

Sample &

Buy

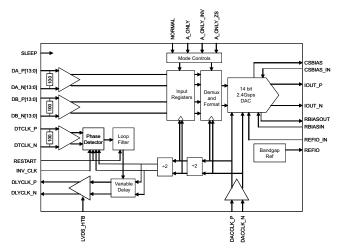
DAC5670

SGLS394F-MARCH 2010-REVISED MAY 2016

DAC5670 14-Bit 2.4-GSPS Digital-to-Analog Converter

Technical

Documents


1 Features

- 14-Bit Resolution
- 2.4-GSPS Maximum Update Rate Digital to Analog Converter
- Dual Differential Input Ports
 - Even/Odd Demultiplexed Data
 - Maximum 1.2-GSPS Each Port, 2.4-GSPS Total
 - Dual 14-Bit Inputs + 1 Reference Bit
 - DDR Output Clock
 - DLL Optimized Clock Timing Synchronized to Reference Bit
 - LVDS and HyperTransport[™] Voltage Level Compatible
 - Internal 100-Ω Terminations for Data and Reference Bit Inputs
- Selectable 2 Times Interpolation With Fs/2 Mixing
- Differential Scalable Current Outputs: 5 to 30 mA
- On-Chip 1.2-V Reference
- 3.3-V Analog Supply Operation
- Power Dissipation: 2 W
- 252-Ball GDJ Package

2 Applications

- Test and Measurement: Arbitrary Waveform Generator
- Communications

Simplified Schematic

3 Description

Tools &

Software

The DAC5670 is a 14-bit 2.4-GSPS digital-to-analog converter (DAC) with dual demultiplexed differential input ports. The DAC5670 is clocked at the DAC sample rate and the two input ports run at a maximum of 1.2 GSPS. An additional reference bit input sequence is used to adjust the output clock delay to the data source, optimizing the internal data latching clock relative to this reference bit with a delay lock loop (DLL). Alternatively, the DLL may be bypassed and the timing interface managed by controlling DATA setup and hold timing to DLYCLK.

Support &

Community

...

The DAC5670 also can accept data up to 1.2 GSPS on one input port the same clock configuration. In the single port mode, repeating the input sample (A_ONLY mode), 2 times interpolation by zero stuff (A_ONLY_ZS mode), or 2 times interpolation by repeating and inverting the input sample (A_ONLY_INV) are used to double the input sample rate up to 2.4 GSPS.

The DAC5670 operates with a single 3-V to 3.6-V supply voltage. Power dissipation is 2 W at maximum operating conditions. The DAC5670 provides a nominal full-scale differential current-output of 20 mA, supporting both single-ended and differential applications. An on-chip 1.2-V temperaturecompensated reference and bandgap control amplifier allows the user to adjust the full-scale output current from the nominal 20 mA to as low as 5 mA or as high as 30 mA. The output current can be directly fed to the load with no additional external output buffer required. The device has been specifically designed for a differential transformer coupled output with a 50- Ω doubly-terminated load.

The DAC5670 is available in a 252-ball GDJ package. The device is characterized for operation over the temperature range -40° C to 85° C.

Device	Information ⁽¹	I)
--------	---------------------------	----

PART NUMBER	PACKAGE	BODY SIZE (NOM)
DAC5670	BGA (252)	17.20 mm × 17.20 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

1

2

3

4

5

6

7

Table of Contents

Features 1		7.2 Functional Block Diagram	13
Applications 1		7.3 Feature Description	14
Description 1		7.4 Device Functional Modes	<mark>22</mark>
Revision History	8	Application and Implementation	24
Pin Configuration and Functions		8.1 Application Information	
Specifications		8.2 Typical Application	24
6.1 Absolute Maximum Ratings	9	Power Supply Recommendations	26
6.2 ESD Ratings	10	Layout	<mark>26</mark>
6.3 Recommended Operating Conditions		10.1 Layout Guidelines	<mark>26</mark>
6.4 Thermal Information		10.2 Layout Example	<mark>26</mark>
6.5 DC Electrical Characteristics	11	Device and Documentation Support	27
6.6 AC Electrical Characteristics		11.1 Device Support	27
6.7 Digital Electrical Characteristics		11.2 Community Resources	27
6.8 Timing Requirements		11.3 Trademarks	27
6.9 Typical Characteristics 11		11.4 Electrostatic Discharge Caution	<mark>28</mark>
Detailed Description		11.5 Glossary	28
7.1 Overview	12	Mechanical, Packaging, and Orderable Information	28

4 Revision History

 Changes from Revision E (February 2013) to Revision F Added Handling Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section Corrected Setup/Hold Data to DLYCLK values to be frequency independent Updated DLL Usage section. 	Page	
•		1
•	Corrected Setup/Hold Data to DLYCLK values to be frequency independent	9
•	Updated DLL Usage section	15

Product Folder Links: DAC5670

ÈXAS **ISTRUMENTS**

www.ti.com

5 Pin Configuration and Functions

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
А	GND	LOCK			GND	GND	IOUT_P	GND	GND	IOUT_N	GND	GND		RBIASOUT		GND
в		NORMAL	AVDD		GND	GND	IOUT_P	AVDD	AVDD	IOUT_N	GND			RBIASIN		REFIO
с	AVDD	RESTART	A_ONLY_ZS			GND	GND	GND	GND	GND	GND			GND		REFIO_IN
D	N/C	INV_CLK		A_ONLY_INV	SLEEP	LVDS_HTB	A_ONLY									CSCAP
E	GND	GND	GND		GND	AVDD	AVDD	AVDD	AVDD	AVDD	AVDD	GND				CSCAP_IN
F	DACCLK_P	DACCLK_N	GND	GND	AVDD	GND	GND	AVDD	AVDD	GND	GND	AVDD				
G	GND	GND	GND	GND	AVDD	GND	GND	GND	GND	GND	GND	AVDD				
н	GND				AVDD	AVDD	GND	I	I	GND	AVDD	AVDD		AVDD	DB_N(0)	GND
J	GND	DA_P(13)	DA_N(13)		AVDD	AVDD	GND	I	I	GND	AVDD	AVDD		AVDD	DB_N(1)	GND
к	DA_P(12)	DA_N(12)			AVDD	GND	GND	GND	GND	GND	GND	AVDD		DB_N(2)	DB_P(2)	DB_P(1)
L	DA_P(11)	DA_N(11)	DA_P(10)	DA_N(10)	AVDD	GND	GND	AVDD	AVDD	GND	GND	AVDD	DB_N(6)		DB_N(3)	DB_P(3)
м	DA_P(9)	DA_N(9)	DA_P(8)	DA_N(8)	GND	AVDD	AVDD	AVDD	AVDD	AVDD	AVDD	GND	DB_P(6)		DB_N(4)	DB_P(4)
N	DA_P(7)	DA_N(7)	DA_P(6)	DA_N(6)				DTCLK_P	DTCLK_N						DB_N(5)	DB_P(5)
Ρ		DA_N(5)	GND					DLYCLK_P	DLYCLK_N	DB_N(13)			DB_N(9)	GND	DB_N(7)	DB_P(7)
R	DA_P(5)		DA_N(4)	DA_N(3)		DA_N(1)	DA_N(0)	AVDD	AVDD	DB_P(13)	DB_N(12)	DB_N(11)	DB_N(10)	DB_P(9)	DB_N(8)	DB_P(8)
т	GND	DA_P(4)	DA_P(3)	DA_P(2)	DA_N(2)	DA_P(1)	DA_P(0)	GND	GND			DB_P(12)	DB_P(11)	DB_P(10)		GND

Figure 1.	Ball Grid	Array of	the	DAC5670
-----------	-----------	----------	-----	---------

Pin Functions

PIN		1/0	DESCRIPTION	
NAME	NO.	1/0	DESCRIPTION	
DACCLK_P	F1	Ι	External clock input; sample clock for the DAC.	
DACCLK_N	F2	I	Complementary external clock input; sample clock for the DAC.	
DLYCLK_P	P8	0	DDR type data clock output to data source.	
DLYCLK_N	P9	0	DDR type data clock output to data source complementary signal.	
DTCLK_P	N8	I	Input data toggling reference bit.	
DTCLK_N	N9	Ι	Input data toggling reference bit complementary signal.	
DA_P[13]	J2	I	Port A data bit 13 (MSB).	
DA_N[13]	J3	Ι	Port A data bit 13 complement (MSB).	
DA_P[12]	K1	I	Port A data bit 12.	

Copyright © 2010–2016, Texas Instruments Incorporated

DAC5670 SGLS394F – MARCH 2010–REVISED MAY 2016

www.ti.com

NSTRUMENTS

FEXAS

Pin Functions (continued)

PIN						
NAME	NO.	- I/O	DESCRIPTION			
DA_N[12]	K2	I	Port A data bit 12 complement.			
DA_P[11]	L1	I	Port A data bit 11.			
DA_N[11]	L2	I	Port A data bit 11 complement.			
DA_P[10]	L3	Ι	Port A data bit 10.			
DA_N[10]	L4	I	Port A data bit 10 complement.			
DA_P[9]	M1	I	Port A data bit 9.			
DA_N[9]	M2	Ι	Port A data bit 9 complement.			
DA_P[8]	M3	Ι	Port A data bit 8.			
DA_N[8]	M4	Ι	Port A data bit 8 complement.			
DA_P[7]	N1	I	Port A data bit 7.			
DA_N[7]	N2	Ι	Port A data bit 7 complement.			
DA_P[6]	N3	I	Port A data bit 6.			
DA_N[6]	N4	Ι	Port A data bit 6 complement.			
DA_P[5]	R1	I	Port A data bit 5.			
DA_N[5]	P2	I	Port A data bit 5 complement.			
DA_P[4]	T2	I	Port A data bit 4.			
DA_N[4]	R3	I	Port A data bit 4 complement.			
DA_P[3]	Т3	I	Port A data bit 3.			
DA_N[3]	R4	I	Port A data bit 3 complement.			
DA_P[2]	T4	I	Port A data bit 2.			
DA_N[2]	T5	I	Port A data bit 2 complement.			
DA_P[1]	Т6	I	Port A data bit 1.			
DA_N[1]	R6	I	Port A data bit 1 complement.			
DA_P[0]	T7	I	Port A data bit 0 (LSB).			
DA_N[0]	R7	Ι	Port A data bit 0 complement (LSB).			
DB_P[13]	R10		Port B data bit 13 (MSB).			
DB_N[13]	P10	Ι	Port B data bit 13 complement (MSB).			
DB_P[12]	T12	I	Port B data bit 12.			
DB_N[12]	R11	I	Port B data bit 12 complement.			
DB_P[11]	T13	Ι	Port B data bit 11.			
DB_N[11]	R12	Ι	Port B data bit 11 complement.			
DB_P[10]	T14	I	Port B data bit 10.			
DB_N[10]	R13	I	Port B data bit 10 complement.			
DB_P[9]	R14	Ι	Port B data bit 9.			
DB_N[9]	P13	I	Port B data bit 9 complement.			
DB_P[8]	R16	I	Port B data bit 8.			
DB_N[8]	R15	I	Port B data bit 8 complement.			
DB_P[7]	P16	I	Port B data bit 7.			
DB_N[7]	P15	Ι	Port B data bit 7 complement.			
DB_P[6]	M13	I	Port B data bit 6.			
DB_N[6]	L13	Ι	Port B data bit 6 complement.			
DB_P[5]	N16	Ι	Port B data bit 5.			
DB_N[5]	N15	Ι	Port B data bit 5 complement.			
DB_P[4]	M16	I	Port B data bit 4.			
DB_N[4]	M15	I	Port B data bit 4 complement.			
DB_P[3]	L16	Ι	Port B data bit 3.			

Pin Functions (continued)

PIN I/O NAME NO.		1/0	DESCRIPTION		
		1/0	DESCRIPTION		
DB_N[3]	L15	I	Port B data bit 3 complement.		
DB_P[2]	K15	Ι	Port B data bit 2.		
DB_N[2]	K14	I	Port B data bit 2 complement.		
DB_P[1]	K16	I	Port B data bit 1.		
DB_N[1]	J15	I	Port B data bit 1 complement.		
DB_P[0]	J14	I	Port B data bit 0 (LSB).		
DB_N[0]	H15	I	Port B data bit 0 complement (LSB).		
IOUT_P	A7, B7	0	DAC current output. Full scale when all input bits are set 1.		
IOUT_N	A10, B10	0	DAC complementary current output. Full scale when all input bits are 0.		
RBIASOUT	A14	0	Rbias resistor current output.		
RBIASIN	B14	I	Rbias resistor sense input.		
CSCAP	D16	0	Current source bias voltage output.		
CSCAP_IN	E16	I	Current source bias voltage sense input.		
REFIO	B16	0	Bandgap reference output.		
REFIO_IN	C16	I	Bandgap reference sense input.		
RESTART	C2	I	Resets DLL when high. Low for DLL operation. High for using external setup/hold timing.		
LVDS_HTB	D6	I	DLYCLK_P/N control; lvds mode when high, ht mode when low.		
INV_CLK	D2	I	Inverts the DLL target clocking relationship when high. Low for normal DLL operation. See <i>DLL Usage</i> .		
LOCK	A2	0	DLL lock indicator, constant high when locked. ⁽¹⁾		
SLEEP	D5	I	Active high sleep.		
NORMAL	B2	Ι	High for {a0,b0,a1,b1,a2,b2,} normal mode.		
A_ONLY	D7	Ι	High for {a0,a0,a1,a1,a2,a2,} A_only mode.		
A_ONLY_INV	D4	I	High for {a0,-a0, a1,-a1,a2,-a2,} A_only_inv mode.		
A_ONLY_ZS	C3	I	High for {a0,0,a1,0,a2,0,} A_only_zs mode.		

(1) The DLL LOCK indicator on the current version of the DAC5670 is only partially functional. The lock signal may indicate a DLL lock condition when no DACCLK signal or DTCLK signal is present.

	PIN	DESCRIPTION						
NAME	NO.	DESCRIPTION						
GND	A1, A6, A8, A9, A11, A16, B6, B11, C6, C7, C8, C9, C10, C11, C14, E1, E2, E3, E5, E12, F3, F4, F6, F7, F10, F11, G1, G2, G3, G4, G6, G7, G8, G9, G10, G11, H1, H7,H10, H16, J1, J7, J10, J16, K6, K7, K8, K9, K10, K11, L6, L7, L10, L11, M5, M12, P3, P14, T1, T8, T9, T16	Ground.						
AVDD	B3, B8, B9, C1, E6, E7, E8, E9, E10, E11, F5, F8, F9, F12, G5, G12, H5, H6, H11, H12, H14, J5, J6, J11, J12, K5, K12, L5, L8, L9, L12, M6, M7, M8, M9, M10, M11, R8, R9	3.3-V analog power supply.						
No connect	A3, A4, A13, A15, B1, B4, B13, B15, C4, C12, C13, C15, D3, D8, D9, D10, D11, D12, D13, D14, D15, E4, E13, E14, E15, F13, F14, F15, F16, G13, G14, G15, G16, H2, H3, H4, H13, J4, J13, K3, K4, K13, L14, M14, N5, N6, N7, N10, N11, N12, N13, N14, P1, P4, P5, P6, P7,P11, P12, R2, R5, T10, T11, T15	No internal connection. These balls can be connected to GND (if desired), or left open.						
No connect	B12, C5, D1	Factory use only, must be left unconnected.						
Reserved	A5, A12, B5	Factory use only, must be connected to GND.						

Pin Functions

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
	Supply voltage	AVDD to GND		5	V
	DA_P[130], DA_N[130], DB_P[130], DB_N[130]	Measured with respect to GND	-0.3	AV _{DD} + 0.3	V
	NORMAL, A_ONLY, A_ONLY_INV, A_ONLY_ZS	Measured with respect to GND	-0.3	$AV_{DD} + 0.3$	V
	DTCLK_P, DTCLK_N, DACCLK_P, DACCLK_N	Measured with respect to GND	-0.3	$AV_{DD} + 0.3$	V
	LVDS_HTB, INV_CLK, RESTART	Measured with respect to GND	-0.3	$AV_{DD} + 0.3$	V
	IOUT_P, IOUT_N	Measured with respect to GND	$AV_{DD} - 0.5$	AV _{DD} + 1.5	V
	CSCAP_IN, REFIO_IN, RBIAS_IN	Measured with respect to GND	-0.3	AV _{DD} + 0.3	V
	Peak input current (any input)			20	mA
	Maximum junction temperature		150	°C	
	Lead temperature 1.6 mm (1/16 inch) from the case for		260	°C	
T _{stg}	Storage temperature		-65	150	°C

(1) Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
, Electro	Electrostatic	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	±250	V
V _(ESD)	discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	±250	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
GENERAL PA	ARAMETERS			·	
	Full-scale output current			30	mA
V _{REFIO}	Input voltage	1.14	1.2	1.26	V
AV _{DD}	Analog supply voltage	3	3.3	3.6	V
CMOS INTER	FACE (SLEEP, RESTART, INV_CLK, NORMAL, A_ONLY, A_ONLY_INV	, A_ONLY_ZS)			
V _{IH}	High-level input voltage	2	3		V
V _{IL}	Low-level input voltage	0	0	0.8	V
DIFFERENTIA	AL DATA INTERFACE (DA_P[13:0], DA_N[13:0], DB_P[13:0], DB_N[13:0], DTCLK_P, D	TCLK_N)		
V _{ITH}	Differential input threshold	-100		100	mV
VICOM	Input common mode	0.6		1.4	V
CLOCK INPU	TS (DACCLK_P, DACCLK_N)	•			
DACCLK_P	Clock differential input voltage	200		1000	mV
DACCLK_N	olok anolokia niput vokago	200		1000	
	Clock duty cycle	40%		60%	
VCLKCM	Clock common mode	1		1.4	V

6.4 Thermal Information

		DAC5670	
	THERMAL METRIC ⁽¹⁾	GDJ	UNIT
		252 PINS	
R _{θJA}	Junction-to-ambient thermal resistance ⁽²⁾	22.5	°C/W
$R_{\theta JC}$	Junction-to-case thermal resistance ⁽³⁾	7.6	°C/W

For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953. (1)

Non-thermally enhanced JEDEC standard PCB, per JESD-51, 51-3. MIL-STD-883 test method 1012. (2)

(3)

6.5 DC Electrical Characteristics

T_{C,MIN} = -40°C to T_{C,MAX} = 85°C, typical values at 25°C, AVDD = 3 to 3.6 V, loutFS = 20 mA (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
	Resolution		14			bits
DC ACC	URACY					
INL	Integral nonlinearity	$T_{C,MIN}$ to $T_{C,MAX}$, f_{DAC} = 640 MHz,	-7.5	±1.5	7.5	LSB
DNL	Differential nonlinearity	$f_{OUT} = 10 \text{ MHz}$	-0.98	±0.8	1.75	
	Monotonocity		14			bits
ANALOG	G OUTPUT	-	+			
	Offset error	Mid code offset	-0.45	±0.09	0.45	%FSR
	Gain error	With external reference	-6	±1.6	6	%FSR
	Gain error	With internal reference	-6	±1.6	6	%FSR
	Output compliance range	I _{O(FS)} = 20 mA, AV _{DD} = 3.15 to 3.45 V	AVDD - 0.5		AVDD + 0.5	V
	Output resistance			300 ⁽²⁾		kΩ
	Output capacitance	IOUT_P and IOUT_N single ended		13.7 ⁽²⁾		pF
REFERE	NCE OUTPUT					
	Reference voltage		1.14	1.2	1.26	V
	Reference output current			100		nA
REFERE		-	•			
	Input resistance			1 ⁽²⁾		MΩ
	Small-signal bandwidth			1.4		MHz
	Input capacitance			3.2 ⁽²⁾		pF
TEMPER	ATURE COEFFICIENTS	-				
	Offset drift			75		ppm of FSR/°C
	Gain drift	With external reference		75		ppm of FSR/°C
	Gain drift	With internal reference		75		ppm of FSR/°C
	Reference voltage drift			35		ppm/°C
POWER	SUPPLY					
AVDD	Analog supply voltage		3	3.3	3.6	V
I _{AVDD}	Analog supply current	f_{DAC} = 2.4 GHz, normal input mode		560	650	mA
I _{AVDD}	Sleep mode, AVDD supply current	Sleep mode (SLEEP pin high)	150 180		mA	
Р	Power dissipation	f_{DAC} = 2.4 GHz, normal input mode		1800	2350	mW
PSRR	Power-supply rejection ratio	AV _{DD} = 3.15 to 3.45 V		0.4	1.3	%FSR/V

Typicals are characterization values at 25°C and AV_{DD} = 3.3 V. These parameters are characterized, but not production tested. (1)

(2) Specified by design. **DAC5670**

SGLS394F-MARCH 2010-REVISED MAY 2016

6.6 AC Electrical Characteristics

 $T_{C,MIN} = -40^{\circ}C$ to $T_{C,MAX} = 85^{\circ}C$, typical values at 25°C, AV_{DD} = 3 to 3.6 V, loutFS = 20 mA (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
ANALO	G OUTPUT					
f_{DAC}	Output update rate				2.4	GSPS
$t_{s(DAC)}$	Output setting time to 0.1%	Midscale transition		3.5		ns
t _{pd}	Output propagation delay			7 DACCLK + 1.5 ns		
t _{r(IOUT)}	Output rise time, 10% to 90%			280		ps
t _{f(IOUT)}	Output fall time, 90% to 10%			280		ps
AC PEF	RFORMANCE	•				
		f_{DAC} = 2.4 GSPS, f_{OUT} = 100 MHz, dual-port mode, 0 dBFS	47	55		dBc
		f_{DAC} = 2.4 GSPS, f_{OUT} = 200 MHz, dual-port mode, 0 dBFS	38	51		dBc
SFDR	Spurious-free dynamic range	f_{DAC} = 2.4 GSPS, f_{OUT} = 300 MHz, dual-port mode, 0 dBFS	37	41		dBc
		f_{DAC} = 2.4 GSPS, f_{OUT} = 500 MHz, dual-port mode, 0 dBFS	44	50		dBc
		f_{DAC} = 2.4 GSPS, f_{OUT} = 500 MHz, dual-port mode, –6 dBFS		47		dBc
	Signal-to-noise ratio	f_{DAC} = 2.4 GSPS, f_{OUT} = 100 MHz, dual-port mode, 0 dBFS	63	70		dBc
		f_{DAC} = 2.4 GSPS, f_{OUT} = 200 MHz, dual-port mode, 0 dBFS	62	70		dBc
SNR		f_{DAC} = 2.4 GSPS, f_{OUT} = 300 MHz, dual-port mode, 0 dBFS	57	62		dBc
		f_{DAC} = 2.4 GSPS, f_{OUT} = 500 MHz, dual-port mode, 0 dBFS	53	60		dBc
		f_{DAC} = 2.4 GSPS, f_{OUT} = 500 MHz, dual-port mode, –6 dBFS		52		dBc
		f_{DAC} = 2.4 GSPS, f_{OUT} = 100 MHz, dual-port mode, 0 dBFS	50	55		dBc
		f_{DAC} = 2.4 GSPS, f_{OUT} = 200 MHz, dual-port mode, 0 dBFS	41	50		dBc
THD	Total harmonic distortion	f_{DAC} = 2.4 GSPS, f_{OUT} = 300 MHz, dual-port mode, 0 dBFS	38	48		dBc
		f_{DAC} = 2.4 GSPS, f_{OUT} = 500 MHz, dual-port mode, 0 dBFS	47	53		dBc
		f_{DAC} = 2.4 GSPS, f_{OUT} = 500 MHz, dual-port mode, –6 dBFS		44		dBc
		f_{DAC} = 2.4 GSPS, f_{OUT} = 99 MHz and 102 MHz, each tone at –6 dBFS, dual-port mode	65	70		dBc
IMD3	Third-order two-tone	f_{DAC} = 2.4 GSPS, f_{OUT} = 200 MHz and 202 MHz, each tone at –6 dBFS, dual-port mode	51	68		dBc
IMD3	intermodulation	f_{DAC} = 2.4 GSPS, f_{OUT} = 253 Mhz and 257 MHz, each tone at –6 dBFS, dual-port mode	47	57		dBc
		f_{DAC} = 2.4 GSPS, f_{OUT} = 299 Mhz and 302 MHz, each tone at –6 dBFS, dual-port mode	51	55		dBc
IMD	Four-tone intermodulation	f_{DAC} = 2.4 GSPS, f_{OUT} = 298 MHz, 299 MHz, 300 MHz, and 301 MHz, each tone at -12 dBFS, dual-port mode	51	62.5		dBc

(1) Typicals are characterization values at 25° C and AV_{DD} = 3.3 V. These parameters are characterized, but not production tested.

6.7 Digital Electrical Characteristics

T_{C.MIN} = -40°C to T_{C.MAX} = 85°C, typical values at 25°C, AVDD = 3 to 3.6 V, loutFS = 20 mA (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT		
CMOS INTERFACE (SLEEP, RESTART, INV_CLK, NORMAL, A_ONLY, A_ONLY_INV, A_ONLY_ZS)								
I _{IH}	High-level input current			0.2	10	μA		
IIL	Low-level input current		-10	-0.2		μA		
	Input capacitance			2.5 ⁽²⁾		pF		
DIFFERE	INTIAL DATA INTERFACE (DA_P[13:0], DA_	N[13:0], DB_P[13:0], DB_N[13:0], DTCLK_P, D	TCLK_I	N)				
Z _T	Internal termination impedance		80	100	125	Ω		
Ci	Input capacitance			2.6 ⁽²⁾		pF		

(1) Typicals are characterization values at 25° C and AV_{DD} = 3.3 V. These parameters are characterized, but not production tested.

(2) Specified by design.

6.8 Timing Requirements

			MIN TYP	MAX	UNIT				
DIFFERENTIAL DATA INTERFACE (DA_P[13:0], DA_N[13:0], DB_P[13:0], DB_N[13:0] EXTERNAL TIMING WITH DLL IN RESTART) (see Figure 3)									
t _{setup}	Data setup to DLYCLK ⁽¹⁾	RESTART = 1, DLYCLK 20-pF load, see Figure 3	4.75		nS				
t _{hold}	Data hold to DLYCLK $^{(1)}$	RESTART = 1, DLYCLK 20-pF load, see Figure 3	-3.5		nS				
DLL (s	ee Figure 15)								
NegD	DLL min negative delay	RESTART = 0	150		ps				
PosD	DLL min positive delay	RESTART = 0	600		ps				
t _{valid}	CLK/4 internal setup + hold width		160		ps				
Fdac		RESTART = 0	1	2.4	GHz				

(1) Tested using SNR as pass/fail criteria.

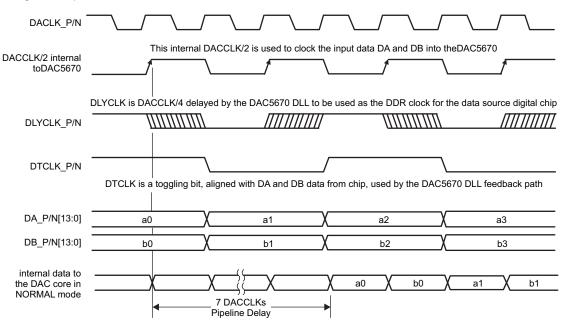


Figure 2. DLL Input Loop Functional Timing

DAC5670

SGLS394F-MARCH 2010-REVISED MAY 2016

www.ti.com

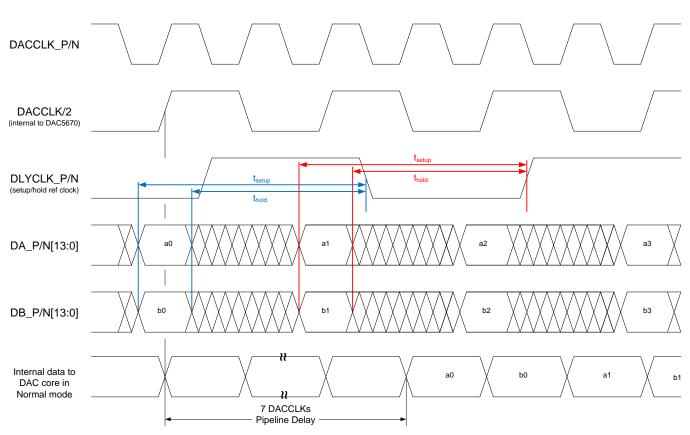
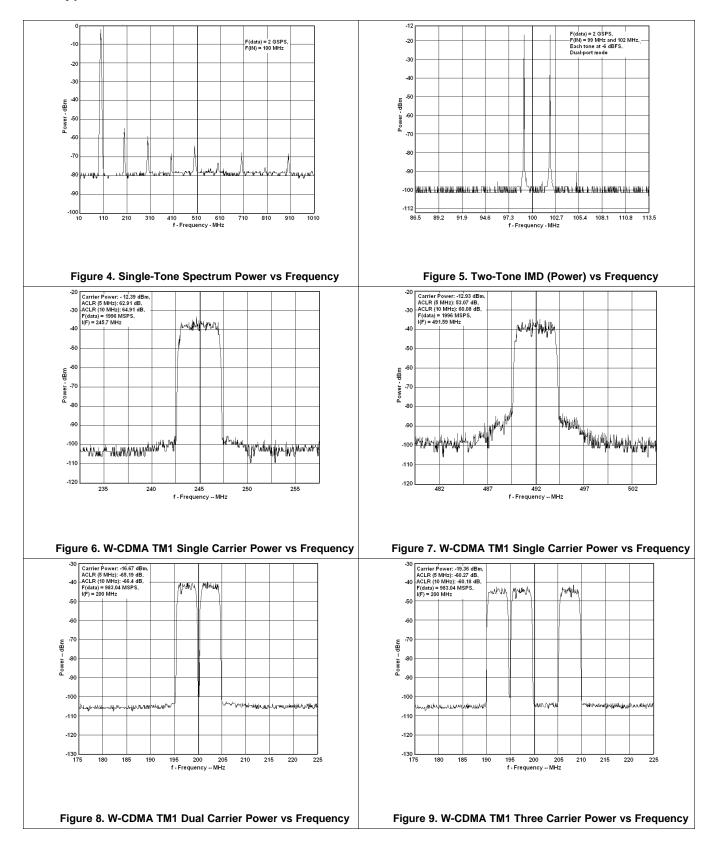
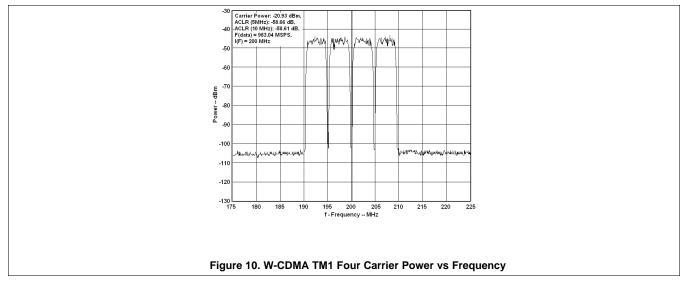



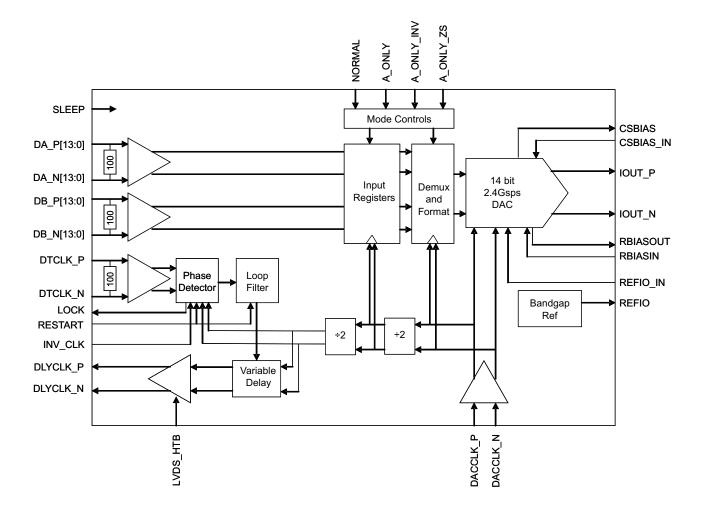
Figure 3. External Interface Timing With DLL in Restart


6.9 Typical Characteristics

DAC5670 SGLS394F – MARCH 2010–REVISED MAY 2016 Texas Instruments

www.ti.com

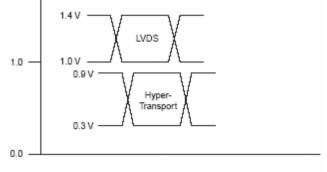
Typical Characteristics (continued)


7 Detailed Description

7.1 Overview

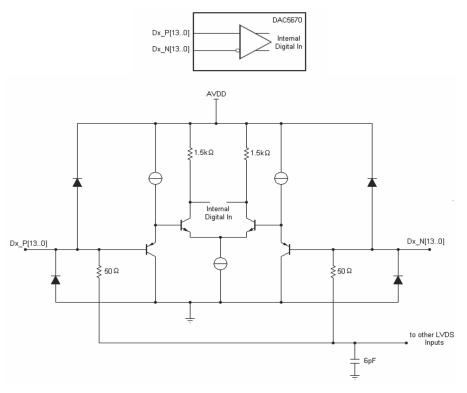
Figure 26 shows a simplified block diagram of the current steering DAC5670. The DAC5670 consists of a segmented array of NPN-transistor current sinks, capable of delivering a full-scale output current up to 30 mA. Differential current switches direct the current of each current sink to either one of the complementary output nodes IOUT_P or IOUT_N. The complementary current output enables differential operation, canceling out common-mode noise sources (digital feed-through, on-chip, and PCB noise), dc offsets, and even-order distortion components, and doubling signal output power.

The full-scale output current is set using an external resistor (R_{BIAS}) in combination with an on-chip bandgap voltage reference source (1.2 V) and control amplifier. The current (I_{BIAS}) through resistor R_{BIAS} is mirrored internally to provide a full-scale output current equal to $32 \times I_{BIAS}$. The full-scale current is adjustable from 30 to 5 mA by using the appropriate bias resistor value.


7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Digital Inputs


The DAC5670 differential digital inputs are compatible with LVDS and HyperTransport voltage levels.

Technology

Figure 11. Digital Input Voltage Options

The DAC5670 uses low-voltage differential signaling (LVDS and HyperTransport) for the bus input interface. The LVDS and HyperTransport input modes feature a low-differential voltage swing. The differential characteristic of LVDS and HyperTransport modes allow for high-speed data transmission with low electromagnetic interference (EMI) levels. Figure 12 shows the equivalent complementary digital input interface for the DAC5670, valid for pins DA_P[13:0], DA_N[13:0], DB_P[13:0], and DB_N[13:0].

Figure 12.

Figure 13 shows a schematic of the equivalent CMOS/TTL-compatible digital inputs of the DAC5670, valid for the following pins: RESTART, LVDS_HTB, INV_CLK, SLEEP, NORMAL, A_ONLY, A_ONLY_INV, and A_ONLY_ZS.

Feature Description (continued)

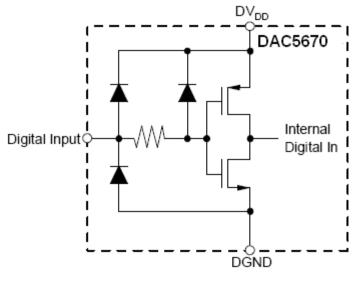


Figure 13.

7.3.2 DLL Usage

The DAC5670 is clocked at the DAC sample rate. Each input port runs at a maximum of 1.2 GSPS. The DAC5670 provides an output clock (DLYCLK) at one-half the input port data rate (DACCLK/4), and monitors an additional reference bit (DTCLK). DTCLK is used as a feedback clock to adjust interface timing. To accomplish this, the DAC5670 implements a DLL to help manage the timing interface from external data source. As with all DLLs, there are limitations on the capability of the DLL with respect to the delay chain length, implementation of the phase detector, and the bandwidth of the control loop. The DAC5670 implements a quadrature-based phase detector. This scheme allows for the DLL to provide maximum setup or hold delay margins when quadrature can be reached. Quadrature is reached when the internal CLK / 4 is 90° out of phase with DTCLK. Additionally, as the frequency of operation decreases, the delay line's fixed length limits its ability to change the delay path enough to reach quadrature (see Figure 15). Note that the delay line has asymmetric attributes. The NegD range is smaller than the PosD range. From its nominal (restart) position, it can delay more than it can subtract.

Figure 15 represents the behavior of the phase detector and the delay line with respect to initial positions of the rising edge of DTCLK. There are four distinct quadrants that define the behavior. Each quadrant represents the period of the DDR clock rate (600 MHz in the 2.4-GSPS case) divided by 4. The ideal location has the initial delays of DTCLK (and hence data bits) in quadrant 1. The stable lock point of DLL is at T / 4, between Q1 and Q2. If DTCLK's initial delay is in quadrants 3 or 4, the INV_CLK pin can be asserted to improve the ability of DLL to obtain quadrature. This assertion moves the stable quadrature point to the center of 3T / 4 vs T / 4 as shown in Figure 15. Essentially, the zones that add delay become zones that subtract delay and vice-versa. The clock phase of CLK / 4 would also invert.

In cases where it is not appropriate to use the DLL to manage the timing interface, it is possible to use fixed setup and hold values for DA and DB signals relative to the generated DLYCLK output when the DLL is held in restart. This is accomplished by asserting RESTART to logic high and using the timing input conditions for external timing interface with DLL in restart in the *DLL Usage*. When using external setup and hold timing, the user does not need to provide DTCLK. DTCLK should be biased to valid LVDS levels in that case (see Figure 3).

The setup/hold values are non-traditional, as they represent the setup/hold of an input to a generated clock (DLYCLK). Additionally, the setup/hold numbers represent delays that may be longer than the DACCLK or DACCLK/2 periods. To calculate the setup/hold values to the nearest adjacent DLYCLK transition, the user must subtract multiples of DACLCK/2 periods until the setup is less than a DACCLK/2 period. The same amount can be subtracted from the hold time. These new setup/hold values will be frequency dependent.

Feature Description (continued)

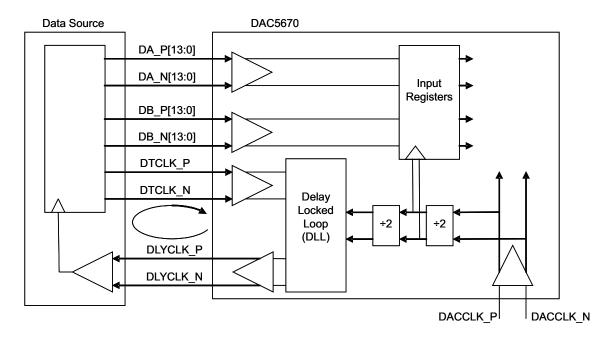


Figure 14. DLL Input Loop Simplified Block Diagram

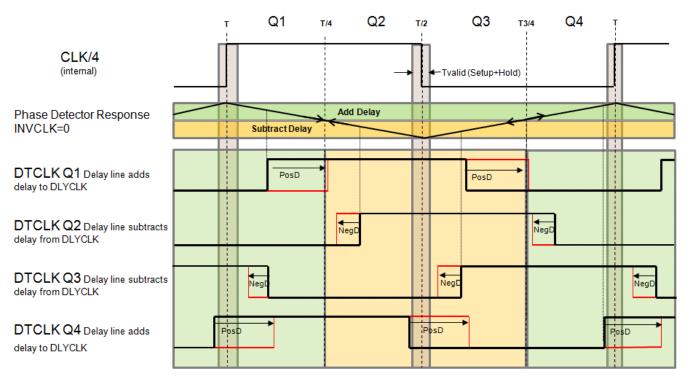


Figure 15. DLL Phase Detector Behavior

Feature Description (continued)

7.3.3 Clock Input

The DAC5670 features differential, LVPECL-compatible clock inputs (DACCLK_P, DACCLK_N). Figure 16 shows the equivalent schematic of the clock input buffer. The internal biasing resistors set the input common-mode voltage to AVDD / 2, while the input resistance is typically 1 k Ω . A variety of clock sources can be accoupled to the device, including a sine wave source (see Figure 17).

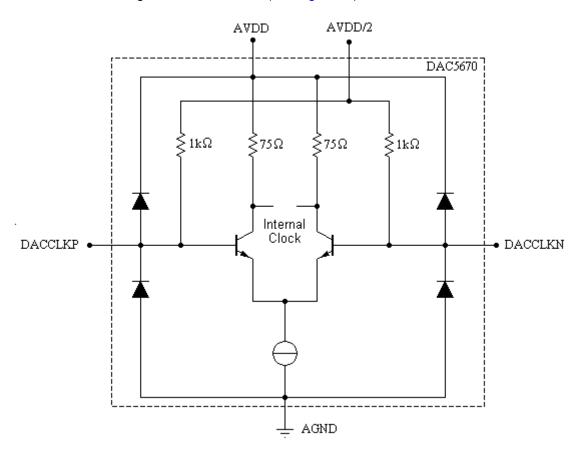
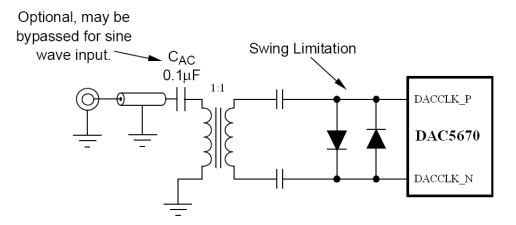
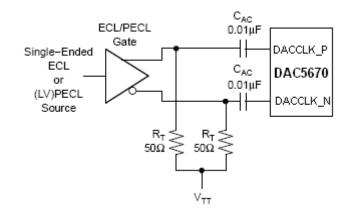
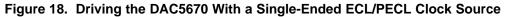
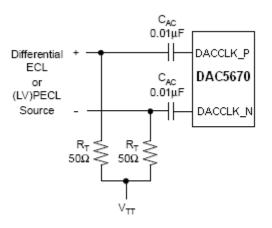
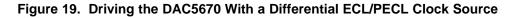



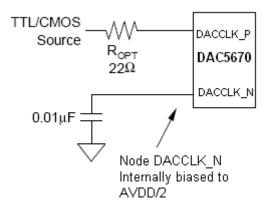
Figure 16. Clock Equivalent Input

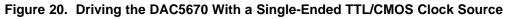







Feature Description (continued)


To obtain best ac performance the DAC5670, drive the clock input with a differential LVPECL or sine wave source as shown in Figure 18 and Figure 19. Here, the potential of VTT should be set to the termination voltage required by the driver along with the proper termination resistors (RT). The DAC5670 clock input can also be driven single-ended for slower clock rates using TTL/CMOS levels (see Figure 20).



Feature Description (continued)

7.3.4 DAC Transfer Function

The DAC5670 has a current sink output. The current flow through IOUT_P and IOUT_N is controlled by $Dx_P[13:0]$ and $Dx_N[13:0]$. For ease of use, D[13:0] is denoted as the logical bit equivalent of $Dx_P[13:0]$ and its complement $Dx_N[13:0]$. The DAC5670 supports straight binary coding with D13 as the MSB and D0 as the LSB. Full-scale current flows through IOUTP when all D[13:0] inputs are set high and through IOUTN when all D[13:0] inputs are set low. The relationship between IOUT_P and IOUT_N can be expressed as Equation 1.

$$IOUT_N = IO_{(FS)} - IOUT_P$$
(1) (1)

 $IO_{(FS)}$ is the full-scale output current sink (5 to 30 mA). Because the output stage is a current sink, the current can only flow from AVDD through the load resistors R_L into the IOUT_N and IOUT_P pins.

The output current flow in each pin driving a resistive load can be expressed as shown in Figure 21, Equation 2, and Equation 3.

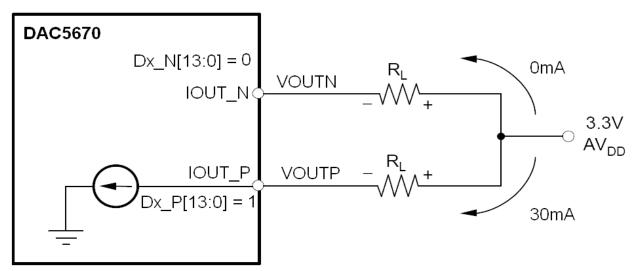


Figure 21. Relationship Between D[13:0], IOUT_N and IOUT_P

 $IOUT_N = (IOUT_{(FS)} \times (16383 - CODE)) / 16384$ $IOUT_P = (IOUT_{(FS)} \times CODE) / 16384$ (2)

where

CODE is the decimal representation of the DAC input word

This translates into single-ended voltages at IOUT_N and IOUT_P, as shown in Equation 4 and Equation 5.

 $VOUTN = AVDD - IOUT_N \times R_L$ $VOUTP = AVDD - IOUT_P \times R_I$ (4)
(5)

For example, assuming that D[13:0] = 1 and that R_L is 50 Ω , the differential voltage between pins IOUT_N and IOUT_P can be expressed as shown in Equation 6 through Equation 8 where $IO_{(FS)} = 20$ mA.

VOUTN =
$$3.3 V - 0 \text{ mA} \times 50 \Omega = 3.3 V$$
 (6)

 VOUTP = $3.3 V - 20 \text{ mA} \times 50 \Omega = 2.3 V$
 (7)

 VDIFF = VOUTN - VOUTP = 1 V
 (8)

If D[13:0] = 0, then IOUT_P = 0 mA, IOUT_N = 20 mA, and the differential voltage VDIFF = -1 V.

The output currents and voltages in IOUT_N and IOUT_P are complementary. The voltage, when measured differentially, will be doubled compared to measuring each output individually. Take care not to exceed the compliance voltages at the IOUT_N and IOUT_P pins in order to keep signal distortion low.

(3)

Feature Description (continued)

7.3.5 Reference Operation

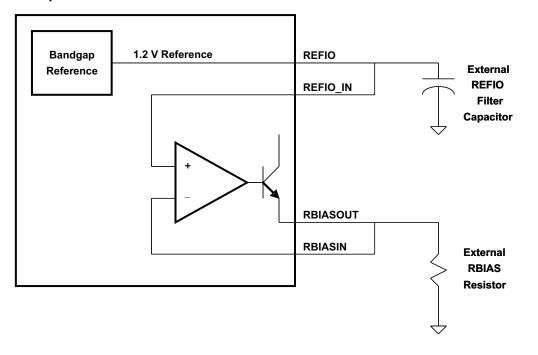


Figure 22. Reference Circuit

The DAC5670 comprises a bandgap reference and control amplifier for biasing the full-scale output current. The full-scale output current is set by applying an external resistor R_{BIAS} to pins RBIASOUT and RBIASIN. The bias current, I_{BIAS} , through resistor, R_{BIAS} , is defined by the on-chip bandgap reference voltage and control amplifier. The full-scale output current equals 32× this bias current. The full-scale output current IOUT_{FS} can thus be expressed as:

 $IOUT_{FS} = 32 \times I_{BIAS} = 32 \times V_{REFIO} / R_{BIAS}$

where

• V_{REFIO} voltage at pins REFIO and REFIO_IN

(9)

(9)

Copyright © 2010-2016, Texas Instruments Incorporated

The bandgap reference voltage delivers an accurate voltage of 1.2 V. The designer should connect an external REFIO filter capacitor of 0.1 µF externally to the pins REFIO and REFIO_IN for compensation.

The full-scale output current can be adjusted from 30 to 5 mA by varying external resistor R_{BIAS}.

7.3.6 Analog Current Outputs

Figure 23 is a simplified schematic of the current sink array output with corresponding switches. Differential NPN switches direct the current of each individual NPN current sink to either the positive output node IOUT_P or its complementary negative output node IOUT_N. The input data presented at the DA_P[13:0], DA_N[13:0], DB_P[13:0], and DB_N[13:0] is decoded to control the sw_p(N) and sw_n(N) current switches.

www.ti.com

Feature Description (continued)

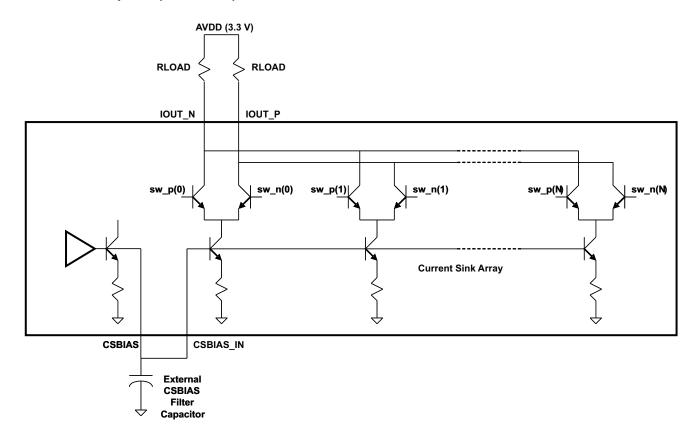


Figure 23. Current Sink Array

The external output resistors R_{LOAD} are connected to the positive supply, AV_{DD} .

The DAC5670 can easily be configured to drive a doubly-terminated $50-\Omega$ cable using a properly selected transformer. Figure 24 and Figure 25 show the 1:1 and 4:1 impedance ratio configuration, respectively. These configurations provide maximum rejection of common-mode noise sources and even-order distortion components, thereby doubling the power of the DAC to the output. The center tap on the primary side of the transformer is terminated to AVDD, enabling a dc current flow for both IOUT_N and IOUT_P.

Feature Description (continued)

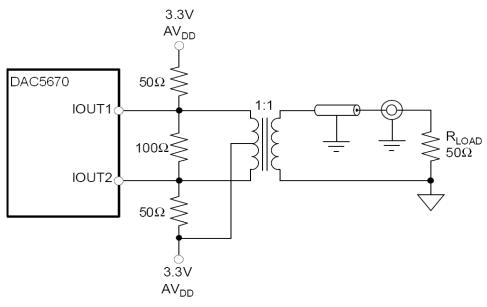


Figure 24. 1:1 Impedance Ratio

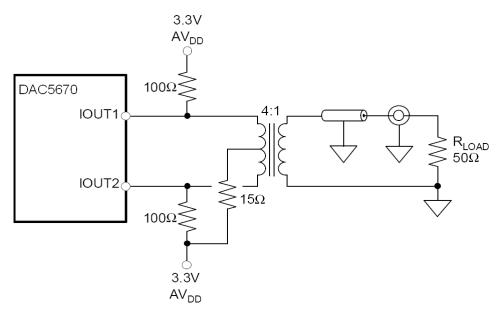


Figure 25. 4:1 Impedance Ratio

7.3.7 Sleep Mode

When the SLEEP pin is asserted (high), the DAC5670 enters a lower-power mode.

7.4 Device Functional Modes

7.4.1 Input Format

The DAC5670 has four input modes selected by the four mutually exclusive configuration pins: NORMAL, A_ONLY, A_ONLY_INV, and A_ONLY_ZS. Table 1 lists the input modes, the input sample rates, the maximum DAC sample rate (CLK input), and resulting DAC output sequence for each configuration. For all configurations, the DLYCLK_P/N outputs and DTCLK_P/N inputs are DACCLK_P/N frequency divided by four.

Device Functional Modes (continued)

NORMA L	A_ONLY	A_ONLY_INV	A_ONLY_ZS	FinA/Fdac	FinB/Fdac	f _{DAC} MAX (MHz)	DLYCLK_P/N and DTCLK_P/N FREQ (MHz)	DAC OUTPUT SEQUENCE
1	0	0	0	1/2	1/2	2400	Fdac / 4	A0, B0, A1, B1, A2, B2,
0	1	0	0	1/2	Off	2400	Fdac / 4	A0, A0, A1, A1, A2, A2,
0	0	1	0	1/2	Off	2400	Fdac / 4	A0, -A0, A1, -A1, A2, -A2,
0	0	0	1	1/2	Off	2400	Fdac / 4	A0, 0, A1, 0, A2, 0,

Table 1. DAC5670 Input Formats

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The DAC5670 is a 14-bit DAC with max input rate of 2.4 GSPS. The DAC5670 is also suitable to operate at lower sample rates without the use of the DLL for input interface timing.

8.2 Typical Application

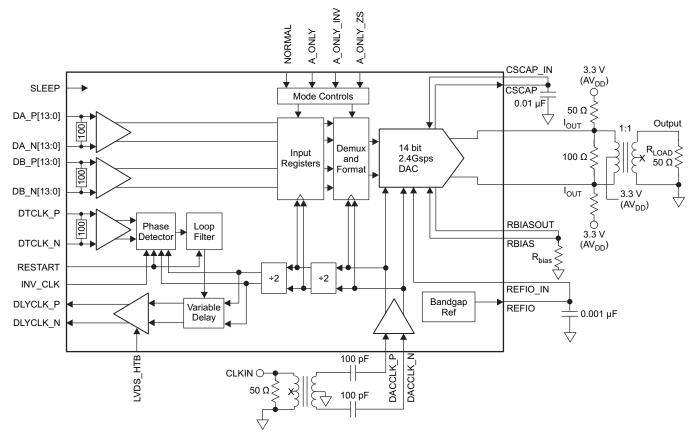


Figure 26. Current Steering DAC5670

8.2.1 Design Requirements

This example uses DACCLK rate of 2 GHz with signal output at 300 MHz.

8.2.2 Detailed Design Procedure

This example is outputting a 300-MHz tone with 2-GHz sample rate. Data is applied to both A and B ports at 1-GHz dual data rate. Full scale IOUT current set to 19.2 mA.

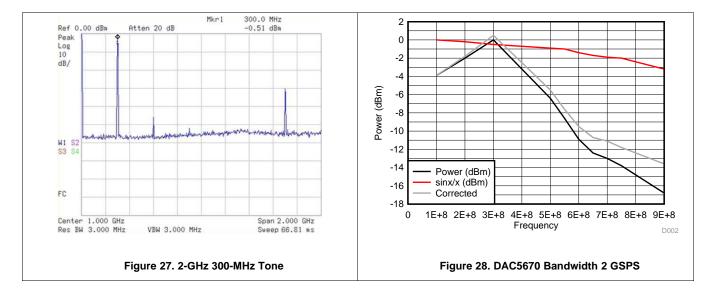
$$IOUT_{FS}$$
= 19.2 mA = 32 × I_{BIAS} 32 × V_{REFIO} / R_{BIAS} = 32 × 1.2 V / 2 k Ω

Device settings:

- RESTART low
- LVDS_HTB (pattern generator source dependent)

www.ti.com

1-


(10)

Typical Application (continued)

- INV_CLK as necessary for DLL lock
- SLEEP low
- NORMAL high
- A_ONLY low
- A_ONLY_INV low
- A_ONLY_ZS low
- DA_P[0:13], DA_N[0:13], DB_P[0:13], DB_N[0:13] sourced from pattern generator generating 300-MHz tone with 65536 sample depth
- RBIAS 2 kΩ to GND

8.2.3 Application Curves

9 Power Supply Recommendations

The DAC5670 uses a single 3.3-V power supply simplifying design requirements. The power supply should be filtered from any other system noise that may be present. The filtering should pay particular attention to frequencies of interest for output.

10 Layout

10.1 Layout Guidelines

- DAC output termination should be placed as close as possible to outputs.
- Keep routing for RBIAS short.
- Decoupling capacitors should be placed as close as possible to supply pins.
- Digital differential inputs must be 50 Ω to ground loosely coupled, or 100- Ω differential tightly coupled.
- Digital differential inputs must be length matched.

10.2 Layout Example

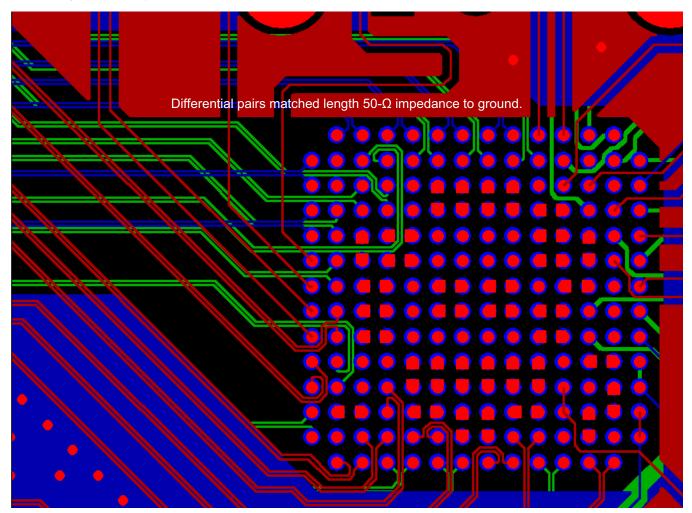


Figure 29. Board Layout Example

11 Device and Documentation Support

11.1 Device Support

11.1.1 Device Nomenclature

11.1.1.1 Definitions of Specifications and Terminology

- **Differential Nonlinearity (DNL)** Defined as the variation in analog output associated with an ideal 1 LSB change in the digital input code.
- **Gain Drift** Defined as the maximum change in gain, in terms of ppm of full-scale range (FSR) per °C, from the value at 25°C to values over the full operating temperature range.
- **Gain Error** Defined as the percentage error in the ratio between the measured full-scale output current and the value of the ideal full-scale output ($32 \times V_{REFIO} / R_{BIAS}$). A V_{REFIO} of 1.2 V is used to measure the gain error with an external reference voltage applied. With an internal reference, this error includes the deviation of V_{REFIO} (internal bandgap reference voltage) from the typical value of 1.2 V.
- Integral Nonlinearity (INL) Defined as the maximum deviation of the actual analog output from the ideal output, determined by a straight line drawn from zero scale to full scale.
- Intermodulation Distortion (IMD3, IMD) The two-tone IMD3 or four-tone IMD is defined as the ratio (in dBc) of the worst third-order (or higher) intermodulation distortion product to either fundamental output tone.
- **Offset Drift** Defined as the maximum change in dc offset, in terms of ppm of full-scale range (FSR) per °C, from the value at 25°C to values over the full operating temperature range.
- **Offset Error** Defined as the percentage error in the ratio of the differential output current (IOUT_P IOUT_N) to half of the full-scale output current for input code 8192.
- **Output Compliance Range** Defined as the minimum and maximum allowable voltage at the output of the current-output DAC. Exceeding this limit may result in reduced reliability of the device or adversely affect distortion performance.
- **Power Supply Rejection Ratio (PSRR)** Defined as the percentage error in the ratio of the delta I_{OUT} and delta supply voltage normalized with respect to the ideal I_{OUT} current.
- **Reference Voltage Drift** Defined as the maximum change of the reference voltage in ppm per °C from value at ambient (25°C) to values over the full operating temperature range.
- Signal-to-Noise Ratio (SNR) Defined as the ratio of the RMS value of the fundamental output signal to the RMS sum of all other spectral components below the Nyquist frequency, including noise, but excluding the first six harmonics and dc.
- **Spurious Free Dynamic Range (SFDR)** Defined as the difference (in dBc) between the peak amplitude of the output signal and the peak spurious signal.
- **Total Harmonic Distortion (THD)** Defined as the ratio of the RMS sum of the first six harmonic components to the RMS value of the fundamental output signal.

11.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

- TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.
- **Design Support** *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.3 Trademarks

E2E is a trademark of Texas Instruments.

11.3 Trademarks (continued)

HyperTransport is a trademark of HyperTransport Technology Consortium. All other trademarks are the property of their respective owners.

11.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

8-May-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
DAC5670IGDJ	ACTIVE	BGA	GDJ	252	90	Green (RoHS & no Sb/Br)	SNPB	Level-4-260C-72 HR	-40 to 85	DAC5670I	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

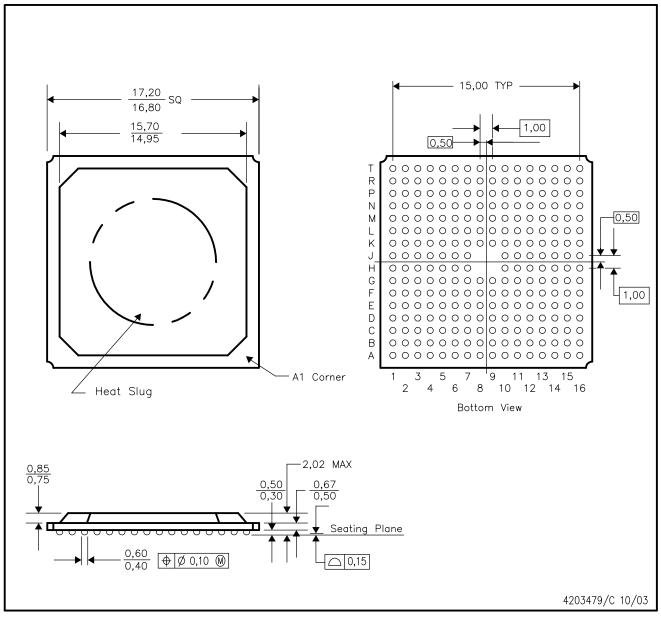
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OPTION ADDENDUM

8-May-2015

OTHER QUALIFIED VERSIONS OF DAC5670 :


• Space: DAC5670-SP

NOTE: Qualified Version Definitions:

• Space - Radiation tolerant, ceramic packaging and qualified for use in Space-based application

GDJ (S-PBGA-N252)

PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Thermally enhanced plastic package with heat slug (HSL).

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated