
- 200-MHz Bandwidth
- 250-kΩ Input Resistance

- Selectable Nominal Amplification of 10, 100, or 400
- **No Frequency Compensation Required**

NC - No internal connection

μ A733M . . . U PACKAGE (TOP VIEW) 10**∏** IN− GAIN ADJ 2A 9 GAIN ADJ 2B GAIN ADJ 1A ☐ 3 8 GAIN ADJ 1B 7 🛮 V_{CC+} V_{CC}-6∏OUT-OUT+

description/ordering information

The µA733 is a monolithic two-stage video amplifier with differential inputs and differential outputs. Internal series-shunt feedback provides wide bandwidth, low phase distortion, and excellent gain stability. Emitter-follower outputs enable the device to drive capacitive loads, and all stages are current-source biased to obtain high common-mode and supply-voltage rejection ratios.

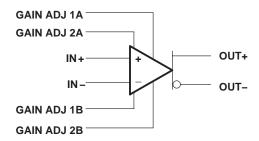
Fixed differential amplification of 10 V/V, 100 V/V, or 400 V/V may be selected without external components, or amplification may be adjusted from 10 V/V to 400 V/V by the use of a single external resistor connected between 1A and 1B. No external frequency-compensating components are required for any gain option.

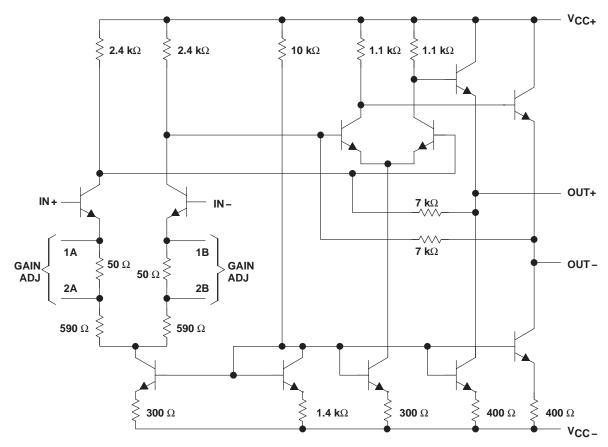
The device is particularly useful in magnetic-tape or disc-file systems using phase or NRZ encoding and in high-speed thin-film or plated-wire memories. Other applications include general-purpose video and pulse amplifiers where wide bandwidth, low phase shift, and excellent gain stability are required.

The μA733C is characterized for operation from 0°C to 70°C; the μA733M is characterized for operation over the full military temperature range of -55°C to 125°C.

ORDERING INFORMATION

TA	PACKAGE	<u>:</u> †	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	P-DIP (N)	Tube of 25	UA733CN	UA733CN
0°C to 70°C	0010 (D)	Tube of 50	UA733CD	1147000
0 0 10 70 0	SOIC (D)	Reel of 2500	UA733CDR	UA733C
	SOP (NS)	Reel of 2000	UA733CNSR	UA733


[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

symbol

schematic

Component values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		μ Α733 C	μ Α733 Μ	UNIT
Supply voltage V _{CC+} (see Note 1)		8	8	V
Supply voltage V _{CC} – (see Note 1)		- 8	- 8	V
Differential input voltage		± 5	± 5	V
Common-mode input voltage		± 6	± 6	V
Output current		10	10	mA
Continuous total power dissipation		See Diss	pation Rating T	able
	D package	86		
Package thermal impedance, θ_{JA} (see Notes 2 and 3)	N package	80		°C/W
	NS package	76		
Maximum junction temperature, TJ		150		°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds	J or U package		300	°C
Storage temperature range, T _{Stq}		- 65 to 150	- 65 to 150	°C

[†] Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions beyond those indicated in the recommended operating conditions section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values, except differential input voltages, are with respect to the midpoint between V_{CC+} and V_{CC-}
 - 2. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is PD = $(T_J(max) T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
 - 3. The package thermal impedance is calculated in accordance with JESD 51-7.

DISSIPATION RATING TABLE

	PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR	DERATE ABOVE T _A	T _A = 70°C POWER RATING	T _A = 125°C POWER RATING
Γ	J (μΑ733M)	500 mW	11.0 mW/°C	104°C	500 mW	269 mW

electrical characteristics, $V_{CC\pm}$ = ± 6 V, T_A = 25°C

	DAMETER	FIGURE	TEST SOMBITIONS	GAIN	Ĺ	ι Α733C		Ļ	₁ A733M]	
PA	RAMETER	FIGURE	TEST CONDITIONS	OPTION†	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
	Large-signal			1	250	400	600	300	400	500	
A_{VD}	differential voltage	1	V _{OD} = 1 V	2	80	100	120	90	100	110	V/V
	amplification			3	8	10	12	9	10	11	
	·			1		50			50		
BW	Bandwidth	2	$R_S = 50 \Omega$	2		90			90		MHz
				3		200			200		
IIO	Input offset current			Any		0.4	5		0.4	3	μΑ
I _{IB}	Input bias current			Any		9	30		9	20	μΑ
VICR	Common-mode input voltage range	1		Any	±1			±1			٧
Voc	Common-mode output voltage	1		Any	2.4	2.9	3.4	2.4	2.9	3.4	٧
.,	Output offset			1		0.6	1.5		0.6	1.5	.,
V ₀₀	voltage	1		2 & 3		0.35	1.5		0.35	1	V
VOPP	Maximum peak- to-peak output voltage swing	1		Any	3	4.7		3	4.7		٧
				1		4			4		
rį	Input resistance	3	V _{OD} ≤ 1 V	2	10	24		20	24		kΩ
				3		250			250		
r _o	Output resistance					20			20		Ω
Ci	Input capacitance	3	V _{OD} ≤ 1 V	2		2			2		pF
01100	Common-mode	,	V _{IC} = ±1 V, f ≤ 100 kHz	2	60	86		60	86		
CMRR	rejection ration	4	V _{IC} = ±1 V, f = 5 MHz	2		70			70		dB
k _{SVR}	Supply voltage rejection ratio (ΔV _{CC} /(ΔV _{IO})	1	$\Delta V_{CC\pm} = \pm 0.5 \text{ V}$	2	50	70		50	70		dB
V _n	Broadband equivalent input noise voltage	5	BW = 1 kHz to 10 MHz	Any		12			12		μV
	_		$R_S = 50 \Omega$	1		7.5			7.5		
^t pd	Propagation delay time	2	Output voltage	2		6.0	10		6.0	10	ns
	dolay time		step = 1 V	3		3.6			3.6		
			$R_S = 50 \Omega$,	1		10.5			10.5		
t _r	Rise time	2	Output voltage	2		4.5	12		4.5	10	ns
			step = 1 V	3		2.5			2.5		
I _{sink(max)}	Maximum output sink current			Any	2.5	3.6		2.5	3.6		mA
ICC	Supply current		No load, No signal	Any		16	24		16	24	mA

[†] The gain option is selected as follows:

Gain Option 3: All four gain-adjust pins are open.

Gain Option 1: Gain-adjust pin 1A is connected to pin 1B, and pins 2A and 2B are open.

Gain Option 2: Gain-adjust pin 1A and pin 1B are open, pin 2A is connected to pin 2B.

electrical characteristics, V_{CC \pm} = ± 6 V, T_A = 0°C to 70°C for μ A733C, – 55°C to 125°C for μ A733M

PARAMETER		FIGURE	TEST SOMBITIONS	GAIN	μ Α7 :	33C	μ Α7 3	33M	
	PARAMETER	FIGURE	TEST CONDITIONS	OPTION†	MIN	MAX	MIN	MAX	UNIT
				1	250	600	200	600	
AVD	Large-signal differential voltage amplification	1	V _{OD} = 1 V	2	80	120	80	120	V/V
	voltago amplinoation			3	8	12	8	12	
I _{IO}	Input offset current			Any		6		5	μΑ
I_{IB}	Input bias current			Any		40		40	μΑ
VICR	Common-mode input voltage range	1		Any	±1		±1		V
V	Outrot offerst college	_		1		1.5		1.5	V
V00	Output offset voltage	1		2 & 3		1.5		1.2	V
V _{OPP}	Maximum peak-to-peak output voltage swing	1		Any	2.8		2.5		V
rį	Input resistance	3	V _{OD} ≤ 1 V	2	8		8		kΩ
CMRR	Common-mode rejection ratio	4	V _{IC} = +1 V, f ≤ 100 kHz	2	50		50		dB
ksvr	Supply voltage rejection ratio (ΔV _{CC} /(ΔV _{IO})	1	$\Delta V_{CC\pm} = \pm 0.5 \text{ V}$	2	50		50		dB
I _{sink(max)}	Maximum output sink current			Any	2.5		2.2		mA
Icc	Supply current		No load, No signal	Any		27		27	mA

[†]The gain option is selected as follows:

Gain Option 1: Gain-adjust pin 1A is connected to pin 1B, and pins 2A and 2B are open.

Gain Option 2: Gain-adjust pin 1A and pin 1B are open, pin 2A is connected to pin 2B.

Gain Option 3: All four gain-adjust pins are open.

PARAMETER MEASUREMENT INFORMATION

test circuits

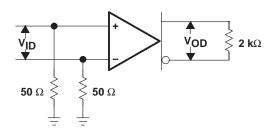


Figure 1

Figure 3

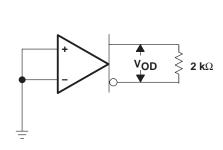


Figure 5

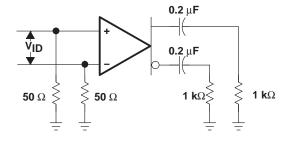


Figure 2

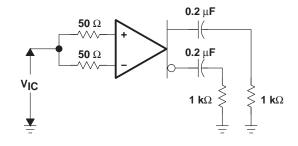
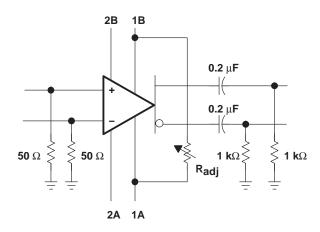



Figure 4

VOLTAGE AMPLIFICATION ADJUSTMENT

Figure 6

TYPICAL CHARACTERISTICS

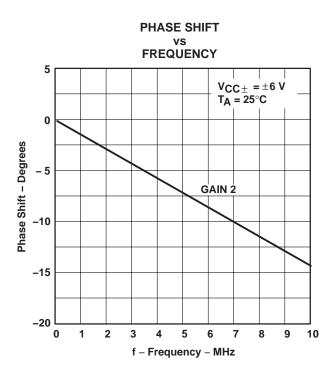
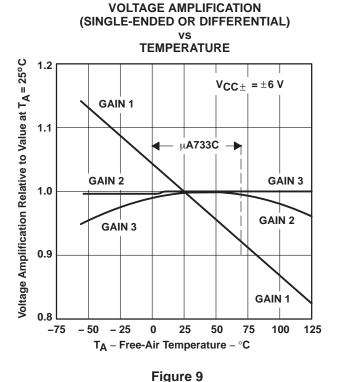
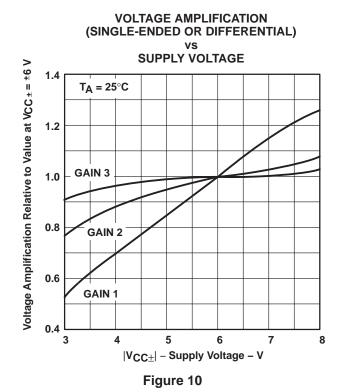




Figure 7

PHASE SHIFT vs **FREQUENCY** 50 $V_{CC\pm} = \pm 6 V$ 0 T_A = 25°C - 50 GAIN 2 -100Phase Shift - Degrees -150-200 -250-300 -350-400 -450 40 4 10 100 400 f - Frequency - MHz

Figure 8

TYPICAL CHARACTERISTICS

DIFFERENTIAL VOLTAGE AMPLIFICATION vs RESISTANCE BETWEEN G1A AND G1B

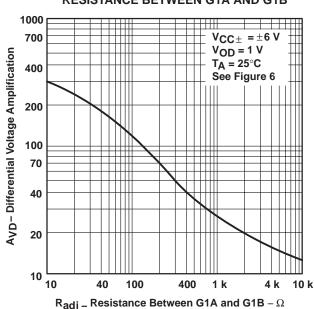


Figure 11

SUPPLY CURRENT

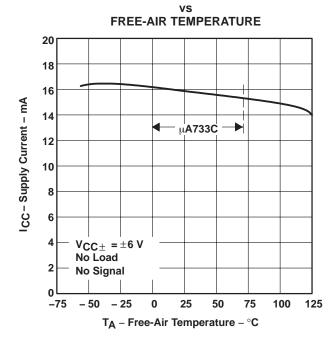


Figure 13

SINGLE-ENDED VOLTAGE AMPLIFICATION vs

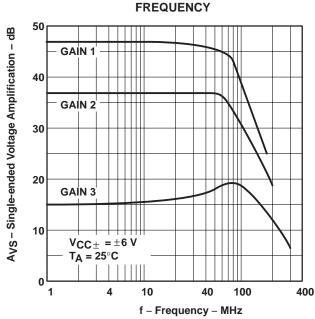


Figure 12

SUPPLY CURRENT vs SUPPLY VOLTAGE

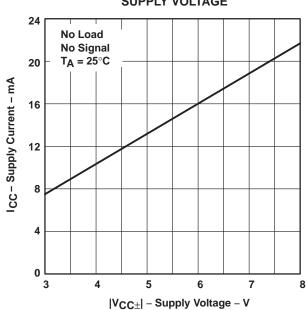


Figure 14

TYPICAL CHARACTERISTICS

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs

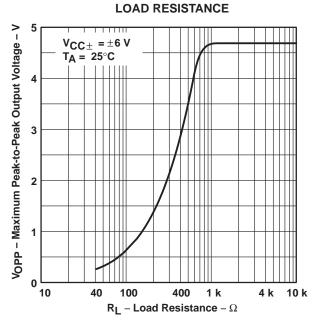


Figure 15

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs

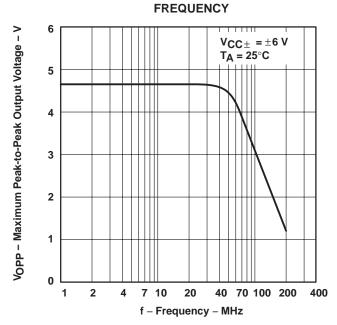


Figure 17

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs

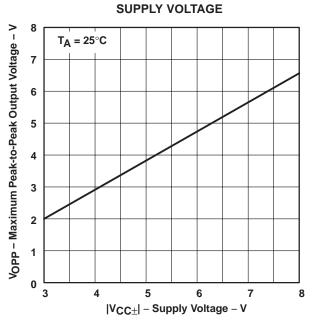


Figure 16

INPUT RESISTANCE vs FREE-AIR TEMPERATURE

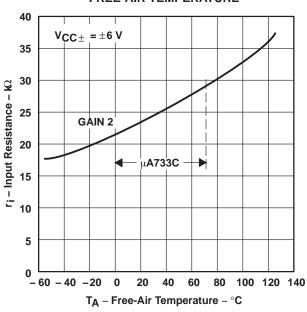


Figure 18

10-Jun-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
84185012A	OBSOLETE	LCCC	FK	20		TBD	Call TI	Call TI	-55 to 125		
UA733CD	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	UA733C	Samples
UA733CDG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	UA733C	Samples
UA733CDR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	UA733C	Samples
UA733CN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	UA733CN	Samples
UA733CNE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	UA733CN	Samples
UA733CNSR	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	UA733	Samples
UA733MJ	OBSOLETE	CDIP	J	14	·	TBD	Call TI	Call TI	-55 to 125		
UA733MJB	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI	-55 to 125		
UA733MUB	OBSOLETE	CFP	U	10		TBD	Call TI	Call TI	-55 to 125		

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

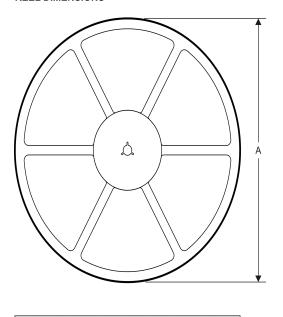
⁽³⁾ MSL. Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

PACKAGE OPTION ADDENDUM

10-Jun-2014

- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

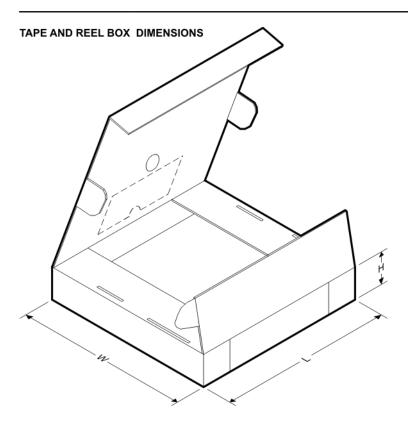

www.ti.com 14-Jul-2012

TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS

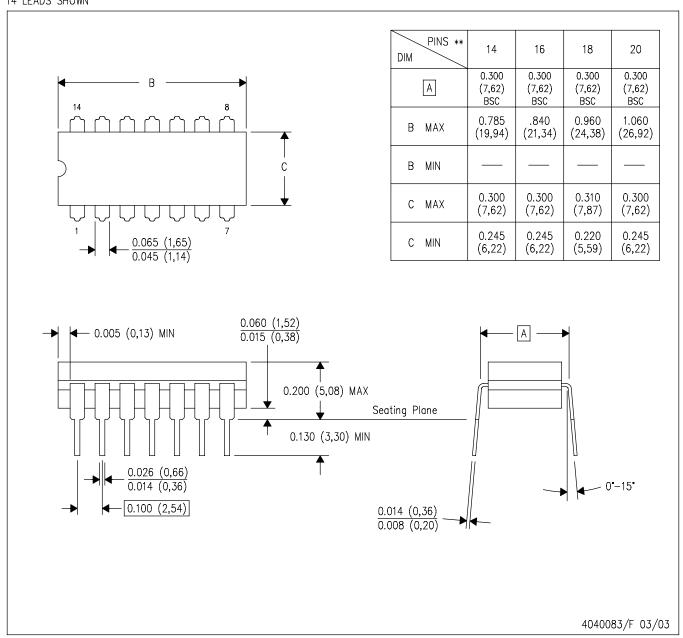
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


TAPE AND REEL INFORMATION

*All dimensions are nominal

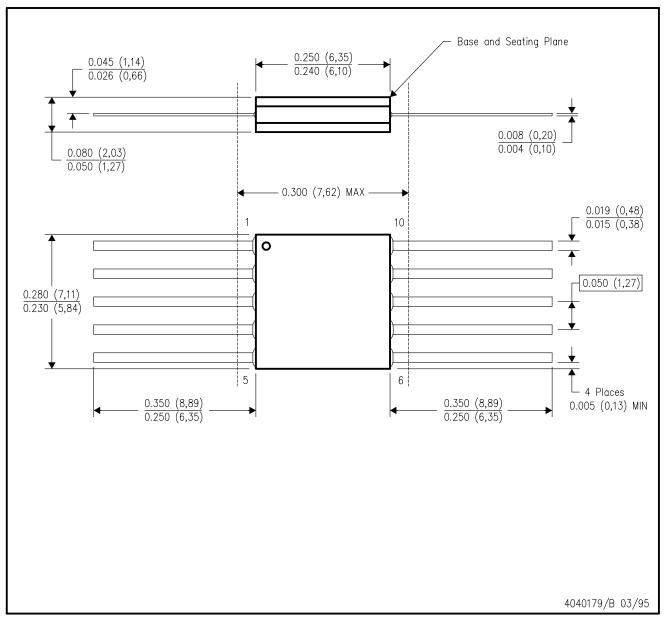
4	7 til dillionolollo aro nominar												
	Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
	UA733CDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
	UA733CNSR	SO	NS	14	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

PACKAGE MATERIALS INFORMATION


www.ti.com 14-Jul-2012

*All dimensions are nominal

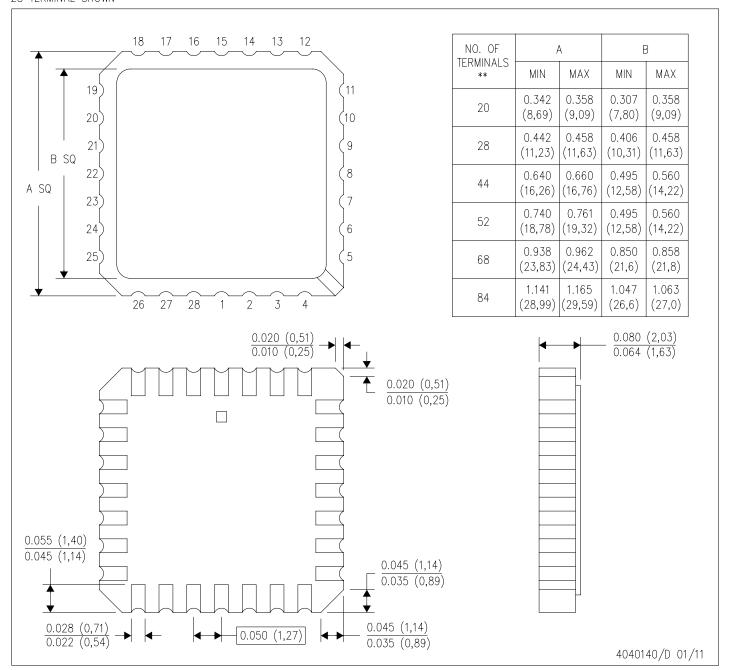
Device	Device Package Type Package Drawing		Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
UA733CDR	SOIC	D	14	2500	367.0	367.0	38.0
UA733CNSR	SO	NS	14	2000	367.0	367.0	38.0


14 LEADS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

U (S-GDFP-F10)

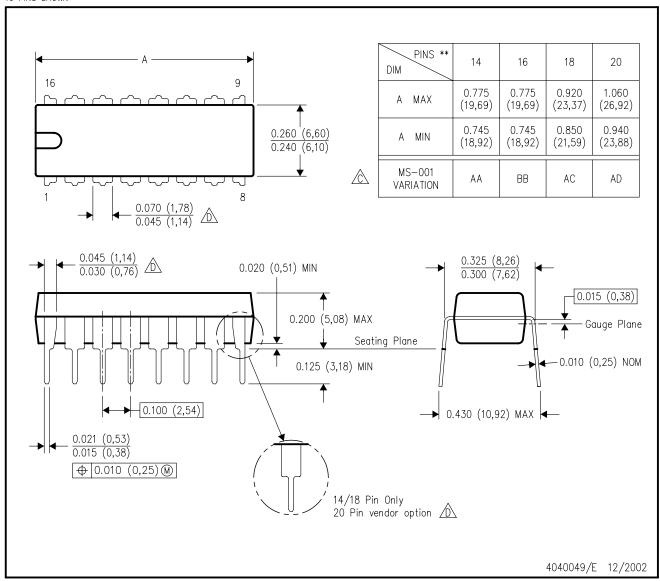
CERAMIC DUAL FLATPACK


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP1-F10 and JEDEC MO-092AA

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

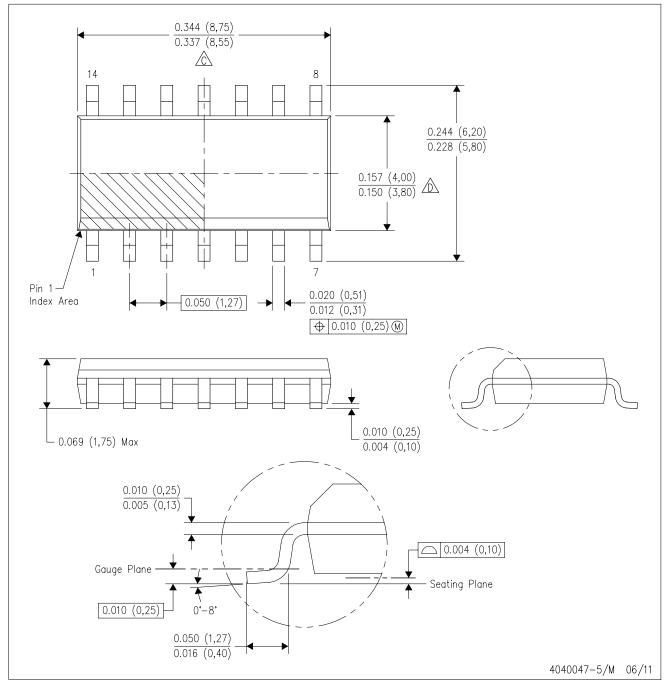
28 TERMINAL SHOWN


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

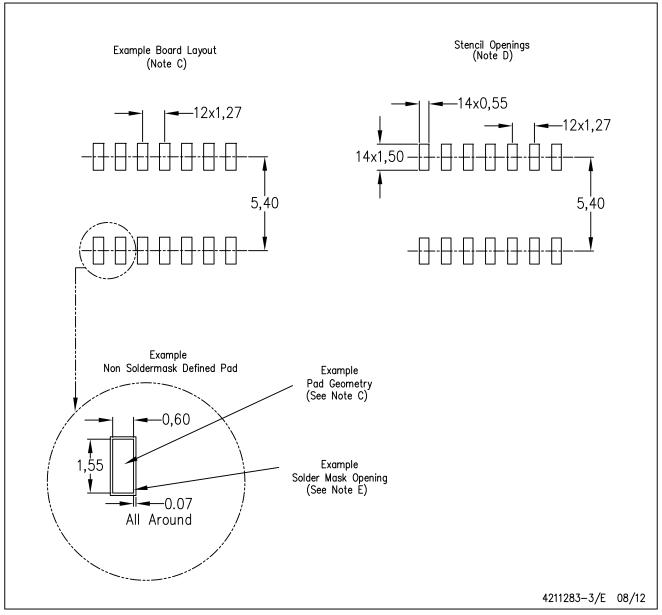
16 PINS SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G14)

PLASTIC SMALL OUTLINE

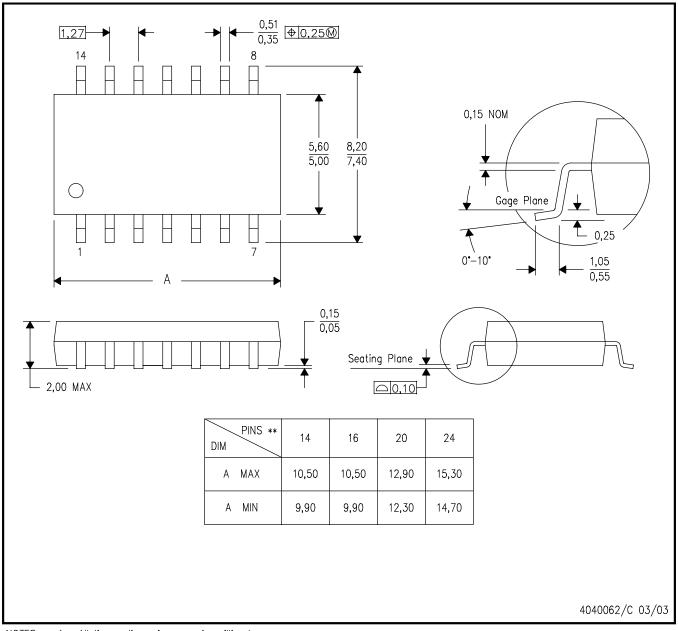


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.

D (R-PDSO-G14)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.



MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity