

Analog Devices Welcomes Hittite Microwave Corporation

NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

www.hittite.com

www.analog.com

HMC724* Product Page Quick Links

Last Content Update: 11/01/2016

Comparable Parts

View a parametric search of comparable parts

Evaluation Kits

HMC724LC3 Evaluation Board

Documentation 🖵

Data Sheet

• HMC724 Data Sheet

Reference Materials

Quality Documentation

- HMC Legacy PDN: PCN0811003
- Package/Assembly Qualification Test Report: LC3, LC3B, LC3C (QTR: 2014-00376 REV: 01)
- Semiconductor Qualification Test Report: BiCMOS-C (QTR: 2013-00241)

Design Resources 🖵

- HMC724 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

Discussions 🖵

View all HMC724 EngineerZone Discussions

Sample and Buy

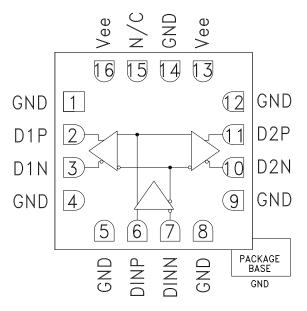
Visit the product page to see pricing options

Technical Support

Submit a technical question or find your regional support number

^{*} This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet. Note: Dynamic changes to the content on this page does not constitute a change to the revision number of the product data sheet. This content may be frequently modified.

THIS PAGE INTENTIONALLY LEFT BLANK



Typical Applications

The HMC724LC3 is ideal for:

- 16 G Fiber Channel
- RF ATE Applications
- Broadband Test & Measurement
- Serial Data Transmission up to 14 Gbps
- Clock Buffering up to 14 GHz

Functional Diagram

Electrical Specifications, T_A = +25 °C, Vee = -3.3 V Parameter Conditions

Min. Units Тур. Max Power Supply Voltage -3.6 -3.3 -3.0 V Power Supply Current 90 mΑ Gbps Maximum Data Rate 14 Maximum Clock Rate 14 GHz V Input Voltage Range -1.5 0.5 Input Differential Range 0.1 2.0 Vp-p Input Return Loss dB Frequency <14 GHz 10 Single-Ended, peak-to-peak 550 mVp-p **Output Amplitude** 1100 Differential, peak-to-peak mVp-p -10 **Output High Voltage** mV **Output Low Voltage** -560 mV Single-Ended, 20% - 80% Output Rise / Fall Time 19 / 18 ps

HMC724LC3

14 GBPS FAST RISE TIME **1:2 FANOUT BUFFER**

Features

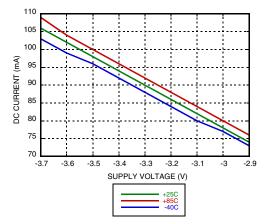
Inputs Terminated Internally to 50 Ohms Differential Inputs are DC Coupled Propagation Delay: 110 ps Fast Rise and Fall Times: 19 / 18 ps Power Dissipation: 300 mW 16 Lead Ceramic 3x3 mm SMT Package: 9 mm²

General Description

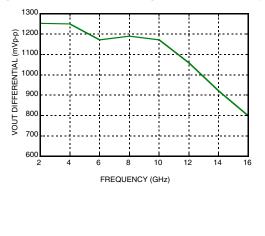
The HMC724LC3 is a 1:2 Fanout Buffer designed to support data transmission rates up to 14 Gbps, and clock frequencies as high as 14 GHz. All differential inputs and outputs are DC coupled and terminated on chip with 50 Ohm resistors to ground. The outputs may be used in either single ended or differential modes, and should be AC or DC coupled into 50 Ohm resistors connected to ground.

All differential inputs to the HMC724LC3 are CML and terminated on-chip with 50 Ohms to the positive supply, GND, and may be DC or AC coupled. The differential CMI outputs are source terminated to to 50 Ohms and may also be AC or DC coupled. Outputs can be connected directly to a 50 Ohm ground-terminated system or drive devices with CML logic input. The HMC724LC3 operates from a single -3.3 V supply and is available in ROHS-compliant 3x3 mm SMT package.

ROHS

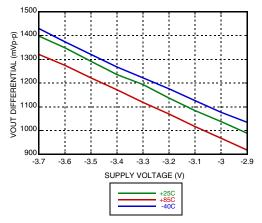

14 GBPS FAST RISE TIME 1:2 FANOUT BUFFER

Electrical Specifications (continued)

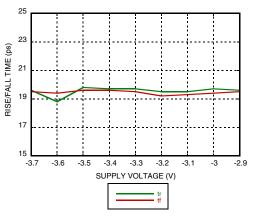

Parameter	Conditions	Min.	Тур.	Мах	Units
Output Return Loss	Frequency <14 GHz		10		dB
Small Signal Gain			27		dB
Random Jitter J _R	rms		0.2		ps rms
Deterministic Jitter, J _D	δ - δ, 2 ¹⁵ -1 PRBS input ^[1]		2	6	ps
Propagation Delay, td			110		ps
D1 to D2 Data Skew, t _{SKEW}			<2		ps

[1] Deterministic jitter measured at 13 GHz with a 300 mVp-p, 2¹⁵-1 PRBS input sequence.

DC Current vs. Supply Voltage [1]



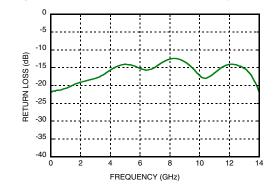
Output Differential Voltage vs. Frequency [3]



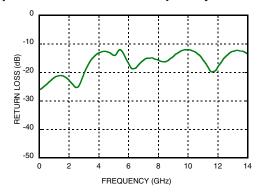
[1] Data rate = 13 Gbps [2] Frequency = 10 GHz

Output Differential Voltage vs. Supply Voltage ^[2]

Rise / Fall Time vs. Supply [1]


For price, delivery and to place orders: Hittite Microwave Corporation, 2 Elizabeth Drive, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at www.hittite.com Application Support: Phone: 978-250-3343 or apps@hittite.com

[3] Vee = 3.3 V

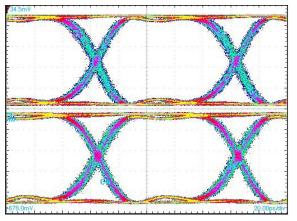


Output Return Loss vs. Frequency

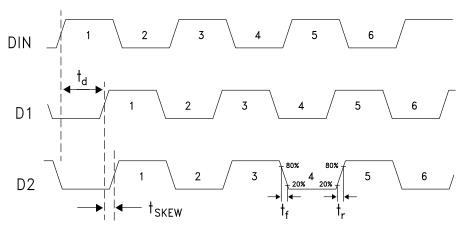
Input Return Loss vs. Frequency

HMC724LC3

14 GBPS FAST RISE TIME


1:2 FANOUT BUFFER

14 GBPS FAST RISE TIME 1:2 FANOUT BUFFER

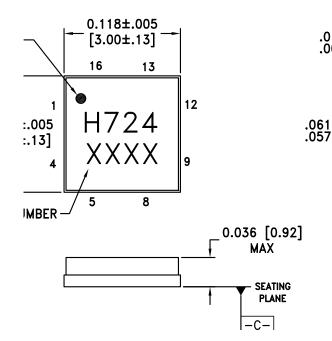

Eye Diagram

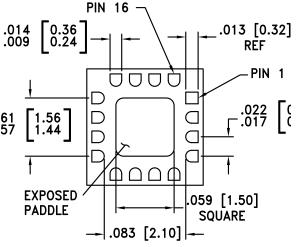
[1] Test Conditions:

Pattern generated with an Agilent N4903A Serial BERT. Eye Diagram presented on a Tektronix CSA 8000. Device input = 10 Gbps PN code, Vin = 300 mVp-p differential. Both output channels shown.

Timing Diagram

HIGH SPEED LOGIC - SMT


14 GBPS FAST RISE TIME 1:2 FANOUT BUFFER


Absolute Maximum Ratings

	-	
Power Supply Voltage (Vee)	-3.75 V to +0.5 V	
Input Signals	-2 V to +0.5 V	
Output Signals	-1.5 V to +1 V	
Continuous Pdiss (T = 85 °C) (derate 17 mW/°C above 85 °C) 0.68 W		
Thermal Resistance (R _{th j-p}) Worst case junction to package paddle	59 °C/W	
Maximum Junction Temperature	125 °C	
Storage Temperature	-65 °C to +150 °C	
Operating Temperature -40 °C to +85 °C		
ESD Sensitivity (HBM)	Class 1C	

Outline Drawing

NOTES:

- 1. PACKAGE BODY MATERIAL: ALUMINA
- 2. LEAD AND GROUND PADDLE PLATING:
- 30-80 MICROINCHES GOLD OVER 50 MICROINCHES MINIMUM NICKEL.
- 3. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05 mm DATUM -C-
- 6. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.
- 7. PADDLE MUST BE SOLDERED TO GND.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[2]
HMC724LC3	Alumina, White	Gold over Nickel	MSL3 ^[1]	H724 XXXX

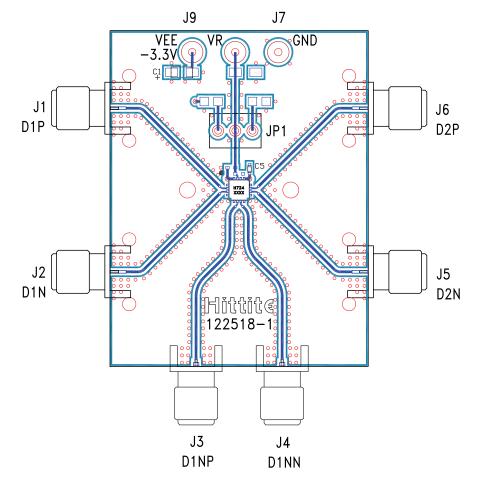
[1] Max peak reflow temperature of 260 $^\circ\text{C}$

[2] 4-Digit lot number XXXX

14 GBPS FAST RISE TIME 1:2 FANOUT BUFFER

Pin Descriptions [1]

Pin Number	Function	Description	Interface Schematic	
1, 4, 5, 8, 9, 12	GND	Signal Grounds		
2, 3 10, 11	D1P, D1N D2N, D2P	Differential Data Outputs, Current Mode Logic (CML) referenced to positive supply.	GND O GND DxP O DxN	
6, 7	DINP, DINN	Differential Data Inputs, Current Mode Logic (CML) referenced to positive supply.	GND O GND DINP O DINN	
13, 16	Vee	Negative Supply		
14, Package Base	GND	Supply Ground		
15	N/C	No Connection required. This pin may be connected to RF/DC ground without affecting performance.		


[1] Contact HMC for alternate pinouts

ROHS V

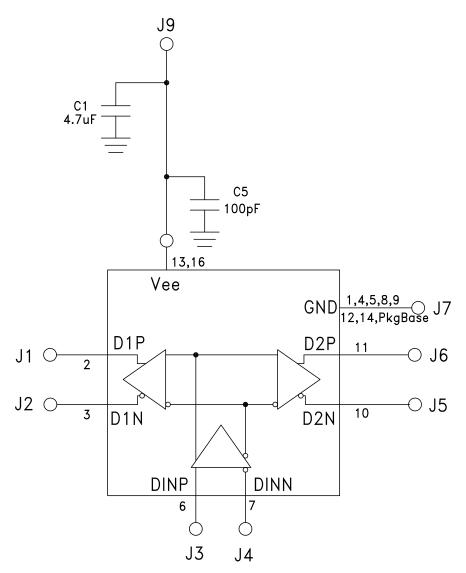
14 GBPS FAST RISE TIME 1:2 FANOUT BUFFER

Evaluation PCB

List of Materials for Evaluation PCB 122520^[1]

Item	Description	
J1 - J6	PCB Mount SMA RF Connectors	
J7, J9	DC Pin	
C1	4.7 µF Capacitor, Tantalum	
C5	100 pF, Capacitor 0402 Pkg.	
U1	HMC724LC3 High Speed Logic, Fanout Buffer	
PCB ^[2]	122518 Evaluation Board	

Reference this number when ordering complete evaluation PCB
Circuit Board Material: Arlon 25FR or Rogers 4350


The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads should be connected directly to the ground plane similar to that shown. The exposed packaged base should be connected to GND. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

14 GBPS FAST RISE TIME 1:2 FANOUT BUFFER

Application Circuit

