

www.ti.com

Quad-Channel, 250-MSPS Receiver and Feedback ADC

Check for Samples: ADS58H40

FEATURES

- Quad Channel
- **Three Different Operating Modes:**
 - 11-Bit: 250 MSPS
 - 11-Bit SNRBoost^{3G+}: 250 MSPS
 - 14-Bit: 250 MSPS (Burst Mode)
 - Maximum Sampling Data Rate: 250 MSPS
- **Power Dissipation:**
 - 11-Bit Mode: 365 mW per Channel
- SNRBoost^{3G+} Bandwidth: 2x 45 MHz or 90 MHz
- Spectral Performance at 170 MHz IF (typ):
 - SNR: 70.5 dBFS in 90-MHz Band with SNRBoost^{3G+}
 - SFDR: 85 dBc
- **DDR LVDS Digital Output Interface**
- 144-Pad BGA (10-mm × 10-mm) •

APPLICATIONS

- Multi-Carrier GSM Cellular Infrastructure Base Stations
- Multi-Carrier Multi-Mode Cellular Infrastructure **Base Stations**
- **Active Antenna Arrays for Wireless** ٠ Infrastructures
- **Communications Test Equipment**

DESCRIPTION

The ADS58H40 is a high-linearity, guad-channel, 14bit, 250-MSPS analog-to-digital converter (ADC). The four ADC channels are separated into two blocks with two ADCs each. Each block can be individually configured into three different operating modes. One operating mode includes the implementation of the SNRBoost^{3G+} signal processing technology to provide high signal-to-noise ratio (SNR) in a band up to 90 MHz wide with only 11-bit resolution. Designed for low power consumption and high spurious-free dynamic range (SFDR), the ADC has low-noise performance and outstanding SFDR over a large input frequency range.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

www.ti.com

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

	PACKAGE AND ORDERING INFORMATION **								
PRODUCT	PACKAGE- LEAD	PACKAGE DESIGNATOR	SPECIFIED TEMPERATURE RANGE	ECO PLAN ⁽²⁾	LEAD AND BALL FINISH	PACKAGE MARKING	ORDERING NUMBER	TRANSPORT MEDIA	
		700	10%0 to 195%0	GREEN (RoHS,	CUNIDdAu		ADS58H40IZCR	Tray	
AD556H40	DGA-144	ZCR	-40°C 10 +85°C	no SB or BR)	CUNIPAAU	ADS58H40I	ADS58H40IZCRR	Tape and Reel	

DACKAGE AND ODDEDING INFORMATION(1)

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or visit the device product folder at www.ti.com.

These packages conform to Lead (Pb)-free and green manufacturing specifications. Additional details including specific material content (2)can be accessed at www.ti.com/leadfree.

GREEN: TI defines Green to mean Lead (Pb)-Free and in addition, uses less package materials that do not contain halogens, including bromine (Br), or antimony (Sb) above 0.1% of total product weight.

N/A: Not yet available Lead (Pb)-Free; for estimated conversion dates, go to www.ti.com/leadfree.

Pb-FREE: TI defines Lead (Pb)-Free to mean RoHS compatible, including a lead concentration that does not exceed 0.1% of total product weight, and, if designed to be soldered, suitable for use in specified lead-free soldering processes.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Over operating free-air temperature range, unless otherwise noted.

		VALUE	UNIT
	AVDD33	-0.3 to +3.6	V
Supply voltage range	AVDD	-0.3 to +2.1	V
	DRVDD	-0.3 to +2.1	V
	AVSS and DRVSS	-0.3 to +0.3	V
Valtaga hatwaan	AVDD33 -0.3 to +3.6 AVDD -0.3 to +3.6 AVDD -0.3 to +2.1 DRVDD -0.3 to +2.1 AVSS and DRVSS -0.3 to +0.3 AVDD and DRVDD -2.4 to +2.4 AVDD33 and DRVDD -2.4 to +3.9 AVDD33 and AVDD -2.4 to +3.9 VINP, XINM -0.3 to minimum (1.9, AVDD + 0.3) CLKP, CLKM ⁽²⁾ -0.3 to minimum (1.9, AVDD + 0.3) RESET, SCLK, SDATA, SEN, SNRB, TRIG_EN, PDN -0.3 to +3.9 Operating free-air, T _A -40 to +85 Operating junction, T _J +150 Storage, T _{sig} -65 to +150	V	
vollage between	AVDD33 and DRVDD	-2.4 to +3.9	V
	AVDD33 and AVDD	-2.4 to +3.9	V
	XINP, XINM	-0.3 to minimum (1.9, AVDD + 0.3)	V
Voltage applied to input pins	CLKP, CLKM ⁽²⁾	-0.3 to minimum (1.9, AVDD + 0.3)	V
	RESET, SCLK, SDATA, SEN, SNRB, TRIG_EN, PDN	-0.3 to +3.9	V
	Operating free-air, T _A	-40 to +85	°C
Temperature	Operating junction, T _J	+150	°C
	Storage, T _{stg}	-65 to +150	°C
Electrostatic discharge (ESD) ratings	Human body model (HBM)	2	kV

(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

When AVDD is turned off, TI recommends switching off the input clock (or ensuring the voltage on CLKP and CLKM is less than (2)| 0.3 V |). This recommendation prevents the ESD protection diodes at the clock input pins from turning on.

SBAS589B-AUGUST 2012-REVISED NOVEMBER 2012

THERMAL INFORMATION

		ADS58H40	
	THERMAL METRIC ⁽¹⁾	ZCR (BGA)	UNITS
		144 PINS	
θ_{JA}	Junction-to-ambient thermal resistance	35.9	
θ_{JCtop}	Junction-to-case (top) thermal resistance	5.1	
θ_{JB}	Junction-to-board thermal resistance	12.6	°C 11/
Ψ _{JT}	Junction-to-top characterization parameter	0.1	C/VV
Ψ _{JB}	Junction-to-board characterization parameter	12.4	
θ _{JCbot}	Junction-to-case (bottom) thermal resistance	N/A	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

RECOMMENDED OPERATING CONDITIONS

			MIN	NOM	MAX	UNIT
SUPPLIES						
AVDD33			3.15	3.3	3.45	V
AVDD	Supply voltage		1.8	1.9	2.0	V
DRVDD			1.7	1.8	2.0	V
ANALOG I	NPUTS					
	Differential input voltage range			2		V _{PP}
	Input common-mode voltage		V _{CN}	₁ ± 0.025		V
	Analog input common-mode current	(per input pin of each channel)		1.5		µA/MSPS
	VCM current capability			5		mA
	Maximum analog input fraguanay	2-V _{PP} input amplitude ⁽¹⁾		400		MHz
	Maximum analog input frequency	1.4-V _{PP} input amplitude		500		MHz
CLOCK IN	PUTS					
	Input clock sample rate		184 ⁽²⁾		250	MSPS
		Sine wave, ac-coupled	0.2	1.5		V _{PP}
	Input clock amplitude differential	LVPECL, ac-coupled		1.6		V _{PP}
	$(V_{CLKP} - V_{CLKM})$	LVDS, ac-coupled		0.7		V _{PP}
		LVCMOS, single-ended, ac-coupled		1.8		V _{PP}
	Input clock duty cycle		40%	50%	60%	
DIGITAL O	UTPUTS					
C _{LOAD}	Maximum external load capacitance (default strength)	from each output pin to DRVSS		3.3		pF
R _{LOAD}	Differential load resistance between	the LVDS output pairs (LVDS mode)		100		Ω
TEMPERA	TURE RANGE					
T _A	Operating free-air temperature		-40		+85	°C
т		Recommended			+105	°C
IJ		Maximum rated ⁽³⁾			+125	°C

(1) See the *Theory of Operation* section.

(2) The minimum *functional clock speed* can be 10 MSPS after writing the following special modes: address 4Ah, value 01h; address 62h, value 01h; address 92h, value 01h; and address 7Ah, value 01h. See the SPECIAL MODE[17:14] bits in Table 4 of the Serial Interface Registers section.

(3) Prolonged use at this junction temperature may increase the device failure-in-time (FIT) rate.

www.ti.com

Table 1. High-Performance Modes Summary⁽¹⁾⁽²⁾

			f _S = 245.		f _S = 184.32 MSPS		
ADDRESS (Hex)	DATA (Hex)	R _S = 50 ZONE = 2	R _S = 100 ZONE = 2	R _S = 50 ZONE = 3	R _S = 100 ZONE = 3	R _S = 50 ZONE = 2	R _S = 100 ZONE = 2
D4	80				\checkmark		
D5	80				\checkmark		
D6	80	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
D7	0C	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
DB	30				\checkmark		
F0	38					\checkmark	\checkmark
F1	20	\checkmark		\checkmark		\checkmark	
F5	42				\checkmark		

R_S refers to the source impedance. Zone refers to the Nyquist zone in which the signal band lies. Zone = 2 corresponds to the signal (1)

band that lies between $f_S / 2$ and f_S . Zone = 3 corresponds to the signal band that lies between f_S and $3 \times f_S / 2$. (2) Best performance can be achieved by writing these modes depending upon source impedance, band of operation, and sampling speed.

ELECTRICAL CHARACTERISTICS

Typical values are at $T_A = +25^{\circ}$ C, full temperature range is $T_{MIN} = -40^{\circ}$ C to $T_{MAX} = +85^{\circ}$ C, ADC clock frequency = 250 MHz, 50% clock duty cycle, AVDD33V = 3.3 V, AVDD = 1.9 V, DRVDD = 1.8 V, and -1-dBFS differential input, unless otherwise noted.

	PARAMETER	1	TEST CONDITIONS	MIN	TYP	MAX	UNITS
RESOLUTIO	N						
	Default resolution				11		Bits
ANALOG IN	PUTS						
	Differential input full-scale				2		V _{PP}
VCM	Common mode input voltag	e			1.15		V
R _{IN}	Input resistance, differential		At 170-MHz input frequency		700		Ω
C _{IN}	Input capacitance, differenti	al	At 170-MHz input frequency		3.3		pF
	Analog input bandwidth, 3 c	ΙB	With a 50- Ω source driving the ADC analog inputs		500		MHz
DYNAMIC A	CCURACY						
Eo	Offset error		Specified across devices and channels	-15		15	mV
E _G	Gain error ⁽¹⁾	As a result of internal reference inaccuracy alone	Specified across devices and channels	-5		5	%FS
		Of channel alone	Specified across channels within a device		±0.2		%FS
	Channel gain error tempera	ture coefficient ⁽¹⁾			0.001		Δ%/°C
POWER SUP	PPLY ⁽²⁾						
I _{AVDD33}		3.3-V analog supply			51		mA
I _{AVDD}		1.9-V analog supply			350		mA
	Supply current		11-bit operation		340		mA
I _{DRVDD}		1.8-V digital supply	SNRBoost ^{3G+} enabled (90 MHz)		400		mA
			14-bit burst mode		355		mA
			11-bit operation		1.45	1.6	W
P _{TOTAL}		Total	SNRBoost ^{3G+} enabled		1.55	1.8	W
	Power dissipation		14-bit burst mode		1.47		W
P _{DISS(standby)}]	Standby			400		mW
P _{DISS(global)}		Global power-down			6	52	mW

There are two sources of gain error: internal reference inaccuracy and channel gain error. (1)

A 185-MHz, full-scale, sine-wave input signal is applied to all four channels. (2)

www.ti.com

ELECTRICAL CHARACTERISTICS (continued)

Typical values are at $T_A = +25^{\circ}$ C, full temperature range is $T_{MIN} = -40^{\circ}$ C to $T_{MAX} = +85^{\circ}$ C, ADC clock frequency = 250 MHz, 50% clock duty cycle, AVDD33V = 3.3 V, AVDD = 1.9 V, DRVDD = 1.8 V, and -1-dBFS differential input, unless otherwise noted.

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNITS
DYNAMIC	AC CHARACTERISTICS ⁽³⁾	(4)					
			$f_{IN} = 140 \text{ MHz}, A_{IN} = -1 \text{ dBFS}$		71		dBFS
	PARAMETER AMIC AC CHARACTERISTICS ⁽³⁾⁽⁴⁾ 11-1 Signal-to-noise ratio 11-1 AD Signal-to-noise and distortion ratio 11-1 AD Signal-to-noise and distortion ratio 11-1 R Spurious-free dynamic range 11-1 R Spurious-free dynamic range 11-1 Second-order harmonic distortion 11-1 11-1 Mice Colspan="2">Constalk	11-bit SNRBoost ^{3G+} ,	$f_{IN} = 170 \text{ MHz}, A_{IN} = -1 \text{ dBFS}$	69	70.5		dBFS
SNR	Signal-to-noise ratio	30-WI 12 DW	$f_{IN} = 220 \text{ MHz}, A_{IN} = -1 \text{ dBFS}$		70		dBFS
		11-bit SNRBoost ^{3G+} ,	$f_{IN} = 307 \text{ MHz}, A_{IN} = -3 \text{ dBFS}$		71.7		dBFS
		60-MHz BW	$f_{IN} = 350 \text{ MHz}, A_{IN} = -3 \text{ dBFS}$		71.5		dBFS
			$f_{IN} = 140 \text{ MHz}, A_{IN} = -1 \text{ dBFS}$		70.6		dBFS
		11-bit SNRBoost ^{3G+} , 90-MHz BW	f_{IN} = 170 MHz, A_{IN} = -1 dBFS	68	70.1		dBFS
SINAD	Signal-to-noise and distortion ratio		$f_{IN} = 220 \text{ MHz}, \text{ A}_{IN} = -1 \text{ dBFS}$		69.5		dBFS
		11-bit SNRBoost ^{3G+} ,	$f_{IN} = 307 \text{ MHz}, \text{ A}_{IN} = -3 \text{ dBFS}$		69.7		dBFS
		60-MHz BW	$f_{IN} = 350 \text{ MHz}, \text{ A}_{IN} = -3 \text{ dBFS}$		69.2		dBFS
			f_{IN} = 140 MHz, A_{IN} = -1 dBFS		85		dBc
			$f_{IN} = 170 \text{ MHz}, \text{ A}_{IN} = -1 \text{ dBFS}$	80	85		dBc
SFDR	Spurious-free dynamic ra	ange	$f_{IN} = 220 \text{ MHz}, A_{IN} = -1 \text{ dBFS}$		82		dBc
			$f_{IN} = 307 \text{ MHz}, A_{IN} = -3 \text{ dBFS}$		78		dBc
			$f_{IN} = 350 \text{ MHz}, \text{ A}_{IN} = -3 \text{ dBFS}$		77		dBc
			$f_{IN} = 140 \text{ MHz}, A_{IN} = -1 \text{ dBFS}$		82		dBc
			$f_{IN} = 170 \text{ MHz}, \text{ A}_{IN} = -1 \text{ dBFS}$	77	82		dBc
SNR Signal-to SINAD Signal-to distortion SFDR Spurious THD Total ha HD2 Second- HD3 Third-ord Worst sp (non HD DNL Different INL Integral	Total harmonic distortion		$f_{IN} = 220 \text{ MHz}, \text{ A}_{IN} = -1 \text{ dBFS}$		80		dBc
			$f_{IN} = 307 \text{ MHz}, \text{ A}_{IN} = -3 \text{ dBFS}$		77		dBc
			$f_{IN} = 350 \text{ MHz}, \text{ A}_{IN} = -3 \text{ dBFS}$	82 dE 77 82 dE 80 dE 77 82 dE 77 82 dE 77 dE 76 dE 86 dE 86 dE 80 85 dE 82 dE 78 dE 77 dE	dBc		
			f_{IN} = 140 MHz, A_{IN} = -1 dBFS		86		dBc
			$f_{IN} = 170 \text{ MHz}, \text{ A}_{IN} = -1 \text{ dBFS}$	80	85		dBc
HD2	Second-order harmonic	distortion ⁽⁵⁾	$f_{IN} = 220 \text{ MHz}, \text{ A}_{IN} = -1 \text{ dBFS}$		82		dBc
			$f_{IN} = 307 \text{ MHz}, \text{ A}_{IN} = -3 \text{ dBFS}$		78		dBc
			$f_{IN} = 350 \text{ MHz}, \text{ A}_{IN} = -3 \text{ dBFS}$		77		dBc
			$f_{IN} = 140 \text{ MHz}, \text{ A}_{IN} = -1 \text{ dBFS}$		85		dBc
			$f_{IN} = 170 \text{ MHz}, \text{ A}_{IN} = -1 \text{ dBFS}$	82	85		dBc
HD3	Third-order harmonic dis	tortion	$f_{IN} = 220 \text{ MHz}, \text{ A}_{IN} = -1 \text{ dBFS}$		85		dBc
			$f_{IN} = 307 \text{ MHz}, \text{ A}_{IN} = -3 \text{ dBFS}$		85		dBc
THD Total harr HD2 Second-o HD3 Third-orde Worst spu (non HD2			$f_{IN} = 350 \text{ MHz}, \text{ A}_{IN} = -3 \text{ dBFS}$		83		dBc
			f_{IN} = 140 MHz, A_{IN} = -1 dBFS		95		dBc
	147		$f_{IN} = 170 \text{ MHz}, \text{ A}_{IN} = -1 \text{ dBFS}$	87	95		dBc
	(non HD2_HD3)		$f_{IN} = 220 \text{ MHz}, \text{ A}_{IN} = -1 \text{ dBFS}$		95		dBc
	(10111122, 1120)		$f_{IN} = 307 \text{ MHz}, \text{ A}_{IN} = -3 \text{ dBFS}$		95		dBc
			$f_{IN} = 350 \text{ MHz}, \text{ A}_{IN} = -3 \text{ dBFS}$		95		dBc
DNL	Differential nonlinearity			-0.95	±0.5	1.6	LSBs
INL	Integral nonlinearity				±1.5	±5.25	LSBs
	Input overload recovery		Recovery to within 1% (of final value) for 6-dB output overload with sine-wave input		1		Clock cycle
	Crosstalk		With a full-scale, 220-MHz signal on aggressor channel and no signal on victim channel		90		dB
PSRR	AC power-supply rejection	n ratio	For 50-mV _{PP} signal on AVDD supply		< 30		dB

(3) Phase and amplitude imbalances onboard must be minimized to obtain good performance.

(4) Dynamic ac characteristics are taken with respect to the 14-bit burst mode, unless otherwise noted.

(5) The minimum value across temperature is ensured by bench characterization.

www.ti.com

DIGITAL CHARACTERISTICS

The dc specifications refer to the condition where the digital outputs are not switching, but are permanently at a valid logic level '0' or '1'. AVDD33 = 3.3 V, AVDD = 1.9 V, and DRVDD = 1.8 V, unless otherwise noted.

	PARAM	ETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
DIGITAL	DIGITAL INPUTS ⁽¹⁾ (RESET, SCLK, SDATA, SEN, PDN, SNRB, TRIG_EN)								
V _{IH}	High-level input voltage		All digital inputs support 1.8-V logic levels. SPI supports 3.3-V logic levels.	1.25			M		
VIL	Low-level input volt	age	All digital inputs support 1.8-V logic levels. SPI supports 3.3-V logic levels.			0.45	V		
I _{IH}	High-level input	RESET, SCLK, PDN, SNRB, TRIG_EN pins	V _{HIGH} = 1.8 V		10		μA		
	current	SEN ⁽²⁾ pin	V _{HIGH} = 1.8 V		0		μA		
I _{IL}	Low-level input	RESET, SCLK, PDN, SNRB, TRIG_EN pins	V _{LOW} = 0 V		0		μA		
	current	SEN pin	$V_{LOW} = 0 V$		10		μΑ		
DIGITAL	OUTPUTS (SDOUT,	HIRES, TRIG_RDY)							
V _{OH}	High-level output vo	bltage		DRVDD - 0.1	DRVDD		V		
V _{OL}	Low-level output vo	ltage			0	0.1	V		
DIGITAL (DAB[13:	DIGITAL OUTPUTS, LVDS INTERFACE (DAB[13:0]P, DAB[13:0]M, DCD[13:0]P, DCD[13:0]M, CLKOUTABP, CLKOUTABM, CLKOUTCDP, CLKOUTCDM)								
V _{ODH}	Output differential	High ⁽³⁾	Standard-swing LVDS	270	350	465	mV		
V _{ODL}	voltage	Low	Standard-swing LVDS	-465	-350	-270	mV		
V _{OCM}	Output common-mo	ode voltage			1.05		V		

(1) RESET, SDATA, SCLK, TRIG_EN, and SNRB have an internal 150-k Ω pull-down resistor.

(2) SEN has an internal 150-k Ω pull-up resistor to DRVDD.

(3) With an external $100-\Omega$ termination.

TIMING REQUIREMENTS⁽¹⁾

Typical values are at +25°C, AVDD33 = 3.3 V, AVDD = 1.9 V, DRVDD = 1.8 V, sine-wave input clock, C_{LOAD} = 3.3 pF⁽²⁾, and $R_{LOAD} = 100 \ \Omega^{(3)}$, unless otherwise noted.

At a transmission of the second	and an effect of the second	a second a first first for a second sec	· · · · · · · · · · · · · · · · · · ·	000 to T
unimi im and	maximi im vallies a	across the till temperatil	re range of 1 – –4	11° 1.10° 1.10° $- \pm 85^{\circ}$ 1.10°
	maximum values a			$M_{MAX} = 100 0$.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _A	Aperture delay		0.7	1.2	1.6	ns
	Aperture delay matching	Between any two channels of the same device		±70		ps
	Variation of aperture delay	Between two devices at the same temperature and DRVDD supply		±150		ps
tj	Aperture jitter			140		fs rms
	Make up time	Time to valid data after coming out of global power down		100		μs
	wake up ume	Time to valid data after coming out of channel power down		10		μs
		Default latency in 11-bit mode		10		Output clock cycles
		Digital gain enabled		13		Output clock cycles
		Digital gain and offset correction enabled		14		Output clock cycles
	ADC latency ⁽⁴⁾⁽⁵⁾	SNRBoost ^{3G+} (90-MHz BW) enabled alone		13		Output clock cycles
		SNRBoost ^{3G+} (90-MHz BW), digital gain, and offset correction enabled		17		Output clock cycles
		SNRBoost ^{3G+} (45-MHz BW) enabled alone		15		Output clock cycles
		SNRBoost ^{3G+} (45-MHz BW), digital gain, and offset correction enabled		19		Output clock cycles
OUTPUT	TIMING ⁽⁶⁾	·				
t _{SU}	Data setup time ⁽⁷⁾⁽⁸⁾⁽⁹⁾	Data valid to CLKOUTxxP zero-crossing	0.6	0.85		ns
t _H	Data hold time ⁽⁷⁾⁽⁸⁾⁽⁹⁾	CLKOUTxxP zero-crossing to data becoming invalid	0.6	0.84		ns
	LVDS bit clock duty cycle	Differential clock duty cycle (CLKOUTxxP – CLKOUTxxM)		50%		
t _{PDI}	Clock propagation delay ⁽⁵⁾	Input clock falling edge cross-over to output clock falling edge cross-over, 184 MSPS ≤ sampling frequency ≤ 250 MSPS	$0.25 \times t_S + t_{delay}$		ns	
t _{delay}	Delay time	Input clock falling edge cross-over to output clock falling edge cross-over, 184 MSPS ≤ sampling frequency ≤ 250 MSPS	6.9	8.65	10.5	ns
t _{RISE} , t _{FALL}	Data rise and fall time	Rise time measured from -100 mV to +100 mV		0.1		ns
t _{CLKRISE} , t _{CLKFALL}	Output clock rise and fall time	Rise time measured from -100 mV to +100 mV		0.1		ns

Timing parameters are ensured by design and characterization and are not tested in production. (1)

(2) CLOAD is the effective external single-ended load capacitance between each output pin and ground.

(3)

R_{LOAD} is the differential load resistance between the LVDS output pair. ADC latency is given for channels B and D. For channels A and C, latency reduces by half of the output clock cycles. (4)

(5) Overall latency = ADC latency + t_{PDI} .

Measurements are done with a transmission line of 100-Ω characteristic impedance between the device and load. Setup and hold time (6) specifications take into account the effect of jitter on the output data and clock.

Data valid refers to a logic high of +100 mV and a logic low of -100 mV. (7)

Note that these numbers are taken with delayed output clocks by writing the following registers: address A9h, value 02h; and address (8) ACh, value 60h. Refer to the Serial Interface Registers section. By default after reset, minimum setup time and minimum hold times are 520 ps each.

The setup and hold times of a channel are measured with respect to the same channel output clock. (9)

	Table 2. L\	/DS Timings	Across	Lower Sam	pling Frec	uencies
--	-------------	-------------	--------	-----------	------------	---------

SAMPLING FREQUENCY	SETU	P TIME (ns)		HOL	D TIME (ns)	
(MSPS)	MIN	TYP	MAX	MIN	TYP	MAX
210	0.89	1.03		0.82	1.01	
185	1.06	1.21		0.95	1.15	

TEXAS INSTRUMENTS

www.ti.com

PARAMETRIC MEASUREMENT INFORMATION

LVDS OUTPUT TIMING

Figure 1 shows a timing diagram of the LVDS output voltage levels. Figure 2 shows the latency described in the Timing Requirements table.

Figure 2. Latency Timing

SBAS589B-AUGUST 2012-REVISED NOVEMBER 2012

PARAMETRIC MEASUREMENT INFORMATION (continued)

All 14 data bits of one channel (11 data bits in default SNRBoost^{3G+} mode) are included in the digital output interface at the same time, as shown in Figure 3. Channel A and C data are output on the rising edge of the output clock while channels B and D are output on the falling edge of the output clock.

Figure 3. LVDS Output Interface Timing

www.ti.com

PIN CONFIGURATION

	ZCR PACKAGE BGA-144 (TOP VIEW)											
	1	2	3	4	5	6	7	8	9	10	11	12
A	AVDD	AVDD	CINM	CINP	AVDD	VCM	VCM	AVDD	BINM	BINP	AVDD	AVDD
в	DINP	AVSS	AVDD	AVDD	AVSS	AVDD33	AVDD33	AVSS	AVDD	AVDD	AVSS	AINM
С	DINM	AVSS	AVSS	AVSS	AVSS	CLKINM	CLKINP	AVSS	AVSS	AVSS	AVSS	AINP
D	AVDD	AVDD	VCM	AVSS	AVSS	AVSS	AVSS	AVSS	AVSS	VCM	AVDD	AVDD
Е	AVDD33	AVDD33	SNRB	DRVSS	DRVSS	DRVSS	DRVSS	DRVSS	DRVSS	PDN	AVDD33	AVDD33
F	DCD13M	DCD13P	DRVDD	DRVSS	DRVSS	DRVSS	DRVSS	DRVSS	DRVSS	DRVDD	DAB13P	DAB13M
G	DCD12M	DCD12P	TRIG_EN	TRIG_RDY	HIRES	RESET	SCLK	SDATA	SEN	SDOUT	DAB12P	DAB12M
н	DCD11M	DCD11P	DCD6P	DCD6M	DRVDD	DRVDD	DRVDD	DRVDD	DAB6M	DAB6P	DAB11P	DAB11M
J	DCD10M	DCD10P	DCD5P	DCD5M	DCD2P	DRVDD	DRVDD	DAB2M	DAB5M	DAB5P	DAB10P	DAB10M
к	DCD9M	DCD9P	DCD4P	DCD4M	DCD2M	DRVDD	DRVDD	DAB2P	DAB4M	DAB4P	DAB9P	DAB9M
L	DCD8M	DCD8P	DCD3P	DCD3M	DCD1P	DCD1M	DAB1M	DAB1P	DAB3M	DAB3P	DAB8P	DAB8M
М	DCD7M	DCD7P	CLKOUT CDP	CLKOUT CDM	DCD0P/ OVRCDP	DCD0M/ OVRCDM	DAB0M/ OVRABM	DAB0P/ OVRABP	CLKOUT ABM	CLKOUT ABP	DAB7P	DAB7M

F3, F10, H5-H8, J6, J7, K6,

K7

E4-E9, F4-F9

G5

E10

G6

G7

G8

G10

G9

E3

G3

G4

A6, A7, D3, D10

I

I

0

T

Т

T

T

0

T

T

T

0

0

Digital 1.8-V power supply

Hardware reset; active high

Serial interface clock input

Serial interface data input

Serial interface data output

SNRB enable; active high

Trigger burst mode; active high

Serial interface enable

Digital ground

		PIN FUNCTIONS		
PIN	1/0	DESCRIPTION		
NUMBER	1/0	DESCRIPTION		
B12	I	Negative differential analog input for channel A		
C12	I	Positive differential analog input for channel A		
B6, B7, E1, E2, E11, E12	I	Analog 3.3-V power supply		
A1, A2, A5, A8, A11, A12, B3, B4, B9, B10, D1, D2, D11, D12	I	Analog 1.9-V power supply		
B2, B5, B8, B11, C2-C5, C8-C11, D4-D9	I	Analog ground		
A9	Ι	Negative differential analog input for channel B		
A10	I	Positive differential analog input for channel B		
A3	I	Negative differential analog input for channel C		
A4	I	Positive differential analog input for channel C		
C6	I	Negative differential clock input		
C7	I	Positive differential clock input		
M9	0	Negative differential LVDS clock output for channel A and B		
M10	0	Positive differential LVDS clock output for channel A and B		
M4	0	Negative differential LVDS clock output for channels C and D		
M3	0	Positive differential LVDS clock output for channels C and D		
F11, F12, G11, G12, H9-H12, J8-J12, K8-K12, L7-L12, M7, M8, M11, M12	0	DDR LVDS outputs for channels A and B. In 11-bit mode, DAB13 is the MSB, DAB3 is the LSB, and DAB0 is the over-range (OVR) bit. In 14-bit burst mode, DAB13 is the MSB and DAB0 is the LSB. There is no OVR bit in this mode.		
F1, F2, G1, G2, H1-H4, J1-J5, K1-K5, L1-L6, M1, M2, M5, M6	0	DDR LVDS outputs for channels C and D. In 11-bit mode, DCD13 is the MSB, DCD3 is the LSB, and DCD0 is the OVR bit. In 14-bit burst mode, DCD13 is the MSB and DCD0 is the LSB. There is no OVR bit in this mode.		
C1	Ι	Negative differential analog input for channel D		
B1	Ι	Positive differential analog input for channel D		

Indication in burst mode if output data is high or low resolution

Indication if ADC is ready for another high-resolution burst mode

Common-mode voltage for analog inputs. All VCM pins are internally connected together.

Power-down control; active high. Logic high is power down.

TEXAS INSTRUMENTS

AINM AINP AVDD33

AVDD

AVSS BINM BINP CINM CINP CLKINM CLKINP CLKOUTABM CLKOUTABP CLKOUTCDM CLKOUTCDP DAB[13:1]P, DAB0P/OVRABP, DAB[13:1]M, DAB0M/OVRABM DCD[13:1]P, DCD0P/OVRCDP, DCD[13:1]M, DCD0M/OVRCDM DINM DINP

DRVDD

DRVSS

HIRES

PDN

RESET

SCLK

SDATA

SDOUT

SEN

SNRB

TRIG_EN

TRIG_RDY

VCM

www.ti.com

SBAS589B-AUGUST 2012-REVISED NOVEMBER 2012

SBAS589B-AUGUST 2012-REVISED NOVEMBER 2012

FUNCTIONAL BLOCK DIAGRAM

SBAS589B-AUGUST 2012-REVISED NOVEMBER 2012

TYPICAL CHARACTERISTICS

At +25°C, AVDD = 1.9 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, rated sampling frequency, 0-dB gain, 14-bit burst mode, sine wave input clock, 1.5-V_{PP} differential clock amplitude, 50% clock duty cycle, -1-dBFS differential analog input, DDR LVDS output interface, and 32k-point FFT, unless otherwise noted.

FFT IN 14-BIT MODE INPUT FREQUENCY

(170 MHz)

www.ti.com

TYPICAL CHARACTERISTICS (continued)

At +25°C, AVDD = 1.9 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, rated sampling frequency, 0-dB gain, 14-bit burst mode, sine wave input clock, 1.5-V_{PP} differential clock amplitude, 50% clock duty cycle, -1-dBFS differential analog input, DDR LVDS output interface, and 32k-point FFT, unless otherwise noted.

FFT IN 11-BIT MODE WITH SNRBoost^{3G+} INPUT FREQUENCY (150 MHz, 90-MHz Bandwidth)

Figure 9.

FFT IN 11-BIT MODE WITH SNRBoost^{3G+} INPUT FREQUENCY (230 MHz, 90-MHz Bandwidth)

www.ti.com

TYPICAL CHARACTERISTICS (continued)

At +25°C, AVDD = 1.9 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, rated sampling frequency, 0-dB gain, 14-bit burst mode, sine wave input clock, 1.5-V_{PP} differential clock amplitude, 50% clock duty cycle, -1-dBFS differential analog input, DDR LVDS output interface, and 32k-point FFT, unless otherwise noted.

TYPICAL CHARACTERISTICS (continued)

At +25°C, AVDD = 1.9 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, rated sampling frequency, 0-dB gain, 14-bit burst mode, sine wave input clock, 1.5-V_{PP} differential clock amplitude, 50% clock duty cycle, -1-dBFS differential analog input, DDR LVDS

Figure 18.

Figure 19.

G016

G015

www.ti.com

SBAS589B-AUGUST 2012-REVISED NOVEMBER 2012

TYPICAL CHARACTERISTICS (continued)

At +25°C, AVDD = 1.9 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, rated sampling frequency, 0-dB gain, 14-bit burst mode, sine wave input clock, 1.5-V_{PP} differential clock amplitude, 50% clock duty cycle, -1-dBFS differential analog input, DDR LVDS output interface, and 32k-point FFT, unless otherwise noted.

TYPICAL CHARACTERISTICS (continued)

At +25°C, AVDD = 1.9 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, rated sampling frequency, 0-dB gain, 14-bit burst mode, sine wave input clock, 1.5-V_{PP} differential clock amplitude, 50% clock duty cycle, -1-dBFS differential analog input, DDR LVDS output interface, and 32k-point FFT, unless otherwise noted.

Figure 24.

SPURIOUS-FREE DYNAMIC RANGE vs

Figure 25.

www.ti.com

TYPICAL CHARACTERISTICS (continued)

At +25°C, AVDD = 1.9 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, rated sampling frequency, 0-dB gain, 14-bit burst mode, sine wave input clock, $1.5-V_{PP}$ differential clock amplitude, 50% clock duty cycle, -1-dBFS differential analog input, DDR LVDS output interface, and 32k-point FFT, unless otherwise noted.

TYPICAL CHARACTERISTICS (continued)

At +25°C, AVDD = 1.9 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, rated sampling frequency, 0-dB gain, 14-bit burst mode, sine wave input clock, 1.5-V_{PP} differential clock amplitude, 50% clock duty cycle, -1-dBFS differential analog input, DDR LVDS output interface, and 32k-point FFT, unless otherwise noted.

ADS58H40

SBAS589B-AUGUST 2012-REVISED NOVEMBER 2012

www.ti.com

TYPICAL CHARACTERISTICS (continued)

At +25°C, AVDD = 1.9 V, AVDD3V = 3.3 V, DRVDD = 1.8 V, rated sampling frequency, 0-dB gain, 14-bit burst mode, sine wave input clock, $1.5-V_{PP}$ differential clock amplitude, 50% clock duty cycle, -1-dBFS differential analog input, DDR LVDS output interface, and 32k-point FFT, unless otherwise noted.

DEVICE CONFIGURATION

The ADS58H40 can be configured with a serial programming interface (SPI), as described in the Serial Interface section. In addition, the device has control pins that control power-down and SNRBoost^{3G+} operation.

SERIAL INTERFACE

The ADC has a set of internal registers that can be accessed by the serial interface formed by the SEN (serial interface enable), SCLK (serial interface clock), SDATA (serial interface input data), and SDOUT (serial interface read back data) pins. The serial shift of bits into the device is enabled when SEN is low. Serial data (SDATA) are latched at every SCLK falling edge when SEN is active (low). The serial data are loaded into the register at every 16th SCLK falling edge when SEN is low. When the word length exceeds a multiple of 16 bits, the excess bits are ignored. Data can be loaded in multiples of 16-bit words within a single active SEN pulse. The first eight bits form the register address and the remaining eight bits are the register data. The interface can function with SCLK frequencies from 20 MHz down to very low speeds (of a few hertz) and also with a non-50% SCLK duty cycle.

Register Initialization

After power-up, the internal registers must be initialized to the default values. This initialization can be accomplished in one of two ways:

- 1. Either through a hardware reset by applying a high pulse on the RESET pin (of widths greater than 10 ns), as shown in Figure 40; or
- 2. By applying a software reset. When using the serial interface, set the RESET bit (D1 in register 00h) high. This setting initializes the internal registers to the default values and then self-resets the RESET bit low. In this case, the RESET pin is kept low.

Figure 40. Serial Interface Timing

Table 3. Timing Characteristics for Figure 40

J J L L	.		
PARAMETER	MIN	TYP	МА
SCLK frequency (equal to 1 / t _{SCLK})	> dc		2

	PARAMETER	MIN	TYP	MAX	UNIT
f _{SCLK}	SCLK frequency (equal to 1 / t _{SCLK})	> dc		20	MHz
t _{SLOADS}	SEN to SCLK setup time	25			ns
t _{SLOADH}	SCLK to SEN hold time	25			ns
t _{DSU}	SDI setup time	25			ns
t _{DH}	SDI hold time	25			ns

t_{DH}

Serial Register Readout

The device includes a mode where the contents of the internal registers can be read back, as shown in Figure 41. This read-back mode can be useful as a diagnostic check to verify the serial interface communication between the external controller and ADC.

- 1. Set the READOUT register bit to '1'. This setting disables any further writes to the registers except register address 00h.
- 2. Initiate a serial interface cycle specifying the address of the register (A[7:0]) whose content must be read.
- 3. The device outputs the contents (D[7:0]) of the selected register on the SDOUT pin (pin G10).
- 4. The external controller can latch the contents at the SCLK falling edge.
- 5. To enable register writes, reset the READOUT register bit to '0'.

Note that the contents of register 00h cannot be read back because the register contains RESET and READOUT bits. When the READOUT bit is disabled, the SDOUT pin is in a high-impedance state. If serial readout is not used, the SDOUT pin must not be connected (must float).

The SDOUT pin functions as a serial readout (READOUT = 1).

b) Read contents of Register 45h. This register is initialized with 04h.

Figure 41. Serial Readout Timing Diagram

SDOUT comes out at the SCLK rising edge with an approximate delay (t_{SD DELAY}) of 8 ns, as shown in Figure 42.

Figure 42. SDOUT Delay Timing

SBAS589B-AUGUST 2012-REVISED NOVEMBER 2012

SERIAL INTERFACE REGISTERS

 Table 4 summarizes the ADS58H40 registers.

REGISTER	REGISTER DATA								
ADDRESS	D7	De	DE	D4		D2	D1	DA	
A[7:0] (Hex)	0	0	0	04	0	0	DI	PEADOUIT	
01	0	0		SWING	0	0	0	0	
			2000	00000	DIGITAL GAIN			-	
25		DIGITAL	GAIN CH B		BYPASS CH B		EST PATTERN CH	В	
2B		DIGITAL C	GAIN CH A		DIGITAL GAIN BYPASS CH A	٢	EST PATTERN CH	A	
31		DIGITAL C	GAIN CH D		DIGITAL GAIN BYPASS CH D	1	EST PATTERN CH	D	
37		DIGITAL C	GAIN CH C		DIGITAL GAIN BYPASS CH C	1	EST PATTERN CH	с	
3D	0	0	SEL OFFSET CORR	0	0	0	0	0	
3F	0	0			CUSTOM PA	TTERN[13:8]			
40			1	CUSTOM P	ATTERN[7:0]			1	
41	0	0	0		HIGH RESOLUTIO	ON SAMPLES, NH		AUTO BURST ENABLE	
42	0	0	0	0	DIGITAL ENABLE	SNRB 45/95MHz	LOW RESOLUTION	ON SAMPLES, NL	
44	BMODE EN CH CD	BMODE EN CH AB	0	0	0	BMODE OVR ENABLE	0	DIS SNRB	
45	0	0	0	0	SEL OVR	GLOBAL POWER DOWN	0	CONFIG PDN PIN	
A9	0	0	0	0		CLOCKOUT DELAY PROG CH AB			
AC	0 CLOCKOUT DELAY PROG CH CD 0 0					0	0		
C3				FAST OVR T	HRESH PROG				
C4	EN FAST OVR THRESH	0	0	0	0	0	0	0	
CF	0	0	0	0	SPECIAL MODE 0	0	0	0	
D4	SPECIAL MODE 1	0	0	0	0	0	0	0	
D5	SPECIAL MODE 2	0	0	0	0	0	0	0	
D6	SPECIAL MODE 3	0	0	0	0	0	0	0	
D7	0	0	0	0	SPECIAL MODE 5	SPECIAL MODE 4	0	0	
DB	0	0	SPECIAL MODE 7	SPECIAL MODE 6	0	0	0	0	
F0	0	0	SPECIAL MODE 10	SPECIAL MODE 9	SPECIAL MODE 8	0	0	0	
F1	0	0	SPECIAL MODE 11	0	0	ENA	BLE LVDS SWING P	ROG	
F5	0	SPECIAL MODE 13	0	0	0	0	SPECIAL MODE 12	0	
4A	0	0	0	0	0	0	0	SPECIAL MODE 14	
62	0	0	0	0	0	0	0	SPECIAL MODE 15	
92	0	0	0	0	0	0	0	SPECIAL MODE 16	
7A	0	0	0	0	0	0	0	SPECIAL MODE 17	
EA	SNRB PIN OVRD	0	0	0	0	0	0	0	
FE	0	0	0	0	PDN CH D	PDN CH C	PDN CH A	PDN CH B	

Table 4. Register Map

DESCRIPTION OF SERIAL REGISTERS

www.ti.com

		Regis	ter Address	00h (Default =	= 00h)					
D7	D6	D5	D4	D3	D2	D1	D0			
0	0	0	0	0	0	RESET	READOUT			
Bits D[7:2]	Alwa	ays write '0'								
Bit D1	RES	ET: Software	reset applied							
	This	bit resets all in	ternal register	s to the defau	t values and s	elf-clears to '0	'.			
Bit D0	READOUT: Serial readout									
 0 = Serial readout of registers disabled; the SDOUT pin is placed in a high-impedance state. 1 = Serial readout enabled; the SDOUT pin functions as a serial data readout with CMOS logic levels running from the DRVDD supply. 										
D7	D6	D5	D4	D3	, D2	D1	D0			
		LVDS S	SWING			0	0			
Bits D[7:2]	LVD Thes are s 0000 0110 1100 0101 0011	S SWING: LVI se bits program set to '11'. 000 = Default L $011 = \pm 420 \text{-mV}$ $010 = \pm 470 \text{-mV}$ $00 = \pm 560 \text{-mV}$ $11 = \pm 160 \text{-mV}$	DS swing pro the LVDS sw VDS swing; ±4 LVDS swing LVDS swing LVDS swing LVDS swing	grammability ing only after t 350 mV with a with an externa with an externa with an externa with an externa	the ENABLE L n external 100 al 100-Ω termi al 100-Ω termi al 100-Ω termi al 100-Ω termi	VDS SWING I -Ω termination nation nation nation nation	PROG bits			
Bits D[1:0]	Alwa	ays write '0'								

Texas Instruments

Register Address 25h (Default = 00h)										
D7	D6 D5	D4	D3	D2	D1	D0				
	DIGITAL GAIN CH B		DIGITAL GAIN BYPASS CH B	Т	EST PATTERN C	НВ				
Bits D[7:4]	DIGITAL GA	IN CH B: C	hannel B digital gain progr	ammabilit	у					
	These bits so channel B. S	et the digital Set the DIGI	gain programmability from 0 FAL ENABLE bit to '1' before	dB to 6 dE hand to en	3 in 0.5-dB ste able this featu	ps for re.				
8:4 02	0000 = 0 - dB $0001 = 0.5 - c$ $0010 = 1 - dB$ $0011 = 1.5 - c$ $0100 = 2 - dB$ $0101 = 2.5 - c$ $0110 = 3 - dB$ $0111 = 3.5 - c$ $1000 = 4 - dB$ $1001 = 4.5 - c$ $1010 = 5 - dB$ $1011 = 5.5 - c$ $1100 = 6 - dB$	gain IB gain gain IB gain gain IB gain gain IB gain gain IB gain gain	CH B. Channel B digital a		-					
Bit D3	DIGITAL GA	IN BYPASS	S CH B: Channel B digital g	ain bypas	S					
	0 = Normal o 1 = Digital ga	operation ain feature fo	or channel B is bypassed							
Bits D[2:0]	TEST PATTERN CH B: Channel B test pattern programmability									
	These bits p 000 = Norma 001 = Outpu 010 = Outpu 011 = Outpu	These bits program the test pattern for channel B. 000 = Normal operation 001 = Outputs all 0s 010 = Outputs all 1s 011 = Outputs toggle pattern								
	In 11-bit m <i>01010101</i> In 14-bit b <i>01010101</i>	node, output 010. urst mode, c 010101 and	data (D[10:0]) are an alterna output data ([D:0]) are an alte <i>10101010101010.</i>	ting seque rnating sec	nce of <i>101010</i> quence of	<i>10101</i> and				
	100 = Outpu	ts digital ran	np							
	In 11-bit m code 0 to In 14-bit b code 0 to	In 11-bit mode, output data increments by one 11-bit LSB every 8th clock cycle from code 0 to code 2047. In 14-bit burst mode, output data increments by one 14-bit LSB every clock cycle from code 0 to code 16383								
	101 = Outpu	ts custom pa	attern							
	To prograi registers 3 To prograi registers 3	To program a pattern in 11-bit mode, use the CUSTOM PATTERN D[13:3] bits of registers 3Fh and 40h. To program a pattern in 14-bit mode, use the CUSTOM PATTERN D[13:0] bits of registers 3Fh and 40h.								
	110 = Unuse 111 = Unuse	ed ed								

SBAS589B-AUGUST 2012-REVISED NOVEMBER 2012

Register Address 2Bh (Default = 00h)											
D7	D6 D5 D4	D3	D2	D1	D0						
	DIGITAL GAIN CH A	DIGITAL GAIN BYPASS CH A	TES	T PATTERN CI	HA						
Bits D[7:4]	DIGITAL GAIN CH A: 0 These bits set the digita channel A. Set the DIG 0000 = 0-dB gain 0001 = 0.5-dB gain 0010 = 1-dB gain 0011 = 1.5-dB gain 0100 = 2-dB gain 0101 = 2.5-dB gain 0110 = 3-dB gain 0111 = 3.5-dB gain 1000 = 4-dB gain 1001 = 4.5-dB gain 1010 = 5-dB gain	Channel A digital gain program I gain programmability from 0 dl TAL ENABLE bit to '1' beforeha	nmability B to 6 dB ir nd to enab	າ 0.5-dB step e this featur	ps for re.						
	1011 = 5.5-dB gain 1100 = 6-dB gain										
Bit D3		S CH A: Channel A digital gai	n bypass								
2	0 = Normal operation 1 = Digital gain feature	for channel A is bypassed									
Bits D[2:0]	TEST PATTERN CH A	: Channel A test pattern progr	ammability	/							
	These bits program the test pattern for channel A. 000 = Normal operation 001 = Outputs all 0s 010 = Outputs all 1s 011 = Outputs toggle pattern										
	In 11-bit mode, outpu 01010101010. In 14-bit burst mode, 01010101010101	t data (D[10:0]) are an alternatin output data ([D:0]) are an altern 1 <i>10101010101010.</i>	ng sequenc ating seque	e of <i>101010</i> ence of	<i>10101</i> and						
	100 = Outputs digital ra	mp									
	In 11-bit mode, outpuccode 0 to code 2047. In 14-bit burst mode, code 0 to code 16383	t data increments by one 11-bit output data increments by one 1 3	LSB every 14-bit LSB	8th clock cy every clock	cle from						
	101 = Outputs custom p	pattern									
	To program a pattern registers 3Fh and 40l To program a pattern registers 3Fh and 40l	in 11-bit mode, use the CUSTC n. in 14-bit mode, use the CUSTC n.	OM PATTER	₹N D[13:3] b ₹N D[13:0] b	bits of						
	110 = Unused 111 = Unused										

TEXAS INSTRUMENTS

SBAS589B-AUGL	JST 2012-R	EVISED NOVEMBE	R 2012					www.ti.com
			Register A	Address 31h (Defa	ult = 00h)			
D7	D6	D5	D4	D3		D2	D1	D0
	DIGITA	L GAIN CH D		DIGITAL GAIN BYP	ASS CH D	TE	ST PATTERN C	H D
Bits D[7:4]		DIGITAL GA	IN CH D: C	hannel D digital g	ain progra	ammability		
		These bits se channel D. S	et the digital set the DIGI	l gain programmabi TAL ENABLE bit to	lity from 0 '1' beforel	dB to 6 dB hand to ena	in 0.5-dB ste ble this featu	ps for ire.
		0000 = 0 - dB 0001 = 0.5 - d 0010 = 1 - dB 0011 = 1.5 - d 0100 = 2 - dB 0101 = 2.5 - d 0110 = 3 - dB 0111 = 3.5 - d 1000 = 4 - dB 1010 = 5 - dB 1011 = 5.5 - d 1100 = 6 - dB	gain B gain gain B gain gain B gain gain B gain gain B gain gain gain					
Bit D3		DIGITAL GA	IN BYPAS	S CH D: Channel [D digital g	ain bypass		
		0 = Normal c 1 = Digital ga	peration ain feature f	or channel A is byp	assed			
Bits D[2:0]		TEST PATTI	ERN CH D:	Channel D test pa	attern prog	grammabili	ty	
Bits D[2:0]		These bits pr 000 = Norma 001 = Output 010 = Output 011 = Output	rogram the t al operation ts all 0s ts all 1s ts toggle pa node, output	test pattern for char ttern	nnel D.	ina seauen	ce of 10101	010101 and
		010101010 In 14-bit bi 010101010	010. urst mode, c 010101 and	output data ([D:0]) a 1010101010101010.	are an alter	mating sequ	ience of	
		100 = Output	ts digital rar	np				
		In 11-bit m code 0 to o In 14-bit bu code 0 to o	ode, output code 2047. urst mode, c code 16383	data increments by	y one 11-b ents by one	it LSB every e 14-bit LSB	y 8th clock cy every clock	ycle from cycle from
		101 = Output	ts custom p	attern				
		To prograr registers 3 To prograr registers 3	n a pattern Fh and 40h n a pattern Fh and 40h	in 11-bit mode, use in 14-bit mode, use	e the CUST e the CUST	OM PATTE	:RN D[13:3] :RN D[13:0]	bits of bits of
		110 = Unuse 111 = Unuse	ed ed					

TEXAS INSTRUMENTS

www.ti.com

SBAS589B-AUGUST 2012-REVISED NOVEMBER 2012

Register Address 37h (Default = 00h)											
D7	D6 D5 D4	D3	D2	D1	D0						
	DIGITAL GAIN CH C	DIGITAL GAIN BYPASS CH C	TES	T PATTERN CI	HC						
Bits D[7:4]	DIGITAL GAIN CH C: These bits set the digita channel C. Set the DIG 0000 = 0-dB gain 0001 = 0.5-dB gain 0010 = 1-dB gain 0011 = 1.5-dB gain 0100 = 2-dB gain	Channel C digital gain program I gain programmability from 0 d ITAL ENABLE bit to '1' beforeha	nmability B to 6 dB ir and to enab	n 0.5-dB step le this featur	os for re.						
	0101 = 2.5-dB gain 0110 = 3-dB gain 0111 = 3.5-dB gain 1000 = 4-dB gain 1001 = 4.5-dB gain 1010 = 5-dB gain 1011 = 5.5-dB gain 1100 = 6-dB gain										
Bit D3	DIGITAL GAIN BYPAS	S CH C: Channel C digital gai	n bypass								
	0 = Normal operation 1 = Digital gain feature	for channel A is bypassed									
Bits D[2:0]	TEST PATTERN CH C: Channel C test pattern programmability										
	These bits program the test pattern for channel C. 000 = Normal operation 001 = Outputs all 0s 010 = Outputs all 1s 011 = Outputs toggle pattern										
	In 11-bit mode, outpu 01010101010. In 14-bit burst mode, 0101010101010101 and	t data (D[10:0]) are an alternatin output data ([D:0]) are an altern d <i>10101010101010.</i>	ng sequenc ating seque	e of <i>101010</i> ence of	<i>10101</i> and						
	100 = Outputs digital ra	mp									
	In 11-bit mode, outpu code 0 to code 2047. In 14-bit burst mode, code 0 to code 16383	t data increments by one 11-bit output data increments by one	LSB every 14-bit LSB	8th clock cy	cle from						
	101 = Outputs custom	pattern									
	To program a pattern registers 3Fh and 40 To program a pattern registers 3Fh and 40	in 11-bit mode, use the CUSTC n. in 14-bit mode, use the CUSTC n.	OM PATTEI OM PATTEI	RN D[13:3] b RN D[13:0] b	oits of						
	110 = Unused 111 = Unused										

		Register Add	lress 3Dh (D	efault = 00h	ı)		Register Address 3Dh (Default = 00h)									
D7	D6	D5	D4	D3	D2	D1	D0									
0	0	SEL OFFSET CORR	0	0	0	0	0									

Bits D[7:6] Always write '0'

Bit D5 SEL OFFSET CORR: Offset correction setting

This bit enables the offset correction feature for all four channels after the DIGITAL ENABLE bit is set to '1,' correcting mid-code to 1023. In addition, write the SPECIAL MODE 0 bit (register CFh, value 08h) for proper operation of the offset correction feature. Note that the offset correction feature should only be used in the default 11-bit mode. 0 = Offset correction disabled 1 = Offset correction enabled

Bits D[4:0] Always write '0'

Register Address 3Fh (Default = 00h)

D7	D6	D5	D4	D3	D2	D1	D0
0	0	CUSTOM PATTERN D13	CUSTOM PATTERN D12	CUSTOM PATTERN D11	CUSTOM PATTERN D10	CUSTOM PATTERN D9	CUSTOM PATTERN D8

Bits D[7:6] Always write '0'

Bits D[5:0] CUSTOM PATTERN D[13:8]

Set the custom pattern using these bits for all four channels.

Register Address 40h (Default = 00h)

D7	D6	D5	D4	D3	D2	D1	D0
CUSTOM							
PATTERN D7	PATTERN D6	PATTERN D5	PATTERN D4	PATTERN D3	PATTERN D2	PATTERN D1	PATTERN D0

Bits D[7:0] CUSTOM PATTERN D[7:0]

Set the custom pattern using these bits for all four channels.

ADS58H40

-U	TEXAS Instruments
Y	INSTRUMENTS

www.ti.com					SBAS5	89B – AUGUST	2012-REVISED NOVEMBER 2012				
	Register Address 41h (Default = 00h)										
D7	D6	D5	D4	D3	D2	D1	D0				
0	0	0	HIC	GH RESOLUTI	ON SAMPLES, NH	1	AUTO BURST ENABLE				
Bits D[7:5]		Always write '	'0'								
Bits D[4:1]	I	HIGH RESOLU	JTION SAMI	PLES, NH							
	-	These bits con	trol the numb	per of high-r	esolution samp	les in 14-b	pit burst mode with				
	l	=quation 1:					(1)				
	4	<u>2</u>					(1)				
	(0000: NH = 0									
	(0001: NH = 2									
	(0011: NH = 3									
	(0100: NH = 4									
	(0101: NH = 5									
	(J110: NH = 6									
		1000 NH = 8									
		1001: NH = 9									
		1010: NH = 10									
		1011: NH = 11									
		1100: NH = 12									
		1101: NH = 13									
		1110. NH = 14 1111: NH = 15									
Bit D0		AUTO BURST	ENABLE								
	() = 14-bit burs 1 = 14-bit burs	t mode disab t mode auto-	oled enabled							

D7

D6

SBAS589B – AUGUST	2012-REVISED	NOVEMBER 2012

Register Address 42h (Default = 00h) D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 DIGITAL ENABLE SNRB 45/90MHz LOW RESOLUTION SAMPLES, NL Bits D[7:4] Always write '0' Bit D3 **DIGITAL ENABLE** 1 = Digital gain and offset correction features disabled 1 = Digital gain and offset correction features enabled SNRB 45/90MHz: SNRBoost^{3G+} enable Bit D2 $0 = SNRBoost^{3G+}$ enabled with 90-MHz bandwidth (default after reset) 1 = SNRBoost^{3G+} enabled with 45-MHz bandwidth Bits D[1:0] LOW RESOLUTION SAMPLES, NL These bits control the number of low-resolution samples in 14-bit burst mode with Equation 2: 2^{13 + NH + NL} (2) 00: NL = 0 01: NL = 1 10: NL = 2 11: NL = 3 Register Address 44h (Default = 00h) D5 D4 D3 D1

BMODE EN CH CD	BMODE EN CH AB 0	0	0	BMODE OVR ENABLE	0	DIS SNRB
Bit D7	BMODE EN CH CD					
	0 = 14-bit burst mode disat 1 = 14-bit burst mode enab	oled for cha led for cha	annels C a Innels C a	nd D nd D		
Bit D6	BMODE EN CH AB					
	0 = 14-bit burst mode disat 1 = 14-bit burst mode enab	oled for cha led for cha	annels A a Innels A a	nd B nd B		
Bits D[5:3]	Always write '0'					
Bit D2	BMODE OVR ENABLE					
	This bit can only be used in 0 = 14-bit data comes out v 1 = The ADC data out bit (I (OVRxx) section for details	n 14-bit bur vithout an (Dxx[0]) bec	rst mode. OVR comes OV	Rxx. See the Overrang	e Indicat	tion
Bit D1	Always write '0'					
Bit D0	DIS SNRB: Disable SNRB	oost				
	This bit only functions when 0 = Default 1 = SNRBoost ^{3G+} is disable	n SNRB PI	N OVRD i ur channe	s set. Is.		

D2

www.ti.com

D0

ADS58H40

SBAS589B-AUGUST 2012-REVISED NOVEMBER 2012

Register Address 45h (Default = 00h)										
D7	D6	D5	D4	D3	I	02	D1	D0		
0	0	0	0	SEL OVR	GLOBAL PO	WER DOWN	0	CONFIG PDN PIN		
Bits D[7	':4]	Alw	ays writ	e '0'						
Bit D3		SEI	OVR: C	OVR selection						
	0 = Fast OVR selected 1 = Normal OVR selected. See the <i>Overrange Indication (OVRxx)</i> section for details.									
Bit D2		GL	OBAL PO	OWER DOWN						
	0 = Normal operation 1 = Global power down. All ADC channels, internal references, and output buffers are powered down. Wakeup time from this mode is slow (100 μ s).									
Bit D1		Alw	vays writ	e '0'						
Bit D0		CO	NFIG PD	N PIN						
Use this bit to configure PDN pin. 0 = The PDN pin functions as a standby pin. All channels are put in standby. Wake-up time from standby mode is fast (10 µs). 1 = The PDN pin functions as a global power-down pin. All ADC channels, internal references, and output buffers are powered down. Wake-up time from global power mode is slow (100 µs).										
Register Address A9h (Default = 00h)										
D7		D6	D	5 D4	D3	D2	D1	D0		
0		0	C	0		CLOCKOUT DELAY	PROG CH	AB		

Bits D[6:3] CLOCKOUT DELAY PROG CH AB

These bits program the clock out delay for channels A and B, see Table 5.

TEXAS INSTRUMENTS

www.ti.com

SBAS589B-AUGUST 2012-REVISED NOVEMBER 2012

Register Address ACh (Default = 00h)								
D7	D6	D5	D4	D3	D2	D1	D0	
0	CLOCKOUT DELAY PROG CH CD				0	0	0	

Bit D7 Always write '0'

Bits D[7:4] CLOCKOUT DELAY PROG CH CD

These bits program the clock out delay for channels C and D, as shown in Table 5.

Bits D[2:0] Always write '0'

Table 5. Clock Out Delay Programmability for All Channels

CLOCKOUT DELAY PROG CHxx	DELAY (ps)
0000	0
0001	-30
0010	70
0011	30
0100	-150
0101	-180
0110	-70
0111	-110
1000	270
1001	230
1010	340
1011	300
1100	140
1101	110
1110	200
1111	170

Register Address C3h (Default = 00h)

D7	D6	D5	D4	D3	D2	D1	D0	
FAST OVR THRESH PROG								

Bits D[7:0]

FAST OVR THRESH PROG

The ADS58H40 has a fast OVR mode that indicates an overload condition at the ADC input. The input voltage level at which the overload is detected is referred to as the threshold and is programmable using the FAST OVR THRESH PROG bits. FAST OVR is triggered seven output clock cycles after the overload condition occurs. To enable the FAST OVR programmability, enable the EN FAST OVR THRESH register bit. The threshold at which fast OVR is triggered is (full-scale × [the decimal value of the FAST OVR THRESH PROG bits] / 255).

After reset, when EN FAST OVR THRESH PROG is set, the default value of the FAST OVR THRESH PROG bits is 230 (decimal).

vw.ti.com SBAS589B - AUGUST 2012 - REVISED NO						NOVEMBER 2	
	F	Register Add	dress C4h (I	Default = 00h	ı)		
D7	D6	D5	D4	D3	D2	D1	D0
EN FAST OVR THRESH	I 0	0	0	0	0	0	0
Bit D7	EN FAST OV	R THRESH					
	This bit enable	es the ADS5	8H40 to be p	rogrammed to	o select the	fast OVR thre	eshold.
Bits D[6:0]	Always write	'0'					
	F	Register Ado	dress CFh (I	Default = 00h	ı)		
D7 D6	D5	D4	[03	D2	D1	D0
0 0	0	0	SPECIA	MODE 0	0	0	0
Bits D[7:4]	Always write	'0'					
Bit D3	SPECIAL MO	DE 0					
	This bit must I	be set to '1' v	when the SE	L OFFSET C	ORR bit is se	elected.	
Bits D[2:0]	Always write	'0'					
		Pagistar Ad	dress D/h (I	Default – 00h			
D7	D6	D5	D4 D4	D3	D2	D1	D0
SPECIAL MODE 1	0	0	0	0	0	0	0
	Refer to Table	a 1 for optime	al performance	e in a given f	frequency ba	and and sour	се
	impedance.		·	U			
Bits D[6:0]	Always write	'0'					
	F	Register Ado	dress D5h (I	Default = 00h	ı)		
D7	D6	D5	D4	D3	D2	D1	D0
SPECIAL MODE 2	0	0	0	0	0	0	0
Bit D7	SPECIAL MO	DE 2					
	Refer to Table	a 1 for optime	al performance	ce in a given f	frequency ba	ind and sour	се
Bits D[6:0]	Always write	'0'					
		Desister Ad	drago DCh /I				
D7	D6		D4		ני D2	D1	D0
SPECIAL MODE 3	0	0	0	0	0	0	0
Bit D7	SPECIAL MO	DE 3					
	Refer to Table	a 1 for optime	al performance	ce in a given f	frequency ba	ind and sour	се
		' O '					
lits D[6:0]	Refer to Table impedance. Always write	e 1 for optima	al performano	ce in a given f	frequency ba	ind and sour	ce

SBAS589B-A	AUGUST 2012-	REVISED NOVEM	3ER 2012						www.ti.com
			Registe	r Address D7h	(Defaul	t = 00h)			
D7	D6	D5	D4	D3		D	2	D1	D0
0	0	0	0	SPECIAL MOL	DE 5	SPECIAL	MODE 4	0	0
Bits D[7:	4]	Always wr	ite '0'						
Bit D3	-	SPECIAL N	NODE 5						
		Refer to Ta	<mark>ble 1</mark> for o	ptimal performa	nce in a	given freq	uency band	and source	9
Bit D2		SPECIAL N	NODE 4						
		Refer to Ta impedance.	<mark>ble 1</mark> for o	ptimal performa	nce in a	given freq	uency band	and source	9
Bits D[1:	0]	Always wr	ite '0'						
			Registe	r Address DBh	(Defau	lt = 00h)			
D7	D6	D	5	D4	(D3	D2	D1	D0
0	0	SPECIAL	MODE 7	SPECIAL MOL	DE 6	0	0	0	0
	C 1		ita '0'						
	0]	SDECIAL N							
				ntimal norfarma	nan in n	aiven fred	uanay hand	and course	
		impedance		pumai penorma	nce in a	given neq	uency band	and source	;
Bit D4		SPECIAL N	NODE 6						
		Refer to Ta impedance.	<mark>ble 1</mark> for o	ptimal performa	nce in a	given freq	uency band	and source	9
Bits D[3:	0]	Always wr	ite '0'						
			Registe	r Address F0h	(Defaul	t = 00h)			
D7	D6	D5	U	D4	•	D3	D2	D1	D0
0	0	SPECIAL MOD	DE 10 S	PECIAL MODE 9	SPE	CIAL MODE 8	8 0	0	0
Bits D[7:	6]	Always wr	ite '0'						
Bit D5	-	SPECIAL N	NODE 10						
		Refer to Ta	ble 1 for o	ptimal performa	nce in a	given freq	uency band	and source	•
Bit D4		SPECIAL N	NODE 9						
		Refer to Ta	ble 1 for o	ptimal performa	nce in a	given freq	uency band	and source	9
Bit D3		SPECIAL N	NODE 8						
-		Refer to Ta	ble 1 for o	ptimal performa	nce in a	given freq	uency band	and source)

www.ti.com					SE	BAS589B-AUG	UST 2012-REVISED N	OVEMBER 2012		
		F	Register Ad	dress F1h	(Default = 0	0h)				
D7	D6	D	5	D4	D3	, D2	D1	D0		
0	0	SPECIAL	MODE 11	0	0	EN	ABLE LVDS SWING	PROG		
Bits D[7:6]	А	lwavs write '	'0'							
Rit D7	S	SPECIAL MODE 11								
	R in	Refer to Table 1 for optimal performance in a given frequency band and source impedance.								
Bits D[4:3]	Α	lways write	'0'							
Bits D[2:0]	E	NABLE LVD	S SWING P	ROG						
	This bit enables the LVDS swing control with the LVDS SWING bits. 00 = LVDS swing control disabled 01 = Do not use 10 = Do not use 11 = LVDS swing control enabled									
		F	Register Ad	dress F5h	(Default = 0	0h)	- /			
D7			D5	D4)2 D SE				
0	OF LOTAL MC		U	0				0		
Bit D7	Α	lways write	'0'							
Bit D6	S	PECIAL MOI	DE 13							
	R in	efer to Table	1 for optima	al performar	nce in a give	n frequency	v band and sourc	æ		
Bits D[5:2]	Α	lways write	'0'							
Bit D1	S	PECIAL MOI	DE 12							
	R in	efer to Table	1 for optima	al performar	nce in a give	n frequency	/ band and sourc	æ		
Bit D0	Α	lways write	'0'							
			ogistor Ad	drace 116		0h)				
D7	De	D5		ui כינא 4AII רא		ווט 1	ח	0		
0	0	0	0	0	0	0	SPECIAL	- MODE 14		

Bits D[7:1] Always write '0'

Bit D0 SPECIAL MODE 14

Set the SPECIAL MODE[17:14] bits high to reduce the minimum functional clock speed to 10 MSPS. Usage of these bits should be limited to functional checks only because performance degrades when these bits are set high.

Bit D0

Bit D0

Bit D0

TEXAS INSTRUMENTS

SBAS589B-AUG	BAS589B – AUGUST 2012 – REVISED NOVEMBER 2012 www.ti.com							
Register Address 62h (Default = 00h)								
D7	D6	D5	D4	D3	D2	D1	D0	
0	0	0	0	0	0	0	SPECIAL MODE 15	

Bits D[7:1] Always write '0'

SPECIAL MODE 15

Set the SPECIAL MODE[17:14] bits high to reduce the minimum functional clock speed to 10 MSPS. Usage of these bits should be limited to functional checks only because performance degrades when these bits are set high.

Register Address 92h (Default = 00h)

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	SPECIAL MODE 16

Bits D[7:1] Always write '0'

SPECIAL MODE 16

Set the SPECIAL MODE[17:14] bits high to reduce the minimum functional clock speed to 10 MSPS. Usage of these bits should be limited to functional checks only because performance degrades when these bits are set high.

Register Address 7Ah (Default = 00h)

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	SPECIAL MODE 17

Bits D[7:1] Always write '0'

SPECIAL MODE 17

Set the SPECIAL MODE[17:14] bits high to reduce the minimum functional clock speed to 10 MSPS. Usage of these bits should be limited to functional checks only because performance degrades when these bits are set high.

www.ti.com						SBAS589B-AU	GUST 2012-	REVISED	NOVEMBER 2012
Register Address EAh (Default = 00h)									
	D7		D6	D5	D4	D3	D2	D1	D0
5	SNRB PIN OVRD		0	0	0	0	0	0	0
Bit D7	SNRB PIN OVRD								
	0 = S 1 = S	0 = SNRBoost ^{3G+} is controlled by the SNRB pin. 1 = SNRBoost ^{3G+} is controlled by the DIS SNRB register bit.							
Bits D[6:0] Always write '0'									
Register Address FEh (Default = 00h)									
D7	D6	D5	D4	<u>.</u>	D3	D2	D	1	D0
0	0	0	0	PD	N CH D	PDN CH C	PDN (CH A	PDN CH B
Bits D[7:4]	Alwa	ys write '0'							
Bit D3	PDN	CH D: Power	-down ch	annel D					
	Chan	nel D is powe	red down.						
Bit D2	PDN	CH C: Power	-down ch	annel C					
	Chan	nel C is powe	red down.						
Bit D1	PDN	CH B: Power	-down ch	annel A					
	Chan	inel B is powei	ed down.						
Bit D0	PDN	CH A: Power	-down ch	annel B					
	Chan	inel A is powei	ed down.						

APPLICATION INFORMATION

THEORY OF OPERATION

The ADS58H40 is a quad-channel, 11-bit, analog-to-digital converter (ADC) with sampling rates up to 250 MSPS. At every falling edge of the input clock, the analog input signal for each channel is sampled simultaneously. The sampled signal in each channel is converted by a pipeline of low-resolution stages. In each stage, the sampled-and-held signal is converted by a high-speed, low-resolution, flash sub-ADC. The difference (residue) between the stage input and its quantized equivalent is gained and propagates to the next stage. At every clock, each subsequent stage resolves the sampled input with greater accuracy. The digital outputs from all stages are combined in a digital correction logic block and digitally processed to create the final code, after a data latency of 10 clock cycles. The digital output is available in a double data rate (DDR) low-voltage differential signaling (LVDS) interface and is coded in binary twos complement format.

ANALOG INPUT

The analog input consists of a switched-capacitor-based differential sample-and-hold architecture. This differential topology results in very good ac performance even for high input frequencies at high sampling rates.

The INP and INM pins must be externally biased around a common-mode voltage of 1.15 V, available on the VCM pin. For a full-scale differential input, each input pin (INP, INM) must swing symmetrically between VCM + 0.5 V and VCM – 0.5 V, resulting in a 2-V_{PP} differential input swing.

The input sampling circuit has a high 3-dB bandwidth that extends up to 500 MHz when a 50- Ω source drives the ADC analog inputs.

Drive Circuit Requirements

For optimum performance, the analog inputs must be driven differentially. This configuration improves the common-mode noise immunity and even-order harmonic rejection. A 5- Ω to 15- Ω resistor in series with each input pin is recommended to damp out ringing caused by package parasitics.

Spurious-free dynamic range (SFDR) performance can be limited because of several reasons (such as the effect of sampling glitches, sampling circuit nonlinearity, and quantizer nonlinearity that follows the sampling circuit). Depending on the input frequency, sampling rate, and input amplitude, one of these metrics plays a dominant part in limiting performance. At very high input frequencies, SFDR is determined largely by the device sampling circuit nonlinearity typically limits performance.

Glitches are caused by opening and closing the sampling switches. The driving circuit should present a low source impedance to absorb these glitches, otherwise these glitches may limit performance. A low impedance path between the analog input pins and VCM is required from the common-mode switching currents perspective as well. This impedance can be achieved by using two resistors from each input terminated to the common-mode voltage (VCM).

The ADS58H40 includes an internal R-C filter from each input to ground. The purpose of this filter is to absorb the sampling glitches inside the device itself. The R-C component values are also optimized to support high input bandwidth (up to 500 MHz). However, using an R-LC-R filter (refer to Figure 46, Figure 47, Figure 48, Figure 49, and Figure 50) improves glitch filtering, thus further resulting in better performance.

In addition, the drive circuit may have to be designed to provide a low insertion loss over the desired frequency range and matched source impedance. In doing so, the ADC input impedance must be considered. Figure 43, Figure 44, and Figure 45 show the impedance ($Z_{IN} = R_{IN} \parallel C_{IN}$) at the ADC input pins.

(1) X = A, B, C, or D.

(2) $Z_{IN} = R_{IN} \parallel (1/j\omega C_{IN}).$

Figure 43. ADC Equivalent Input Impedance

Figure 44. ADC Analog Input Resistance (R_{IN}) vs Frequency

Figure 45. ADC Analog Input Capacitance (C_{IN}) vs Frequency

Driving Circuit

Two example driving circuits with a $50-\Omega$ source impedance are shown in Figure 46 and Figure 47. The driving circuit in Figure 46 is optimized for input frequencies in the second Nyquist zone (centered at 185 MHz), whereas the circuit in Figure 47 is optimized for input frequencies in third Nyquist zone (centered at 310 MHz).

Note that both drive circuits are terminated by 50 Ω near the ADC side. This termination is accomplished with a 25- Ω resistor from each input to the 1.15-V common-mode (VCM) from the device. This architecture allows the analog inputs to be biased around the required common-mode voltage.

The mismatch in the transformer parasitic capacitance (between the windings) results in degraded even-order harmonic performance. Connecting two identical RF transformers back-to-back helps minimize this mismatch and good performance is obtained for high-frequency input signals.

Figure 46. Driving Circuit for a 50- Ω Source Impedance and Input Frequencies in the Second Nyquist Zone

Figure 47. Driving Circuit for a 50- Ω Source Impedance and Input Frequencies in the Third Nyquist Zone

ADS58H40

www.ti.com

Appropriate high-performance modes must be written to ensure best performance in a given Nyquist zone and source impedance. Table 6 summarizes all available high-performance modes.

			f _S = 245.	f _S = 184.32 MSPS			
ADDRESS (Hex)	DATA (Hex)	R _S = 50 ZONE = 2	R _S = 100 ZONE = 2	R _S = 50 ZONE = 3	R _S = 100 ZONE = 3	R _S = 50 ZONE = 2	R _S = 100 ZONE = 2
D4	80				\checkmark		
D5	80				\checkmark		
D6	80	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
D7	0C	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
DB	30				\checkmark		
F0	38					\checkmark	\checkmark
F1	20	\checkmark		\checkmark		\checkmark	
F5	42				\checkmark		

Table 6. I	High-Performance	Modes	Summarv ⁽¹⁾⁽²⁾
------------	------------------	-------	---------------------------

(1) R_S refers to the source impedance. Zone refers to the Nyquist zone in which the signal band lies. Zone = 2 corresponds to the signal band that lies between f_S / 2 and f_S . Zone = 3 corresponds to the signal band that lies between f_S and 3 x f_S / 2.

(2) Best performance can be achieved by writing these modes depending upon source impedance, band of operation, and sampling speed.

Two example driving circuits with $100-\Omega$ differential termination are shown in Figure 48 and Figure 49. In these example circuits, the 1:2 transformer (T1) is used to transform the 50- Ω source impedance into a differential 100 Ω at the input of the band-pass filter. In Figure 48, the parallel combination of two 68- Ω resistors and one 120-nH inductor and two 100- Ω resistors is used (100- Ω is the effective impedance in pass-band) for better performance. The required high-performance modes for these applications are given in Table 6.

Figure 48. Driving Circuit for a 100- Ω Source Impedance and Input Frequencies in the Second Nyquist Zone

www.ti.com

Input Common Mode

To ensure a low-noise, common-mode reference, the VCM pin should be filtered with a $0.1-\mu$ F low-inductance capacitor connected to ground. The VCM pin is designed to directly bias the ADC inputs (refer to Figure 46 to Figure 49).

Each ADC input pin sinks a common-mode current of approximately 1.5 μ A per MSPS of clock frequency. When a differential amplifier is used to drive the ADC (with dc-coupling), ensure that the output common-mode of the amplifier is within the acceptable input common-mode range of the ADC inputs (VCM ± 25 mV).

Clock Input

The ADS58H40 clock inputs can be driven differentially with a sine, LVPECL, or LVDS source with little or no difference in performance between them. The common-mode voltage of the clock inputs is set to 0.95 V using internal 5-k Ω resistors, as shown in Figure 50. This setting allows the use of transformer-coupled drive circuits for sine-wave clock or ac-coupling for LVPECL, LVDS, and LVCMOS clock sources (see Figure 51, Figure 52, and Figure 53).

For best performance, the clock inputs must be driven differentially, thereby reducing susceptibility to commonmode noise. TI recommends keeping the differential voltage between clock inputs less than 1.8 V_{PP} to obtain best performance. A clock source with very low jitter is recommended for high input frequency sampling. Bandpass filtering of the clock source can help reduce the effects of jitter. There is no change in performance with a non-50% duty cycle clock input.

C_{EQ} is 1 pF to 3 pF and is the equivalent input capacitance of the clock buffer.

Figure 50. Internal Clock Buffer

(1) R_T is the termination resistor (optional).

Figure 52. LVPECL Clock Driving Circuit

OVERVIEW OF OPERATING MODES

There are three available operating modes: 11-bit, 250-MSPS mode; 11-bit SNRBoost^{3G+}, 250-MSPS mode; and 14-bit, 250-MSPS mode (burst mode). Table 7 shows a summary of the operating modes.

		RESULTING MODE OF OPERATION				
PIN SETTING	REGISTER SETTING	CHANNELS A AND B	CHANNELS C AND D			
Default (after power up)	_	11 bit, 250 MSPS	11 bit, 250 MSPS			
	—	SNRBoost ^{3G+} , 90 MHz	SNRBoost ^{3G+} , 90 MHz			
Set SNRB pin high	Set SNRB 45/95MHz bit (register 42h, value 4h)	SNRBoost ^{3G+} , 45 MHz	SNRBoost ^{3G+} , 45 MHz			
Set SNRB pin high	Set BMODE EN CH AB bit (register 44h, value 40h)	Burst mode: Low resolution = 11 bits at 250 MSPS High resolution = 14 bits at 250 MSPS	SNRBoost ^{3G+} , 90 MHz			
Set SNRB pin high	Set BMODE EN CH CD bit (register 44h, value 80h)	SNRBoost ^{3G+} , 90 MHz	Burst mode: Low resolution = 11 bits at 250 MSPS High resolution = 14 bits at 250 MSPS			
Set SNRB pin low (default)	Set both BMODE EN CH AB and BMODE EN CH CD bits (register 44h, value C0h)	Burst mode: Low resolution = 11 bits at 250 MSPS High resolution = 14 bits at 250 MSPS	Burst mode: Low resolution = 11 bits at 250 MSPS High resolution = 14 bits at 250 MSPS			

Table 7. Operating Mode Summary

11-Bit, 250-MSPS Mode: Output of the 11 MSBs on the digital DDR LVDS interface.

11-Bit SNRBoost^{3G+}, 250-MSPS Mode: 11-bit output using SNRBoost^{3G+} signal processing.

- 90-MHz wide (centered on $f_S / 4$)
- + 45-MHz wide (centered on f_S / 8 and 3 f_S / 8)

14-Bit, 250-MSPS (Burst) Mode: In burst mode, the 14-bit, 250-MSPS digital output data stream alternates between high resolution (14-bit) and low resolution (11-bit). The high-resolution sample can be transmitted using the burst trigger input (TRIG_EN). The HIRES output flag indicates high-resolution data. The amount of high-resolution samples is programmable.

SBAS589B-AUGUST 2012-REVISED NOVEMBER 2012

CI KM

Figure 54. Typical LVCMOS Clock Driving Circuit

- Auto-Trigger Mode: After transmission of the final low-resolution sample, the ADS58H40 immediately begins sending the high-resolution samples. However, auto-trigger mode requires an initial trigger at the TRIG_EN pin to start the high-resolution process. Thereafter, all subsequent triggers are automated.
- Manual-Trigger Mode: After transmission of the final low-resolution sample, the ADS58H40 is ready for the manual trigger of a high-resolution data burst indicated by the TRIG_RDY flag. The high-resolution samples are triggered every time by the rising edge of the pulse on the TRIG_EN pin.

The default mode of operation is 11-bit resolution. A set of two channels (channels A and B and channels C and D) can be in either SNRBoost^{3G+} mode or in burst mode, separately.

SNRBoost^{3G+} can be enabled by the SNRB pin or by the SPI bit (SNRB PIN OVRD). However, burst mode can only be enabled by using an SPI register bit. In burst mode, the automatic trigger can be enabled by setting the SPI register bit AUTO BURST ENABLE (register 41h, bit 0) and the manual trigger can be enabled through the TRIG_EN pin. Table 7 summarizes the process for enabling SNRBoost^{3G+} from pin settings and enabling burst mode from the SPI registers on different channels.

Burst Mode

After enabling burst mode, the device is limited to 11-bit (low-resolution) samples until a trigger is asserted through the TRIG_EN pin. A TRIG_EN rising edge causes the device to output a set of 14-bit (high-resolution) samples, followed by another set of 11-bit (low-resolution) samples.

In auto-trigger mode (set using the SPI register), this cycle repeats as long as the device is in burst mode. In manual-trigger mode, this cycle is followed by a delay until the next rising edge on the TRIG_EN pin occurs. During this cycle (high-resolution samples followed by low-resolution samples), any edge on TRIG_EN is ignored.

The HIRES output flag is set high when the device outputs high-resolution, 14-bit data; otherwise, HIRES is '0'. The TRIG_RDY output flag is set high while the device waits for a rising edge on the TRIG_EN pin; otherwise, this flag is cleared.

The ratio of high-resolution, 14-bit samples to low-resolution, 11-bit samples is programmable between 1:8 and 1:64. The number of high-resolution, 14-bit samples is also programmable.

The number of 14-bit, high-resolution samples is shown in Equation 3: $2^{10 + NH}$

where:

 $0 \le NH \le 15$

The number of 11-bit, low-resolution samples is shown in Equation 4: $2^{13 + NH + NL}$

where:

 $0 \le NL \le 3$

Both NH and NL parameters can be programmed through the SPI at any time, but are internally updated at the end of the high-resolution data transmission.

(3)

ADS58H40

www.ti.com

Manual-Trigger Mode

Figure 55 shows a timing diagram for this mode.

Figure 55. Timing For Manual-Trigger Mode

Auto-Trigger Mode

In this mode, the output data cycles automatically between 11-bit and 14-bit resolution, as shown in Figure 56. After the first rising edge of the pulse on TRIG_EN that turns the 14-bit burst mode on, the device continues to provide high-resolution samples interlaced with low-resolution samples and any subsequent edge on TRIG_EN is ignored. The TRIG_RDY output flag is invalid in this mode.

Figure 56. Timing for Auto-Trigger Mode

TEXAS INSTRUMENTS

www.ti.com

Overrange Indication (OVRxx)

The ADS58H40 outputs overrange information on the Dxx0P and Dxx0M pins (where xx = channels A and B or channels C and D) of the digital output interface. When transmitting high-resolution (14-bit) output data in burst mode, Dxx0P and Dxx0M transmit the output data LSB instead. An OVR timing diagram is shown in Figure 57.

Figure 57. Overrange Indicator (OVR) Timing

Normal overrange indication (OVR) shows the event of the ADS58H40 digital output being saturated when the input signal exceeds the ADC full-scale range. Normal OVR has the same latency as digital output data. However, an overrange event can be indicated earlier (than normal latency) by using the fast OVR mode. The fast OVR mode (enabled by default) is triggered seven clock cycles after the overrange condition that occurred at the ADC input. The fast OVR thresholds are programmable with the FAST OVR THRESH PROG bits (refer to Table 4, register address C3h). At any time, either normal or fast OVR mode can be programmed on the DxxOP and DxxOM pins. A block diagram indicating required register writes to enable OVR is shown in Figure 58.

Figure 58. OVR Block Diagram

SNRBoost^{3G+} Implementation

There are two possible filter configurations in SNRBoost^{3G+} mode. The SNRBoost^{3G+} bandwidth can be set to 90 MHz (Figure 59) or 45 MHz (Figure 60). In the 45-MHz mode, there are two 45-MHz filter bands available simultaneously. One band is centered on $f_S / 8$ (low side) and the other band is centered on 3 $f_S / 8$ (high side). The filter configurations are detailed in Table 8.

Table 8. SNRBoost^{3G+} Filter Configurations

	CORNER FR	EQUENCIES	
BANDWIDTH (MHz)	START	STOP	CENTER FREQUENCY
90	0.06 × f _S	0.44 × f _S	f _S / 4
45 (low side)	0.03 × f _S	0.216 × f _S	f _S / 8
45 (high side)	0.286 × f _S	0.466 × f _S	3 × f _S / 8

Figure 59. 90-MHz SNRBoost^{3G+} Filter Bandwidth Centered on f_S / 4

Figure 60. 45-MHz SNRBoost^{3G+} Filter Bandwidth Centered on f_S / 8 and 3 f_S / 8

SBAS589B-AUGUST 2012-REVISED NOVEMBER 2012

GAIN FOR SFDR AND SNR TRADE-OFF

The ADS58H40 includes gain settings that can be used to obtain improved SFDR performance. The gain is programmable from 0 dB to 6 dB (in 0.5-dB steps) using the DIGITAL GAIN CH X register bits. For each gain setting, the analog input full-scale range scales proportionally, as shown in Table 9.

GAIN (dB)	ТҮРЕ	FULL-SCALE (V _{PP})
0	Default after reset	2
1	Fine, programmable	1.78
2	Fine, programmable	1.59
3	Fine, programmable	1.42
4	Fine, programmable	1.26
5	Fine, programmable	1.12
6	Fine, programmable	1

Table 9. Full-Scale Range Across Gains

SFDR improvement is achieved at the expense of SNR; for each gain setting, SNR degrades by approximately 0.5 dB to 1 dB. SNR degradation is diminished at high input frequencies. As a result, the fine gain is very useful at high input frequencies because SFDR improvement is significant with marginal degradation in SNR. Therefore, fine gain can be used to trade-off between SFDR and SNR.

After a reset, the gain function is disabled. To use fine gain:

- First, program the DIGITAL ENABLE bits to enable digital functions.
- This setting enables the gain for all four channels and places the device in a 0-dB gain mode.
- For other gain settings, program the DIGITAL GAIN CH X register bits.

DIGITAL OUTPUT INFORMATION

The ADS58H40 provides 11-bit (or 14-bit in burst mode) digital data for each channel and two output clocks in LVDS mode. Output pins are shared by a pair of channels that are accompanied by one dedicated output clock.

DDR LVDS Outputs

In the LVDS interface mode, the data bits and clock are output using LVDS levels. The data bits of two channels are multiplexed and output on each LVDS differential pair of pins; see Figure 61 and Figure 62.

TEXAS INSTRUMENTS

www.ti.com

SBAS589B-AUGUST 2012-REVISED NOVEMBER 2012

LVDS Output Data and Clock Buffers

The equivalent circuit of each LVDS output buffer is shown in Figure 63. After reset, the buffer presents an output impedance of 100 Ω to match with the external 100- Ω termination.

The V_{DIFF} voltage is nominally 350 mV, resulting in an output swing of ±350 mV with 100- Ω external termination. The V_{DIFF} voltage is programmable using the LVDS SWING register bits (refer to Table 4, register address 01h). The buffer output impedance behaves similar to a source-side series termination. By absorbing reflections from the receiver end, the source-side termination helps to improve signal integrity.

Figure 63. LVDS Buffer Equivalent Circuit

Output Data Format

The ADS58H40 transmits data in binary twos complement format. In the event of an input voltage overdrive, the digital outputs go to the appropriate full-scale level. For a positive overdrive, the output code is 3FFh. For a negative input overdrive, the output code is 400h.

BOARD DESIGN CONSIDERATIONS

For evaluation module (EVM) board information, refer to the ADS58H40 EVM User's Guide (SLAU455).

Grounding

A single ground plane is sufficient to provide good performance, as long as the analog, digital, and clock sections of the board are cleanly partitioned. See the *ADS58H40 EVM User's Guide* (SLAU455) for details on layout and grounding.

www.ti.com

DEFINITION OF SPECIFICATIONS

Analog Bandwidth – The analog input frequency at which the power of the fundamental is reduced by 3 dB with respect to the low-frequency value.

Aperture Delay – The delay in time between the rising edge of the input sampling clock and the actual time at which the sampling occurs. This delay is different across channels. The maximum variation is specified as aperture delay variation (channel-to-channel).

Aperture Uncertainty (Jitter) - The sample-to-sample variation in aperture delay.

Clock Pulse Width and Duty Cycle – The duty cycle of a clock signal is the ratio of the time the clock signal remains at a logic high (clock pulse width) to the period of the clock signal. Duty cycle is typically expressed as a percentage. A perfect differential sine-wave clock results in a 50% duty cycle.

Maximum Conversion Rate – The maximum sampling rate at which specified operation is given. All parametric testing is performed at this sampling rate unless otherwise noted.

Minimum Conversion Rate – The minimum sampling rate at which the ADC functions.

Differential Nonlinearity (DNL) – An ideal ADC exhibits code transitions at analog input values spaced exactly 1 LSB apart. DNL is the deviation of any single step from this ideal value, measured in units of LSBs.

Integral Nonlinearity (INL) – INL is the deviation of the ADC transfer function from a best-fit line determined by a least-squares curve fit of that transfer function, measured in units of LSBs.

Gain Error – Gain error is the deviation of the ADC actual input full-scale range from the ideal value. Gain error is given as a percentage of the ideal input full-scale range. Gain error has two components: error as a result of reference inaccuracy and error as a result of the channel. Both errors are specified independently as E_{GREF} and E_{GCHAN} .

To a first-order approximation, the total gain error is $E_{TOTAL} \sim E_{GREF} + E_{GCHAN}$.

For example, if $E_{TOTAL} = \pm 0.5\%$, the full-scale input varies from $(1 - 0.5 / 100) \times f_{S \text{ ideal}}$ to $(1 + 0.5 / 100) \times f_{S \text{ ideal}}$.

Offset Error – Offset error is the difference, given in number of LSBs, between the ADC actual average idle channel output code and the ideal average idle channel output code. This quantity is often mapped into millivolts.

Temperature Drift – The temperature drift coefficient (with respect to gain error and offset error) specifies the change per degree Celsius of the parameter from T_{MIN} to T_{MAX} . The coefficient is calculated by dividing the maximum deviation of the parameter across the T_{MIN} to T_{MAX} range by the difference $T_{MAX} - T_{MIN}$.

Signal-to-Noise Ratio – SNR is the ratio of the power of the fundamental (P_S) to the noise floor power (P_N), excluding the power at dc and the first nine harmonics.

SNR =
$$10 \text{Log}^{10} \frac{\text{P}_{\text{S}}}{\text{P}_{\text{N}}}$$

(5)

SNR is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the reference, or dBFS (dB to full-scale) when the power of the fundamental is extrapolated to the converter full-scale range.

Signal-to-Noise and Distortion (SINAD) – SINAD is the ratio of the power of the fundamental (P_S) to the power of all the other spectral components including noise (P_N) and distortion (P_D), but excluding dc.

$$SINAD = 10Log^{10} \frac{P_S}{P_N + P_D}$$
(6)

SINAD is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the reference, or dBFS (dB to full-scale) when the power of the fundamental is extrapolated to the converter full-scale range.

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision A (August 2012) to Revision B						
•	Changed footnote 8 in Timing Requirements table	7	7			

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing		Qty	(2)		(3)		(4)	
ADS58H40IZCR	ACTIVE	NFBGA	ZCR	144	168	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	ADS58H40I	Samples
ADS58H40IZCRR	ACTIVE	NFBGA	ZCR	144	1000	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	ADS58H40I	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

All dimensions are nominal												
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ADS58H40IZCRR	NFBGA	ZCR	144	1000	330.0	24.4	10.25	10.25	2.25	16.0	24.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

17-Sep-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ADS58H40IZCRR	NFBGA	ZCR	144	1000	336.6	336.6	31.8

ZCR (S-PBGA-N144)

PLASTIC BALL GRID ARRAY

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-219F.
- D. This is a Pb-free solder ball design.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconr	nectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated