$		OFF	Full				1	μA

6.6 Electrical Characteristics: 3.3-V Supply

 $V_{+} = 3 \text{ V}$ to 3.6 V, $T_{A} = -40^{\circ}\text{C}$ to 85°C (unless otherwise noted)⁽¹⁾

PA	ARAMETER	TEST COND	ITIONS	TA	V.	MIN	TYP	MAX	UNIT
Analog Switc	h								
V _{COM} , V _{NO}	Analog signal range					0		V+	V
r _{peak}	Peak ON resistance	$\begin{array}{l} 0 \leq V_{\rm NO} \leq V_{+}, \\ I_{\rm COM} = -100 \mbox{ mA}, \end{array}$	Switch ON, see Figure 11	25°C Full	3 V		1.3	1.6 1.8	Ω
r _{on}	ON-state resistance	$V_{NO} = 2 V,$ $I_{COM} = -100 \text{ mA},$	Switch ON, see Figure 11	25°C Full	- 3 V		1.1	1.5 1.7	Ω
Δr _{on}	ON-state resistance match between channels	V _{NO} = 2 V, 0.8 V, I _{COM} = -100 mA,	Switch ON, see Figure 11	25°C Full	3 V		0.04	0.1 0.1	Ω
	ON-state resistance	$0 \le V_{NO} \le V_+,$ $I_{COM} = -100 \text{ mA}$	Switch ON, see Figure 11	25°C	2.1/		0.3		Ω
r _{on(flat)}	flatness	$V_{NO} = 2 V, 0.8 V,$ $I_{COM} = -100 mA,$	Switch ON, see Figure 11	25°C Full	3 V		0.15	0.25 0.25	Ω
I _{NO(OFF)}	NO	$V_{NO} = 1 V, V_{COM} = 3 V,$ or $V_{NO} = 3 V, V_{COM} = 1 V,$	Switch OFF, see Figure 12	25°C Full	3.6 V	-5 -50	0.5	5 50	nA
I _{NO(PWROFF)}	OFF leakage current	$V_{NO} = 0 \text{ to } 3.6 \text{ V},$ $V_{COM} = 3.6 \text{ V to } 0,$	Switch OFF, see Figure 12	25°C Full	0 V	-5 -25	0.1	5 25	μA
I _{COM(OFF)}	СОМ	$V_{COM} = 1 V, V_{NO} = 3 V,$ or $V_{V} = 2 V V_{V} = 1 V$	Switch OFF, see Figure 12	25°C Full	3.6 V	-5 -50	0.5	5 50	nA
I _{COM(PWROFF)}	OFF leakage current	$V_{COM} = 3 V, V_{NO} = 1 V,$ $V_{COM} = 0 \text{ to } 3.6 V,$ $V_{NO} = 3.6 V \text{ to } 0,$	Switch OFF, see Figure 12	25°C Full	0 V	_5 _25	0.1	5 25	μA
		$V_{NO} = 1 V,$	0	25°C		-2	0.3	20	
I _{NO(ON)}	NO ON leakage current	$V_{COM} = Open,$ or $V_{NO} = 3 V,$ $V_{COM} = Open,$	Switch ON, see Figure 13	Full	3.6 V	-20		20	nA
		$V_{COM} = 1 V,$		25°C		-2	0.3	2	
I _{COM(ON)}	COM ON leakage current	V_{NO} = Open, or V_{COM} = 3 V, V_{NO} = Open,	Switch ON, see Figure 13	Full	3.6 V	-20		20	nA
Digital Contro	ol Inputs (IN1, IN2) ⁽²⁾								
V _{IH}	Input logic high			Full		2		5.5	V
V _{IL}	Input logic low			Full		0		0.8	V
I _{IH} , I _{IL}	Input leakage current	V _I = 5.5 V or 0		25°C Full	3.6 V	-2 -20	0.3	2 20	nA

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.

(2) All unused digital inputs of the device must be held at V₊ or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

Electrical Characteristics: 3.3-V Supply (continued)

 V_{\star} = 3 V to 3.6 V, T_{A} = –40°C to 85°C (unless otherwise noted)^{(1)}

F	PARAMETER	TEST CON	NDITIONS	T _A	V.	MIN TYP	MAX	UNIT
Dynamic		L.						
Q _C	Charge injection	$V_{GEN} = 0,$ $R_{GEN} = 0,$	C _L = 1 nF, see Figure 19	25°C	5 V	6		рС
$C_{\text{NO(OFF)}}$	NO OFF capacitance	$V_{NO} = V_{+}$ or GND, Switch OFF,	See Figure 14	25°C	3.3 V	19.5		pF
C _{COM(OFF)}	COM OFF capacitance	$V_{COM} = V_+ \text{ or GND},$ Switch OFF,	See Figure 14	25°C	3.3 V	18.5		pF
C _{NO(ON)}	NO ON capacitance	$V_{NO} = V_{+}$ or GND, Switch ON,	See Figure 14	25°C	3.3 V	36		pF
C _{COM(ON)}	COM ON capacitance	$V_{COM} = V_+ \text{ or GND},$ Switch ON,	See Figure 14	25°C	3.3 V	36		pF
CI	Digital input capacitance	$V_I = V_+$ or GND,	See Figure 14	25°C	3.3 V	2		pF
BW	Bandwidth	$R_L = 50 \Omega$, Switch ON,	See Figure 16	25°C	3.3 V	150		MHz
O _{ISO}	OFF isolation	$R_{L} = 50 \ \Omega,$ f = 1 MHz,	Switch OFF, see Figure 17	25°C	3.3 V	-62		dB
X _{TALK}	Crosstalk	$R_{L} = 50 \ \Omega,$ f = 1 MHz,	Switch ON, see Figure 18	25°C	3.3 V	-85		dB
THD	Total harmonic distortion	$ \begin{aligned} R_{L} &= 600 \ \Omega, \\ C_{L} &= 50 \ pF, \end{aligned} $	f = 20 Hz to 20 kHz, see Figure 20	25°C	3.3 V	0.01 %		
Supply								
l_	Positive supply current	$V_1 = V_+ \text{ or GND},$	Switch ON or OFF	25°C	3.6 V	0.00	0.05	μA
	Cuilent		UFF	Full			0.3	

6.7 Electrical Characteristics: 2.5-V Supply

 V_{\star} = 2.3 V to 2.7 V, T_{A} = –40°C to 85°C (unless otherwise noted)^{(1)}

PAR	AMETER	TEST CON	DITIONS	T _A	V.	MIN	TYP	MAX	UNIT
Analog Swite	:h								
V _{COM} , V _{NO}	Analog signal range					0		V+	V
	Peak ON	$0 \le V_{NO} \le V_+,$	Switch ON,	25°C	2.2.1/		1.8	2.4	Ω
r _{peak}	resistance	$I_{COM} = -8 \text{ mA},$	see Figure 11	Full	2.3 V			2.6	Ω
-	ON-state	V _{NO} = 1.8 V,	Switch ON,	25°C	2.3 V		1.2	2.1	Ω
r _{on}	resistance	$I_{COM} = -8 \text{ mA},$	see Figure 11	Full	2.3 V			2.4	Ω
	ON-state			25°C			0.04	0.15	
Δr _{on}	resistance match between channels	V _{NO} = 1.8 V, 0.8 V, I _{COM} = -8 mA,	Switch ON, see Figure 11	Full	2.3 V			0.15	Ω
	ON-state	$0 \le V_{NO} \le V_+,$ $I_{COM} = -8 \text{ mA},$	Switch ON, see Figure 11	25°C			0.7		_
r _{on(flat)}	resistance flatness	V _{NO} = 1.8 V, 0.8 V,	Switch ON,	25°C	2.3 V		0.4	0.6	Ω
	hailoob	$I_{COM} = -8 \text{ mA},$	see Figure 11	Full				0.6	

Electrical Characteristics: 2.5-V Supply (continued)

PAR	AMETER	TEST CON	NDITIONS	TA	V ₊	MIN	TYP	MAX	UNIT
		V _{NO} = 0.5 V,		25°C		-5	0.3	5	
I _{NO(OFF)}	NO OFF leakage current	$V_{COM} = 2.3 \text{ V},$ or $V_{NO} = 2.3 \text{ V},$ $V_{COM} = 0.5 \text{ V},$	Switch OFF, see Figure 12	Full	2.7 V	-50		50	nA
1		$V_{NO} = 0$ to 2.7 V,	Switch OFF,	25°C	0 V	-2	0.05	2	
NO(PWROFF)		$V_{COM} = 2.7 V \text{ to } 0,$	see Figure 12	Full	0 0	-15		15	μA
		$V_{NO} = 2.3 V,$		25°C	-	-5	0.3	5	
ICOM(OFF)	COM OFF leakage current	$\label{eq:V_COM} \begin{split} V_{COM} &= 0.5 \ V, \\ or \\ V_{NO} &= 0.5 \ V, \\ V_{COM} &= 2.3 \ V, \end{split}$	Switch OFF, see Figure 12	Full	2.7 V	-50		50	nA
		$V_{COM} = 0$ to 2.7 V,	Switch OFF,	25°C	0 V	-2	0.05	2	μA
COM(PWROFF)		$V_{NO} = 2.7 V \text{ to } 0,$	see Figure 12	Full	0.0	-15		15	μΛ
	NO	$V_{NO} = 0.5 V,$		25°C	-	-2	0.3	2	
I _{NO(ON)}	NO ON leakage current	$\label{eq:com} \begin{array}{l} V_{COM} = Open, \\ or \\ V_{NO} = 2.3 \ V, \\ V_{COM} = Open, \end{array}$	Switch ON, see Figure 13	Full	2.7 V	-20		20	nA
		V _{COM} = 0.5 V,		25°C		-2	0.3	2	
I _{COM(ON)}	COM ON leakage current	$V_{NO} = Open,$ or $V_{COM} = 2.3 V,$ $V_{NO} = Open,$	Switch ON, see Figure 13	Full	2.7 V	-20		20	nA
Digital Contro	ol Inputs (IN1, IN2	2)		1					
V _{IH}	Input logic high			Full		1.8		5.5	V
V _{IL}	Input logic low			Full		0		0.6	V
I _{IH} , I _{IL}	Input leakage	V _I = 5.5 V or 0		25°C	2.7 V	-2	0.3	2	nA
ıH, ıL	current	vi = 3.5 v 6i 0		Full	2.1 V	-20		20	
Dynamic		Т		I	1			1	
Q _C	Charge injection	$V_{GEN} = 0,$ $R_{GEN} = 0,$	C _L = 1 nF, see Figure 19	25°C	2.5 V		4		рС
C _{NO(OFF)}	NO OFF capacitance	$V_{NO} = V_{+}$ or GND, Switch OFF,	See Figure 14	25°C	2.5 V		19.5		pF
C _{COM(OFF)}	COM OFF capacitance	$V_{COM} = V_{+}$ or GND, Switch OFF,	See Figure 14	25°C	2.5 V		18.5		pF
C _{NO(ON)}	NO ON capacitance	$V_{NO} = V_{+}$ or GND, Switch ON,	See Figure 14	25°C	2.5 V		36.5		pF
C _{COM(ON)}	COM ON capacitance	$V_{COM} = V_+ \text{ or GND},$ Switch ON,	See Figure 14	25°C	2.5 V		36.5		pF
Cı	Digital input capacitance	$V_I = V_+ \text{ or GND},$	See Figure 14	25°C	2.5 V		2		pF
BW	Bandwidth	$R_L = 50 \Omega$, Switch ON,	See Figure 16	25°C	2.5 V		150		MHz
O _{ISO}	OFF isolation	$\begin{array}{l} R_{L} = 50 \ \Omega, \\ f = 1 \ MHz, \end{array}$	Switch OFF, see Figure 17	25°C	2.5 V		-62		dB
X _{TALK}	Crosstalk	$\begin{array}{l} R_L = 50 \ \Omega, \\ f = 1 \ MHz, \end{array}$	Switch ON, see Figure 18	25°C	2.5 V		-85		dB
THD	Total harmonic distortion	$R_L = 600 \ \Omega,$ $C_L = 50 \ pF,$	f = 20 Hz to 20 kHz, see Figure 20	25°C	2.5 V		0.02%		

8 Submit Documentation Feedback

Supply

Copyright © 2005–2015, Texas Instruments Incorporated

Electrical Characteristics: 2.5-V Supply (continued)

 V_{\star} = 2.3 V to 2.7 V, T_{A} = –40°C to 85°C (unless otherwise noted)^{(1)}

	PARAMETER	TEST CO	ONDITIONS	T _A	٧.	MIN	TYP	MAX	UNIT
	Positive supply	$V_1 = V_{\perp}$ or GND.	Switch ON or	25°C	071/		0.001	0.02	
'+	current	$v_{l} = v_{+}$ or GND,	OFF	Full	2.7 V			0.25	μA

6.8 Electrical Characteristics: 1.8-V Supply

 V_{\star} = 1.65 V to 1.95 V, T_{A} = –40°C to 85°C (unless otherwise noted) $^{(1)}$

PARA	METER	TEST CON	DITIONS	T _A	V ₊	MIN	TYP	MAX	UNIT
Analog Switc	h								
V _{COM} , V _{NO}	Analog signal range					0		V+	V
r _{peak}	Peak ON resistance	$\begin{array}{l} 0 \leq V_{\rm NO} \ \leq V_{+}, \\ I_{\rm COM} = -2 \ {\rm mA}, \end{array}$	Switch ON, see Figure 11	25°C Full	1.65 V		4.2	25 30	Ω
r _{on}	ON-state resistance	V _{NO} = 0.6 V, 1.5 V, I _{COM} = –2 mA,	Switch ON, see Figure 11	25°C Full	1.65 V		1.6	3.9 4	Ω
	ON-state		0	25°C			0.04	0.2	
∆r _{on}	resistance match between channels	V_{NO} = 1.5 V, I _{COM} = -2 mA,	Switch ON, see Figure 11	Full	1.65 V			0.2	Ω
	ON-state	$0 \le V_{NO} \le V_+,$ $I_{COM} = -2 \text{ mA},$	Switch ON, see Figure 11	25°C	1.65 V		2.8		_
r _{on(flat)}	resistance flatness	V _{NO} = 0.6 V, 1.5 V,	Switch ON,	25°C			4.1	22	Ω
		$I_{COM} = -2 \text{ mA},$	see Figure 11	Full				27	
		$V_{NO} = 0.3 V,$		25°C		-5	0.3	5	
I _{NO(OFF)}	NO OFF leakage current	$V_{COM} = 1.65 V,$ or $V_{NO} = 1.65 V,$ $V_{COM} = 0.3 V,$	Switch OFF, see Figure 12	Full	1.95 V	-50		50	nA
l	ourroint	V _{NO} = 0 to 1.95 V,	Switch OFF,	25°C	0 V	-2	0.05	2	μA
NO(PWROFF)		$V_{COM} = 1.95 V \text{ to } 0,$	see Figure 12	Full	0 V	-10		10	μΛ
		$V_{NO} = 1.65 V,$ $V_{COM} = 0.3 V,$		25°C		-5	0.3	5	
I _{COM(OFF)}	COM OFF leakage	$v_{COM} = 0.3 V,$ or $V_{NO} = 0.3 V,$ $V_{COM} = 1.65 V,$	Switch OFF, see Figure 12	Full	1.95 V	-50		50	nA
1		$V_{COM} = 0$ to 1.95 V,	Switch OFF,	25°C	0 V	-2	0.05	2	μA
COM(PWROFF)		$V_{NO} = 1.95 V \text{ to } 0,$	see Figure 12	Full	0 V	-10		10	μΑ
	NO	$V_{NO} = 0.3 V$,		25°C		-2	0.3	2	
I _{NO(ON)}	NO ON leakage current	$V_{COM} = Open,$ or $V_{NO} = 1.65 V,$ $V_{COM} = Open,$	Switch ON, see Figure 13	Full	1.95 V	-20		20	nA
		V _{NO} = Open,		25°C		-2	0.3	2	
I _{COM(ON)}	COM ON leakage current	$\label{eq:VCOM} \begin{array}{l} V_{COM} = 0.3 \ \text{V}, \\ \text{or} \\ V_{NO} = \text{Open}, \\ V_{COM} = 1.65 \ \text{V}, \end{array}$	Switch ON, see Figure 13	Full	1.95 V	-20		20	nA
Digital Contro	ol Inputs (IN1, IN			- i					
V _{IH}	Input logic high			Full		1.5		5.5	V
V _{IL}	Input logic low			Full		0		0.6	V
I _{IH} , I _{IL}	Input leakage current	$V_{I} = 5.5 V \text{ or } 0$		25°C Full	1.95 V	-2 -20	0.3	2 20	μΑ
Dynamic		1						_3	

Electrical Characteristics: 1.8-V Supply (continued)

PAR	RAMETER	TEST CON	NDITIONS	TA	V.	MIN TYP	MAX	UNIT
Q _C	Charge injection	$V_{GEN} = 0,$ $R_{GEN} = 0,$	C _L = 1 nF, see Figure 19	25°C	1.8 V	2		рС
C _{NO(OFF)}	NO OFF capacitance	V _{NO} = V ₊ or GND, Switch OFF,	See Figure 14	25°C	1.8 V	19.5		pF
C _{COM(OFF)}	COM OFF capacitance	$V_{COM} = V_+ \text{ or GND},$ Switch OFF,	See Figure 14	25°C	1.8 V	18.5		pF
C _{NO(ON)}	NO ON capacitance	V _{NO} = V ₊ or GND, Switch ON,	See Figure 14	25°C	1.8 V	36.5		pF
C _{COM(ON)}	COM ON capacitance	$V_{COM} = V_+ \text{ or GND},$ Switch ON,	See Figure 14	25°C	1.8 V	36.5		pF
CI	Digital input capacitance	$V_I = V_+ \text{ or GND},$	See Figure 14	25°C	1.8 V	2		pF
BW	Bandwidth	$R_L = 50 \Omega$, Switch ON,	See Figure 16	25°C	1.8 V	150		MHz
O _{ISO}	OFF isolation	$R_L = 50 \Omega,$ f = 1 MHz,	Switch OFF, see Figure 17	25°C	1.8 V	-62		dB
THD	Total harmonic distortion	$ \begin{aligned} R_{L} &= 600 \ \Omega, \\ C_{L} &= 50 \ pF, \end{aligned} $	f = 20 Hz to 20 kHz, see Figure 20	25°C	1.8 V	0.055 %		
Supply								
	Positive supply		Switch ON or	25°C	1 OF \/	0.001	0.01	
I ₊	current	$V_1 = V_+ \text{ or } GND,$	OFF	Full	1.95 V		0.15	μA

V_{+} = 1.65 V to 1.95 V, T_{A} = –40°C to 85°C (unless otherwise noted)^{(1)}

6.9 Switching Characteristics: 5-V Supply

 $V_{+} = 4.5$ V to 5.5 V, $T_{A} = -40^{\circ}$ C to 85°C (unless otherwise noted)⁽¹⁾

• + -	$1.0 \ 1.0 \ 0.0 \ 0.1 \ 1_{\rm A} = 1.0 \ 0.1 \ $				-				
	PARAMETER	TEST C	CONDITIONS	T _A	V.	MIN	TYP	MAX	UNIT
Dyna	Dynamic								
	Turnon time	$V_{COM} = V_+,$	C _I = 35 pF,	25°C	5 V	1	4.5	7.5	
t _{ON}	rumon time	$R_L = 50 \Omega$,	see Figure 15	Full	4.5 V to 5.5 V	1		9	ns
	Turnoff time	$V_{COM} = V_+,$	C _L = 35 pF,	25°C	5 V	4.5	8	11	
t _{OFF}		$R_L = 50 \Omega$,	see Figure 15	Full	4.5 V to 5.5 V	3.5		13	ns

(1) The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.

6.10 Switching Characteristics: 3.3-V Supply

 $V_{+} = 3 V$ to 3.6 V, $T_{A} = -40^{\circ}C$ to 85°C (unless otherwise noted)⁽¹⁾

	PARAMETER	TEST (TEST CONDITIONS		V.	MIN	TYP	MAX	UNIT
Dynai	mic								
			0 25 - 5	25°C	3.3 V	1.5	5	9.5	
t _{ON}	Turnon time	$ \begin{array}{c} \text{ime} \ \ V_{\text{COM}} = V_+, \qquad \ \ C_L = 35 \text{ pF} \\ R_L = 50 \ \Omega, \qquad \qquad \text{see Figure} \end{array} $	C _L = 35 pF, see Figure 15	Full	3 V to 3.6 V	1		10	ns
		V – V	C = 25 pF	25°C	3.3 V	4.5	8.5	11	
t _{OFF}	Turnoff time		$C_L = 35 \text{ pr},$ see Figure 15	Full	3 V to 3.6 V	3		12.5	ns

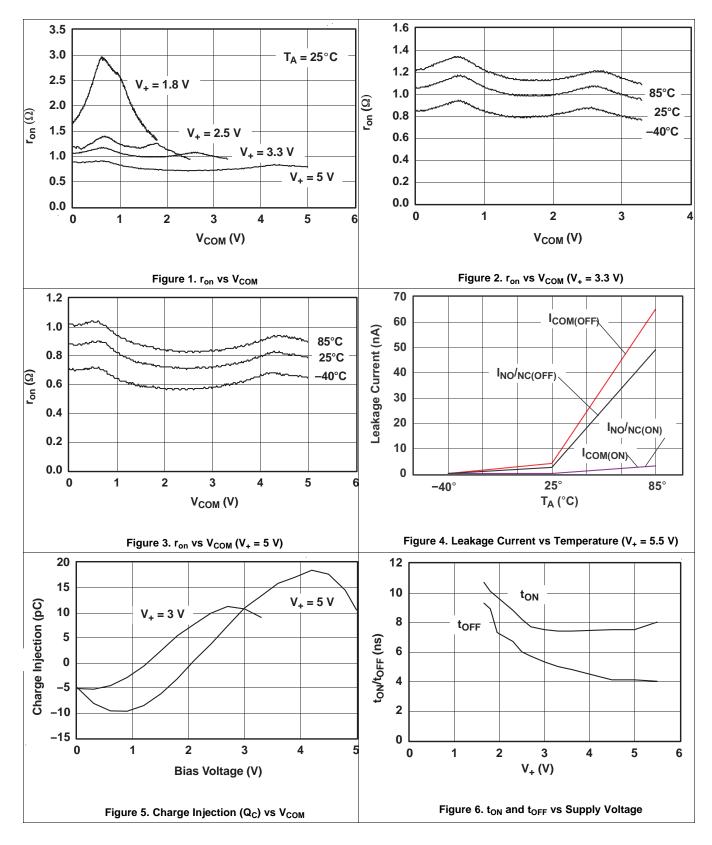
6.11 Switching Characteristics: 2.5-V Supply

$v_{+} = 2.5 v_{10} 2.7 v_{11} v_{14} = -40 0 10 00 0 (ulliess otherwise noted)$										
	PARAMETER TEST CONDITIONS				V.	MIN	TYP	MAX	UNIT	
Dynai	mic									
t _{ON}	Turnon time		C _L = 35 pF, see Figure 15	25°C	2.5 V	2	6	10		
		$V_{COM} = V_+, \\ R_L = 50 \ \Omega,$		Full	2.3 V to 2.7 V	1		12	ns	
t _{OFF}			C _L = 35 pF, see Figure 15	25°C	2.5 V	4.5	8	12.5		
	Turnoff time	$V_{COM} = V_+, \\ R_L = 50 \ \Omega,$		Full	2.3 V to 2.7 V	3		15	ns	

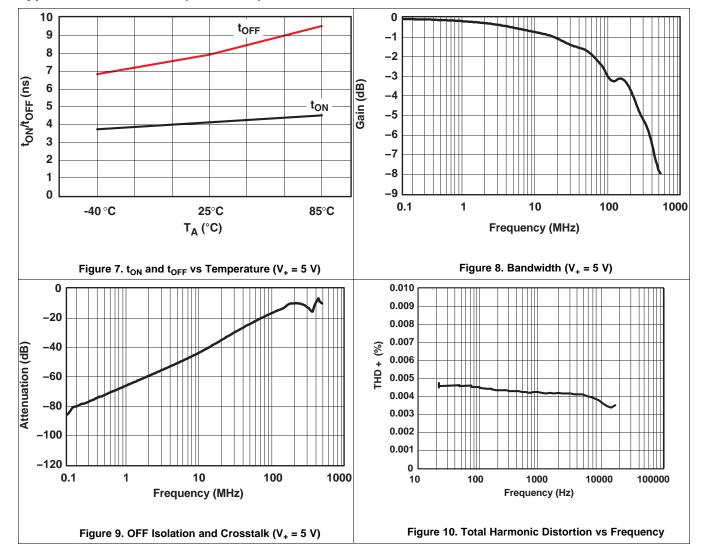
(1) The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.

6.12 Switching Characteristics: 1.8-V Supply

 V_{\star} = 1.65 V to 1.95 V, T_{A} = –40°C to 85°C (unless otherwise noted) $^{(1)}$


	PARAMETER	TEST CONDITIONS		T _A	V.	MIN	TYP	MAX	UNIT
Dynar	mic								
t _{ON} Turnon time			0 05 - 5	25°C	1.8 V	3	9	18	
	Turnon time		C _L = 35 pF, see Figure 15	Full	1.65 V to 1.95 V	1		20	ns
		V – V	C _ 25 pF	25°C	1.8 V	5	10	15.5	
t _{OFF}	Turnoff time	$V_{COM} = V_+,$ $R_L = 50 \Omega,$	$C_L = 35 \text{ pF},$ see Figure 15	Full	1.65 V to 1.95 V	4		18.5	ns

TS5A23166 SCDS196H – MAY 2005 – REVISED MAY 2015


www.ti.com

6.13 Typical Characteristics

Typical Characteristics (continued)

7 Parameter Measurement Information

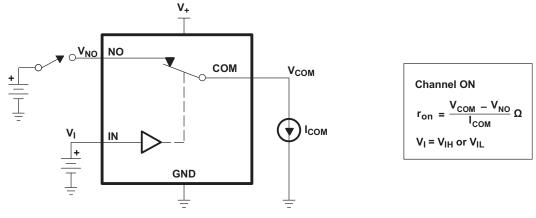


Figure 11. ON-State Resistance (ron)

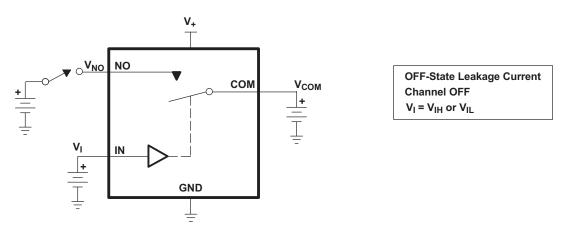
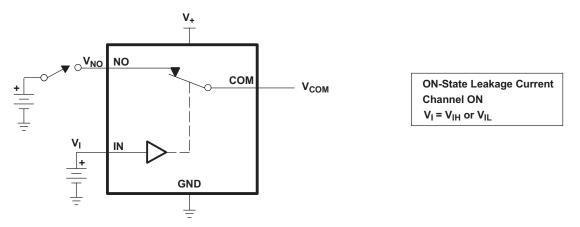
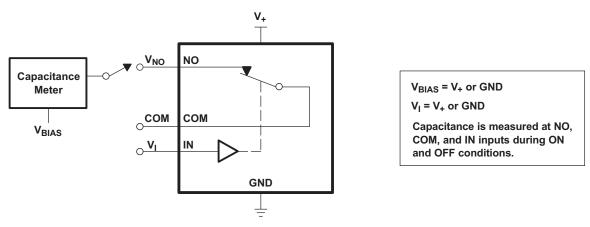
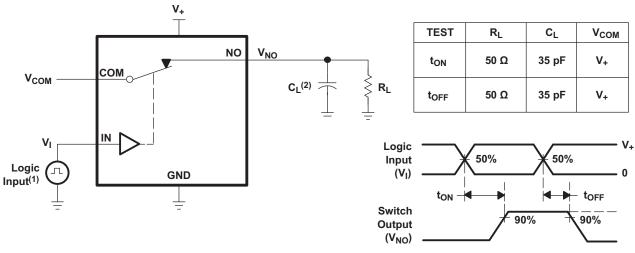
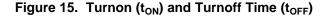
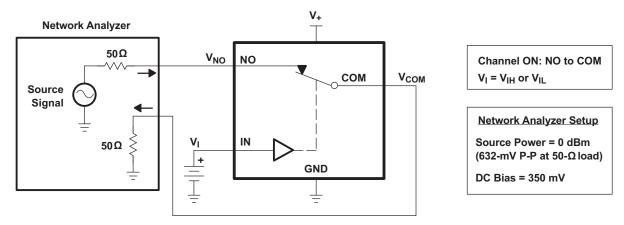


Figure 12. OFF-State Leakage Current (I_{COM(OFF)}, I_{NC(OFF)}, I_{COM(PWROFF)}, I_{NC(PWR(FF)})


Figure 13. ON-State Leakage Current (I_{COM(ON)}, I_{NC(ON)})





(1) All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_0 = 50 Ω , t_r < 5 ns, t_f < 5 ns.

(2) C_L includes probe and jig capacitance.

TEXAS INSTRUMENTS

www.ti.com

Parameter Measurement Information (continued)

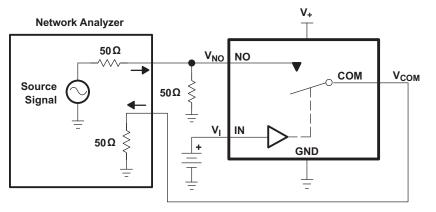
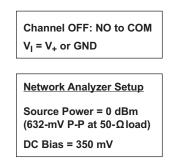
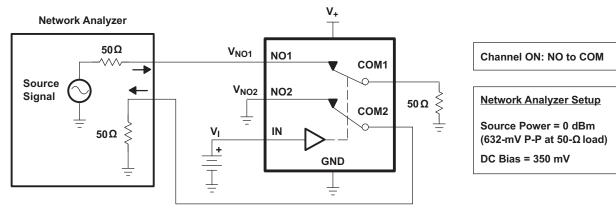
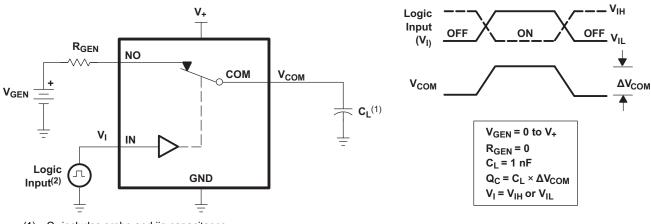
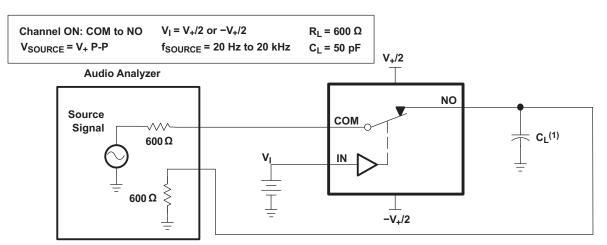





Figure 17. OFF Isolation (O_{ISO})



(1) C_L includes probe and jig capacitance.

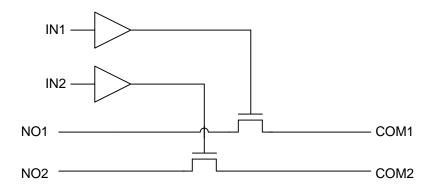
(2) All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_0 = 50 Ω , t_r < 5 ns, t_f < 5 ns.

Figure 19. Charge Injection (Q_c)

Parameter Measurement Information (continued)

(1) C_L includes probe and jig capacitance.

Figure 20. Total Harmonic Distortion (THD)



8 Detailed Description

8.1 Overview

The TS5A23166 is a dual single-pole single-throw (SPST) analog switch that is designed to operate from 1.65 V to 5.5 V. The device offers a low ON-state resistance. The device has excellent total harmonic distortion (THD) performance and consumes very low power. These features make this device suitable for portable audio applications. Table 2 shows the descriptions of each parameter specified in the datasheet.

8.2 Functional Block Diagram

8.3 Feature Description

Tolerant control inputs allow 5-V logic levels to be present on the IN pin at any value of V_{CC}. Low ON-resistance allows minimal signal distortion through device.

8.4 Device Functional Modes

Table 1 shows the functional modes for TS5A23166.

IN	NO TO COM, COM TO NO
L	OFF
Н	ON

Table 1. Function Table

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The TS5A23166 dual SPST analog switch is a basic component that could be used in any electrical system design. One example application is a gain selector, which is described in the *Typical Application* section.

9.2 Typical Application

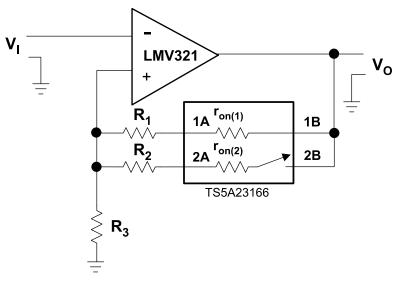


Figure 21. Gain-Control Circuit for OP Amplifier

9.2.1 Design Requirements

By selecting values of R1 and R2, such that $Rx >> r_{on(x)}$, r_{on} of TS5A23166 can be ignored. The gain of op amp can be calculated as follow:

Vo / VI = 1+ R / R3	(1)
$R = (R1+r_{on(1)}) (R2+r_{on(2)})$	(2)

9.2.2 Detailed Design Procedure

Place a switch in series with the input of the op amp. Because the op amp input impedance is very large, a switch on $r_{on(1)}$ is irrelevant.

Typical Application (continued)

9.2.3 Application Curve

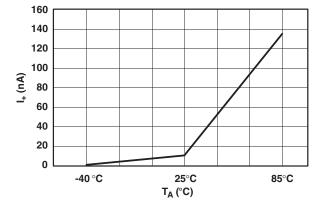
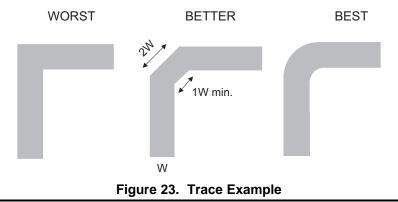


Figure 22. Power-Supply Current vs Temperature ($V_{+} = 5 V$)

10 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the *Recommended Operating Conditions*.


Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, a 0.1- μ F bypass capacitor is recommended. If there are multiple pins labeled V_{CC}, then a 0.01- μ F or 0.022- μ F capacitor is recommended for each V_{CC} because the VCC pins will be tied together internally. For devices with dual supply pins operating at different voltages, for example V_{CC} and V_{DD}, a 0.1- μ F bypass capacitor is recommended for each supply pin. It is acceptable to parallel multiple bypass capacitors to reject different frequencies of noise. 0.1- μ F and 1- μ F capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible for best results.

11 Layout

11.1 Layout Guidelines

Reflections and matching are closely related to loop antenna theory, but different enough to warrant their own discussion. When a PCB trace turns a corner at a 90° angle, a reflection can occur. This is primarily due to the change of width of the trace. At the apex of the turn, the trace width is increased to 1.414 times its width. This upsets the transmission line characteristics, especially the distributed capacitance and self–inductance of the trace — resulting in the reflection. It is a given that not all PCB traces can be straight, and so they will have to turn corners. Figure 23 shows progressively better techniques of rounding corners. Only the last example maintains constant trace width and minimizes reflections.

11.2 Layout Example

12 Device and Documentation Support

12.1 Device Support

12.1.1 Device Nomenclature

SYMBOL	DESCRIPTION
V _{COM}	Voltage at COM
V _{NO}	Voltage at NO
r _{on}	Resistance between COM and NO ports when the channel is ON
r _{peak}	Peak on-state resistance over a specified voltage range
r _{on(flat)}	Difference between the maximum and minimum value of ron in a channel over the specified range of conditions
I _{NO(OFF)}	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF-state under worst-case input and output conditions
I _{NO(PWROFF)}	Leakage current measured at the NO port during the power-down condition, $V_{+} = 0$
I _{COM(OFF)}	Leakage current measured at the COM port, with the corresponding channel (COM to NO) in the OFF-state under worst- case input and output conditions
ICOM(PWROFF)	Leakage current measured at the COM port during the power-down condition, $V_{+} = 0$
I _{NO(ON)}	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the ON-state and the output (COM) open
I _{COM(ON)}	Leakage current measured at the COM port, with the corresponding channel (COM to NO) in the ON-state and the output (NO) open
V _{IH}	Minimum input voltage for logic high for the control input (IN)
V _{IL}	Maximum input voltage for logic low for the control input (IN)
VI	Voltage at the control input (IN)
I _{IH} , I _{IL}	Leakage current measured at the control input (IN)
t _{ON}	Turnon time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM or NO) signal when the switch is turning ON.
t _{OFF}	Turnoff time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM or NO) signal when the switch is turning OFF.
Q _C	Charge injection is a measurement of unwanted signal coupling from the control (IN) input to the analog (NO or COM) output. This is measured in coulomb (C) and measured by the total charge induced due to switching of the control input. Charge injection, $Q_C = C_L \times \Delta V_{COM}$, C_L is the load capacitance, and ΔV_{COM} is the change in analog output voltage.
C _{NO(OFF)}	Capacitance at the NO port when the corresponding channel (NO to COM) is OFF
C _{COM(OFF)}	Capacitance at the COM port when the corresponding channel (COM to NO) is OFF
C _{NO(ON)}	Capacitance at the NO port when the corresponding channel (NO to COM) is ON
C _{COM(ON)}	Capacitance at the COM port when the corresponding channel (COM to NO) is ON
CI	Capacitance of control input (IN)
O _{ISO}	OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in dB in a specific frequency, with the corresponding channel (NO to COM) in the OFF state.
BW	Bandwidth of the switch. This is the frequency in which the gain of an ON channel is -3 dB below the DC gain.
THD	Total harmonic distortion describes the signal distortion caused by the analog switch. This is defined as the ratio of root mean square (RMS) value of the second, third, and higher harmonic to the absolute magnitude of the fundamental harmonic.
l+	Static power-supply current with the control (IN) pin at V+ or GND

12.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.3 Trademarks

E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

12.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TS5A23166DCUR	ACTIVE	VSSOP	DCU	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	-40 to 85	(AM ~ JAMQ ~ JAMR) JZ	Samples
TS5A23166DCURE4	ACTIVE	VSSOP	DCU	8		TBD	Call TI	Call TI	-40 to 85		Samples
TS5A23166DCURG4	ACTIVE	VSSOP	DCU	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	JAMR	Samples
TS5A23166YZPR	ACTIVE	DSBGA	YZP	8	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	(JM7 ~ JMN)	Samples
TS5A23166YZTR	ACTIVE	DSBGA	YZT	8	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	(JM2 ~ JM7 ~ JMN)	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

25-Oct-2016

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

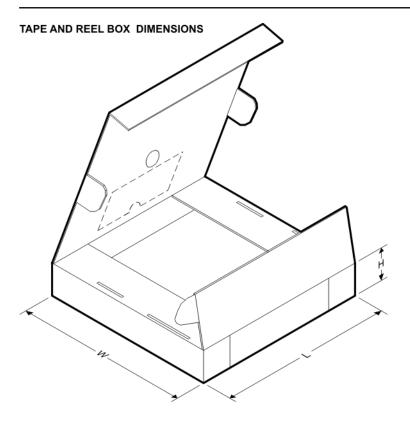
PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

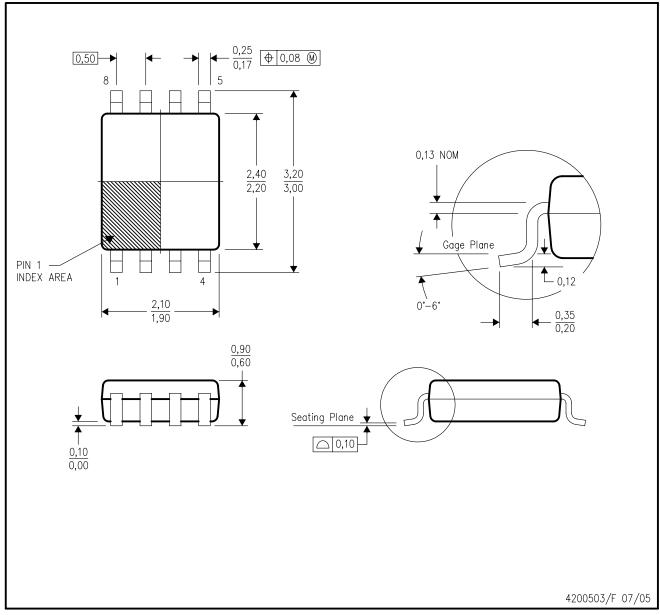

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TS5A23166DCUR	VSSOP	DCU	8	3000	180.0	9.0	2.05	3.3	1.0	4.0	8.0	Q3
TS5A23166DCURG4	VSSOP	DCU	8	3000	180.0	8.4	2.25	3.35	1.05	4.0	8.0	Q3
TS5A23166YZPR	DSBGA	YZP	8	3000	178.0	9.2	1.02	2.02	0.63	4.0	8.0	Q1
TS5A23166YZTR	DSBGA	YZT	8	3000	178.0	9.2	1.02	2.02	0.75	4.0	8.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

19-Aug-2015

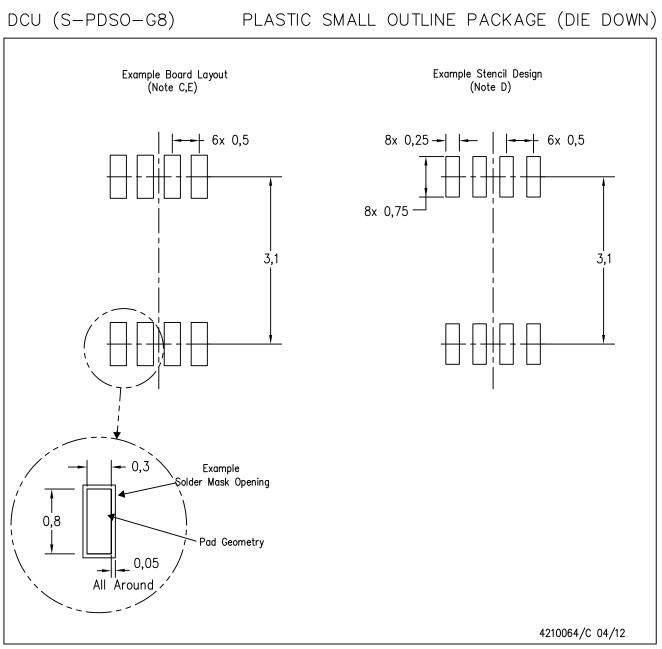


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TS5A23166DCUR	VSSOP	DCU	8	3000	182.0	182.0	20.0
TS5A23166DCURG4	VSSOP	DCU	8	3000	202.0	201.0	28.0
TS5A23166YZPR	DSBGA	YZP	8	3000	220.0	220.0	35.0
TS5A23166YZTR	DSBGA	YZT	8	3000	220.0	220.0	35.0

DCU (R-PDSO-G8)

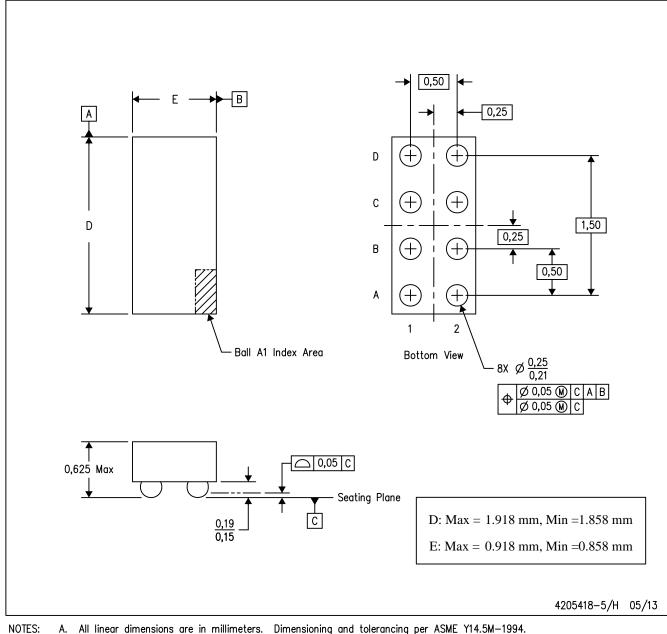
PLASTIC SMALL-OUTLINE PACKAGE (DIE DOWN)


NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.

D. Falls within JEDEC MO-187 variation CA.

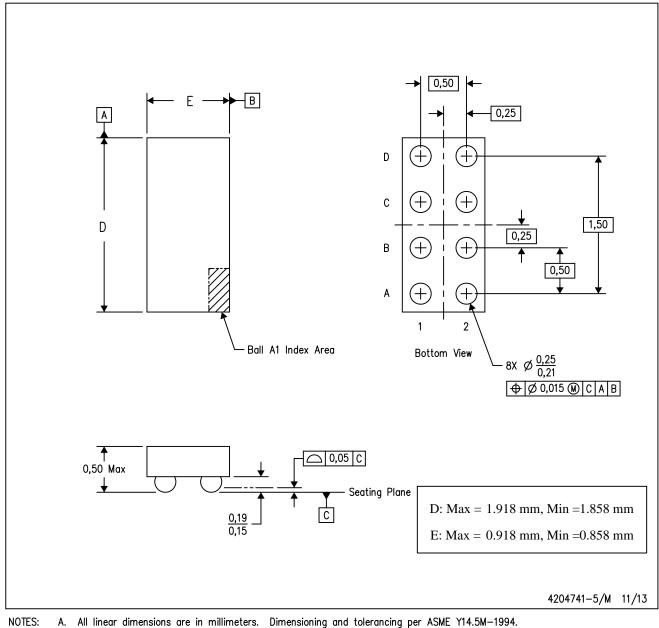


- NOTES: A. All linear dimensions are in millimeters. В. This drawing is subject to change without notice.
 - C. Publication IPC-7351 is recommended for alternate designs.
 - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

YZT (R-XBGA-N8)

DIE-SIZE BALL GRID ARRAY

B. This drawing is subject to change without notice.


C. NanoFree™ package configuration.

NanoFree is a trademark of Texas Instruments.

YZP (R-XBGA-N8)

DIE-SIZE BALL GRID ARRAY

- A. All linear dimensions are in millimeters. Dimension B. This drawing is subject to change without notice.
- C. NanoFree™ package configuration.

NanoFree is a trademark of Texas Instruments.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated