

DS42MB200

www.ti.com

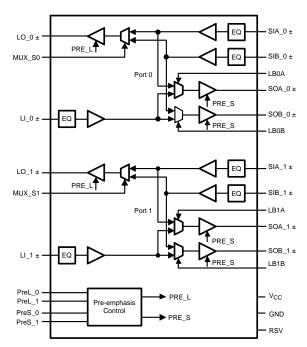
# DS42MB200 Dual 4.25 Gbps 2:1/1:2 CML Mux/Buffer with Transmit Pre-Emphasis and Receive Equalization

Check for Samples: DS42MB200

# FEATURES

- 1– 4.25 Gbps Fully Differential Data Paths
- Fixed Input Equalization
- Programmable Output Pre-emphasis
- Independent Switch and Line Side Preemphasis Controls
- Programmable Switch-side Loopback Mode
- On-chip Terminations
- +3.3V Dupply
- ESD Rating HBM 6 kV
- Lead-less WQFN-48 Package (7mmx7mmx0.8mm, 0.5mm Pitch)
- –40°C to +85°C Operating Temperature Range

# **APPLICATIONS**

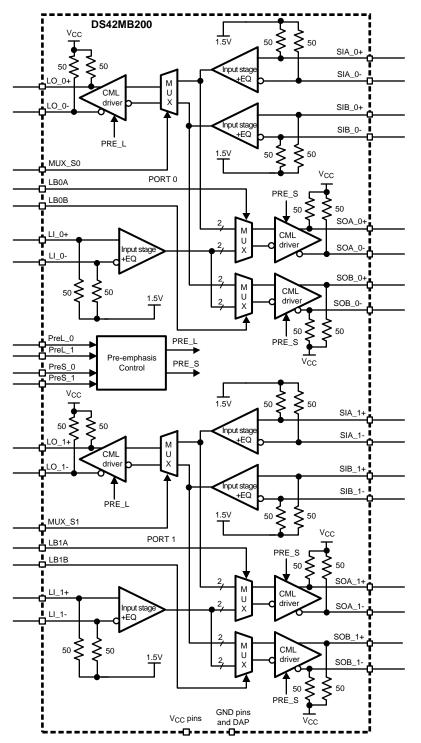

- Backplane Driver or Cable Driver
- Redundancy and Signal Conditioning Applications
- XAUI

### **Functional Block Diagram**

# DESCRIPTION

The DS42MB200 is a dual signal conditioning 2:1 multiplexer and 1:2 fan-out buffer designed for use in backplane redundancy applications. Signal conditioning features include input equalization and programmable output pre-emphasis that enable data communication in FR4 backplanes up to 4.25 Gbps. Each input stage has a fixed equalizer to reduce ISI distortion from board traces.

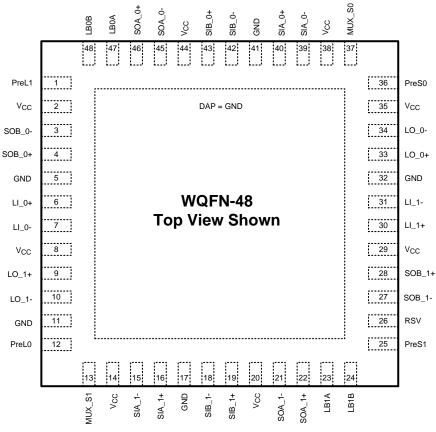
All output drivers have 4 selectable steps of preemphasis to compensate for transmission losses from long FR4 backplanes and reduce deterministic jitter. The pre-emphasis levels can be independently controlled for the line-side and switch-side drivers. The internal loopback paths from switch-side input to switch-side output enable at-speed system testing. All receiver inputs are internally terminated with 100Ω differential terminating resistors. All driver outputs are internally terminated with 50Ω to  $V_{CC}$ .




Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners. SNOSAT8G-JANUARY 2006-REVISED APRIL 2013



www.ti.com


### Simplified Block Diagram





SNOSAT8G - JANUARY 2006 - REVISED APRIL 2013

### **Connection Diagram**





#### **PIN DESCRIPTIONS**

| Pin Name                               | Pin Number | I/O   | Description                                                                                                                                                                                 |  |  |  |  |
|----------------------------------------|------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| LINE SIDE HIGH SPEED DIFFERENTIAL IO'S |            |       |                                                                                                                                                                                             |  |  |  |  |
| LI_0+<br>LI_0-                         | 6<br>7     | I     | Inverting and non-inverting differential inputs of port_0 at the line side. LI_0+ and LI_0- have an internal 50 $\Omega$ connected to an internal reference voltage. See Figure 7.          |  |  |  |  |
| LO_0+<br>LO_0-                         | 33<br>34   | 0     | Inverting and non-inverting differential outputs of port_0 at the line side. LO_0+ and LO_0- have an internal 50 $\Omega$ connected to V <sub>CC</sub> .                                    |  |  |  |  |
| LI_1+<br>LI_1-                         | 30<br>31   | I     | Inverting and non-inverting differential inputs of port_1 at the line side. LI_1+ and LI_1- have an internal 50 $\Omega$ connected to an internal reference voltage. See Figure 7.          |  |  |  |  |
| LO_1+<br>LO_1-                         | 9<br>10    | 0     | Inverting and non-inverting differential outputs of port_1 at the line side. LO_1+ and LO_1- have an internal 50 $\Omega$ connected to V <sub>CC</sub> .                                    |  |  |  |  |
| SWITCH SIDE                            | HIGH SPEED | DIFFE | RENTIAL IO's                                                                                                                                                                                |  |  |  |  |
| SOA_0+<br>SOA_0-                       | 46<br>45   | 0     | Inverting and non-inverting differential outputs of mux_0 at the switch_A side. SOA_0+ and SOA_0- have an internal 50 $\Omega$ connected to V <sub>CC</sub> .                               |  |  |  |  |
| SOB_0+<br>SOB_0-                       | 4<br>3     | 0     | Inverting and non-inverting differential outputs of mux_0 at the switch_B side. SOB_0+ and SOB_0- have an internal 50 $\Omega$ connected to V <sub>CC</sub> .                               |  |  |  |  |
| SIA_0+<br>SIA_0-                       | 40<br>39   | I     | Inverting and non-inverting differential inputs to the mux_0 at the switch_A side. SIA_0+ and SIA_0- have an internal 50 $\Omega$ connected to an internal reference voltage. See Figure 7. |  |  |  |  |
| SIB_0+<br>SIB_0-                       | 43<br>42   | Ι     | Inverting and non-inverting differential inputs to the mux_0 at the switch_B side. SIB_0+ and SIB_0- have an internal 50 $\Omega$ connected to an internal reference voltage. See Figure 7. |  |  |  |  |
| SOA_1+<br>SOA_1-                       | 22<br>21   | 0     | Inverting and non-inverting differential outputs of mux_1 at the switch_A side. SOA_1+ and SOA_1- have an internal 50 $\Omega$ connected to V <sub>CC</sub> .                               |  |  |  |  |
| SOB_1+<br>SOB_1-                       | 28<br>27   | 0     | Inverting and non-inverting differential outputs of mux_1 at the switch_B side. SOB_1+ and SOB_1- have an internal 50 $\Omega$ connected to V <sub>CC</sub> .                               |  |  |  |  |

Copyright © 2006–2013, Texas Instruments Incorporated

SNOSAT8G – JANUARY 2006 – REVISED APRIL 2013

www.ti.com

**INSTRUMENTS** 

Texas

#### PIN DESCRIPTIONS (continued)

| Pin Name         | Pin Number                         | I/O | Description                                                                                                                                                                                                                                                                                                                                 |
|------------------|------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SIA_1+<br>SIA_1- | 16<br>15                           | Ι   | Inverting and non-inverting differential inputs to the mux_1 at the switch_A side. SIA_1+ and SIA_1- have an internal 50 $\Omega$ connected to an internal reference voltage. See Figure 7.                                                                                                                                                 |
| SIB_1+<br>SIB_1- | 19<br>18                           | Η   | Inverting and non-inverting differential inputs to the mux_1 at the switch_B side. SIB_1+ and SIB_1- have an internal 50 $\Omega$ connected to an internal reference voltage. See Figure 7.                                                                                                                                                 |
| CONTROL (3       | 3.3V LVCMOS)                       |     |                                                                                                                                                                                                                                                                                                                                             |
| MUX_S0           | 37                                 | Η   | A logic low at MUX_S0 selects mux_0 to switch B. MUX_S0 is internally pulled high. Default state for mux_0 is switch A.                                                                                                                                                                                                                     |
| MUX_S1           | 13                                 | Ι   | A logic low at MUX_S1 selects mux_1 to switch B. MUX_S1 is internally pulled high. Default state for mux_1 is switch A.                                                                                                                                                                                                                     |
| PREL_0<br>PREL_1 | 12<br>1                            | Ι   | PREL_0 and PREL_1 select the output pre-emphasis of the line side drivers (LO_0± and LO_1±).<br>PREL_0 and PREL_1 are internally pulled high. See Table 3 for line side pre-emphasis levels.                                                                                                                                                |
| PRES_0<br>PRES_1 | 36<br>25                           | Ι   | PRES_0 and PRES_1 select the output pre-emphasis of the switch side drivers (SOA_0 $\pm$ , SOB_0 $\pm$ , SOA_1 $\pm$ and SOB_1 $\pm$ ). PRES_0 and PRES_1 are internally pulled high. See Table 4 for switch side pre-emphasis levels.                                                                                                      |
| LB0A             | 47                                 | Ι   | A logic low at LB0A enables the internal loopback path from SIA_0± to SOA_0±. LB0A is internally pulled high.                                                                                                                                                                                                                               |
| LB0B             | 48                                 | Ι   | A logic low at LB0B enables the internal loopback path from SIB_0± to SOB_0±. LB0B is internally pulled high.                                                                                                                                                                                                                               |
| LB1A             | 23                                 | Η   | A logic low at LB1A enables the internal loopback path from SIA_1± to SOA_1±. LB1A is internally pulled high.                                                                                                                                                                                                                               |
| LB1B             | 24                                 | Η   | A logic low at LB1B enables the internal loopback path from SIB_1± to SOB_1±. LB1B is internally pulled high.                                                                                                                                                                                                                               |
| RSV              | 26                                 | Η   | Reserve pin to support factory testing. This pin can be left open, or tied to GND, or tied to GND through an external pull-down resistor.                                                                                                                                                                                                   |
| POWER            |                                    |     |                                                                                                                                                                                                                                                                                                                                             |
| V <sub>cc</sub>  | 2, 8, 14, 20,<br>29, 35, 38,<br>44 | Ρ   | $V_{CC}$ = 3.3V ± 5%. Each $V_{CC}$ pin should be connected to the $V_{CC}$ plane through a low inductance path, typically with a via located as close as possible to the landing pad of the $V_{CC}$ pin. It is recommended to have a 0.01 $\mu$ F or 0.1 $\mu$ F, X7R, size-0402 bypass capacitor from each $V_{CC}$ pin to ground plane. |
| GND              | 5, 11, 17, 32,<br>41               | Ρ   | Ground reference. Each ground pin should be connected to the ground plane through a low inductance path, typically with a via located as close as possible to the landing pad of the GND pin.                                                                                                                                               |
| GND              | DAP                                | Ρ   | Die Attach Pad (DAP) is the metal contact at the bottom side, located at the center of the WQFN-48 package. It should be connected to the GND plane with at least 4 via to lower the ground impedance and improve the thermal performance of the package.                                                                                   |

# **Functional Description**

The DS42MB200 is a signal conditioning 2:1 multiplexer and a 1:2 buffer designed to support port redundancy up to 4.25 Gbps. Each input stage has a fixed equalizer that provides equalization to compensate about 5 dB of transmission loss from a short backplane trace (about 10 inches backplane). The output driver has pre-emphasis (driver-side equalization) to compensate the transmission loss of the backplane that it is driving. The driver conditions the output signal such that the lower frequency and higher frequency pulses reach approximately the same amplitude at the end of the backplane, and minimize the deterministic jitter caused by the amplitude disparity. The DS42MB200 provides 4 steps of user-selectable pre-emphasis ranging from 0, -3, -6 and -9 dB to handle different lengths of backplane. Figure 1 shows a driver pre-emphasis waveform. The pre-emphasis duration is 200ps nominal, corresponds to 0.8 bit-width at 4 Gbps. The pre-emphasis levels of switch-side and line-side can be individually programmed.

The high speed inputs are self-biased to about 1.5V and are designed for AC coupling allowing the DS42MB200 to be directly inserted into the datapath without any limitation. The ideal AC coupling capacitor value is often based on the lowest frequency component embedded within the serial link. A typical AC coupling capacitor value ranges between 100 and 1000nF, some specifications with scrambled data may require a larger coupling capacitor, a body size of 0402 is recommended. *Figure 5* shows the AC coupling capacitor placement in an AC test circuit. The inputs are compatible to most AC coupling differential signals such as LVDS, LVPECL and CML. See Figure 7 for details.



**INSTRUMENTS** 

XAS

SNOSAT8G - JANUARY 2006 - REVISED APRIL 2013

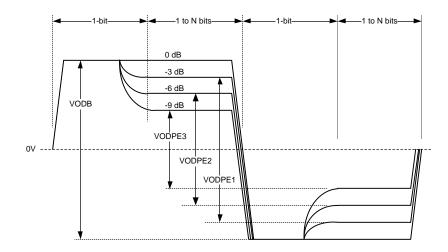
www.ti.com

### Table 1. LOGIC TABLE FOR MULTIPLEX CONTROLS

| MUX_S0      | Mux Function                         |
|-------------|--------------------------------------|
| 0           | MUX_0 select switch_B input, SIB_0±. |
| 1 (default) | MUX_0 select switch_A input, SIA_0±. |
| MUX_S1      | Mux Function                         |
| 0           | MUX_1 select switch_B input, SIB_1±. |
| 1 (default) | MUX_1 select switch_A input, SIA_0±. |

#### Table 2. LOGIC TABLE FOR LOOPBACK Controls

| LB0A        | Loopback Function                      |
|-------------|----------------------------------------|
| 0           | Enable loopback from SIA_0± to SOA_0±. |
| 1 (default) | Normal mode. Loopback disabled.        |
| LB0B        | Loopback Function                      |
| 0           | Enable loopback from SIB_0± to SOB_0±. |
| 1 (default) | Normal mode. Loopback disabled.        |
| LB1A        | Loopback Function                      |
| 0           | Enable loopback from SIA_1± to SOA_1±. |
| 1 (default) | Normal mode. Loopback disabled.        |
| LB1B        | Loopback Function                      |
| 0           | Enable loopback from SIB_1± to SOB_1±. |
| 1 (default) | Normal mode. Loopback disabled.        |


### Table 3. LINE-SIDE PRE-EMPHASIS CONTROLS

| PreL_[1:0]       | Pre-Emphasis Level in mV <sub>PP</sub><br>(VODB) | De-Emphasis Level in<br>mV <sub>PP</sub><br>(VODPE) | Pre-Emphasis in dB<br>(VODPE/VODB) | Typical FR4 board<br>trace |
|------------------|--------------------------------------------------|-----------------------------------------------------|------------------------------------|----------------------------|
| 0 0              | 1200                                             | 1200                                                | 0                                  | 10 inches                  |
| 0 1              | 1200                                             | 850                                                 | -3                                 | 20 inches                  |
| 10               | 1200                                             | 600                                                 | -6                                 | 30 inches                  |
| 1 1<br>(default) | 1200                                             | 426                                                 | -9                                 | 40 inches                  |

# Table 4. SWITCH-SIDE PRE-EMPHASIS CONTROLS

| PreS_[1:0]       | Pre-Emphasis Level in mV <sub>PP</sub><br>(VODB) | De-Emphasis Level in<br>mV <sub>PP</sub><br>(VODPE) | Pre-Emphasis in dB<br>(VODPE/VODB) | Typical FR4 board<br>trace |
|------------------|--------------------------------------------------|-----------------------------------------------------|------------------------------------|----------------------------|
| 0 0              | 1200                                             | 1200                                                | 0                                  | 10 inches                  |
| 0 1              | 1200                                             | 850                                                 | -3                                 | 20 inches                  |
| 1 0              | 1200                                             | 600                                                 | -6                                 | 30 inches                  |
| 1 1<br>(default) | 1200                                             | 426                                                 | -9                                 | 40 inches                  |





# Figure 2. Driver Pre-Emphasis Differential Waveform (showing all 4 pre-emphasis steps)



These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

# Absolute Maximum Ratings (1)(2)

| CMOS/TTL Input Voltage $-0.3V$ to $(V_{CC} + 0.3V)$ CML Input/Output Voltage $-0.3V$ to $(V_{CC} + 0.3V)$ Junction Temperature $-0.3V$ to $(V_{CC} + 0.3V)$ Junction Temperature $+125^{\circ}C$ Storage Temperature $-65^{\circ}C$ to $+150^{\circ}C$ Lead Temperature (Soldering, 4 sec.) $+260^{\circ}C$ Thermal Resistance, $\theta_{JA}$ $33.7^{\circ}C/W$ Thermal Resistance, $\theta_{JC-top}$ $20.7^{\circ}C/W$ Thermal Resistance, $\theta_{JC-bottom}$ $5.8^{\circ}C/W$ Thermal Resistance, $\phi_{JB}$ $18.2^{\circ}C/W$ ESD Rating HBM, $1.5$ k $\Omega$ , 100 pF $6$ k $V$ | 0                                        |                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------|
| CML Input/Output Voltage $-0.3V$ to $(V_{CC} + 0.3V)$ Junction Temperature $+125^{\circ}C$ Storage Temperature $-65^{\circ}C$ to $+150^{\circ}C$ Lead Temperature (Soldering, 4 sec.) $+260^{\circ}C$ Thermal Resistance, $\theta_{JA}$ $33.7^{\circ}C/W$ Thermal Resistance, $\theta_{JC-top}$ $20.7^{\circ}C/W$ Thermal Resistance, $\theta_{JC-bottom}$ $5.8^{\circ}C/W$ Thermal Resistance, $\theta_{JB}$ $18.2^{\circ}C/W$ ESD Rating HBM, $1.5$ k $\Omega$ , 100 pF $6$ kW                                                                                                        | Supply Voltage (V <sub>CC</sub> )        | -0.3V to 4V                      |
| Junction Temperature+125°CStorage Temperature $-65°C$ to $+150°C$ Lead Temperature (Soldering, 4 sec.) $+260°C$ Thermal Resistance, $\theta_{JA}$ $33.7°C/W$ Thermal Resistance, $\theta_{JC-top}$ $20.7°C/W$ Thermal Resistance, $\theta_{JC-bottom}$ $5.8°C/W$ Thermal Resistance, $\phi_{JB}$ $18.2°C/W$ ESD Rating HBM, $1.5$ k $\Omega$ , 100 pF $6$ k $V$                                                                                                                                                                                                                         | CMOS/TTL Input Voltage                   | -0.3V to (V <sub>CC</sub> +0.3V) |
| Storage Temperature $-65^{\circ}C$ to $+150^{\circ}C$ Lead Temperature (Soldering, 4 sec.) $+260^{\circ}C$ Thermal Resistance, $\theta_{JA}$ $33.7^{\circ}C/W$ Thermal Resistance, $\theta_{JC-top}$ $20.7^{\circ}C/W$ Thermal Resistance, $\theta_{JC-bottom}$ $5.8^{\circ}C/W$ Thermal Resistance, $\Phi_{JB}$ $18.2^{\circ}C/W$ ESD Rating HBM, $1.5$ k $\Omega$ , 100 pF $6$ k $V$                                                                                                                                                                                                  | CML Input/Output Voltage                 | -0.3V to (V <sub>CC</sub> +0.3V) |
| Lead Temperature (Soldering, 4 sec.)+260°CThermal Resistance, $\theta_{JA}$ 33.7°C/WThermal Resistance, $\theta_{JC-top}$ 20.7°C/WThermal Resistance, $\theta_{JC-bottom}$ 5.8°C/WThermal Resistance, $\Phi_{JB}$ 18.2°C/WESD Rating HBM, 1.5 kΩ, 100 pF6 kV                                                                                                                                                                                                                                                                                                                            | Junction Temperature                     | +125°C                           |
| Thermal Resistance, $\theta_{JA}$ 33.7°C/W         Thermal Resistance, $\theta_{JC-top}$ 20.7°C/W         Thermal Resistance, $\theta_{JC-bottom}$ 5.8°C/W         Thermal Resistance, $\Phi_{JB}$ 18.2°C/W         ESD Rating HBM, 1.5 kΩ, 100 pF       6 kW                                                                                                                                                                                                                                                                                                                           | Storage Temperature                      | −65°C to +150°C                  |
| Thermal Resistance, θ <sub>JC-top</sub> 20.7°C/W       Thermal Resistance, θ <sub>JC-bottom</sub> 5.8°C/W       Thermal Resistance, Φ <sub>JB</sub> 18.2°C/W       ESD Rating HBM, 1.5 kΩ, 100 pF     6 kV                                                                                                                                                                                                                                                                                                                                                                              | Lead Temperature (Soldering, 4 sec.)     | +260°C                           |
| Thermal Resistance, $\theta_{JC-bottom}$ 5.8°C/WThermal Resistance, $\Phi_{JB}$ 18.2°C/WESD Rating HBM, 1.5 k $\Omega$ , 100 pF6 kV                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Thermal Resistance, $\theta_{JA}$        | 33.7°C/W                         |
| Thermal Resistance,Φ <sub>JB</sub> 18.2°C/W           ESD Rating HBM, 1.5 kΩ, 100 pF         6 kW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Thermal Resistance, $\theta_{JC-top}$    | 20.7°C/W                         |
| ESD Rating HBM, 1.5 kΩ, 100 pF 6 kV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Thermal Resistance, $\theta_{JC-bottom}$ | 5.8°C/W                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Thermal Resistance, $\Phi_{JB}$          | 18.2°C/W                         |
| ESD Rating Machine Model 250V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ESD Rating HBM, 1.5 kΩ, 100 pF           | 6 kV                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ESD Rating Machine Model                 | 250V                             |

(1) "Absolute Maximum Ratings" are the ratings beyond which the safety of the device cannot be verified. They are not meant to imply that the device should be operated at these limits.

(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.

# **Recommended Operating Ratings**

|                                         | Min   | Тур | Max   | Units            |
|-----------------------------------------|-------|-----|-------|------------------|
| Supply Voltage (V <sub>CC</sub> -GND)   | 3.135 | 3.3 | 3.465 | V                |
| Supply Noise Amplitude (10 Hz to 2 GHz) |       |     | 20    | mV <sub>PP</sub> |
| Ambient Temperature                     | -40   |     | 85    | °C               |
| Case Temperature                        |       |     | 100   | °C               |



#### **Electrical Characteristics**

Over recommended operating supply and temperature ranges unless otherwise specified.

| Symbol             | Parameter                                                    | Conditions                                                                                                                                                                                                                                                                                                                                                                                | Min               | Typ <sup>(1)</sup>  | Max                  | Units                                                       |
|--------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|----------------------|-------------------------------------------------------------|
| LVCMOS E           | C SPECIFICATIONS                                             | ·                                                                                                                                                                                                                                                                                                                                                                                         |                   |                     |                      |                                                             |
| V <sub>IH</sub>    | High Level Input<br>Voltage                                  |                                                                                                                                                                                                                                                                                                                                                                                           | 2.0               |                     | V <sub>CC</sub> +0.3 | V                                                           |
| VIL                | Low Level Input<br>Voltage                                   |                                                                                                                                                                                                                                                                                                                                                                                           | -0.3              |                     | 0.8                  | V                                                           |
| I <sub>IH</sub>    | High Level Input<br>Current                                  | V <sub>IN</sub> = V <sub>CC</sub>                                                                                                                                                                                                                                                                                                                                                         | -10               |                     | 10                   | μA                                                          |
| IIL                | Low Level Input Current                                      | V <sub>IN</sub> = GND                                                                                                                                                                                                                                                                                                                                                                     | 75                | 94                  | 124                  | μA                                                          |
| R <sub>PU</sub>    | Pull-High Resistance                                         |                                                                                                                                                                                                                                                                                                                                                                                           |                   | 35                  |                      | kΩ                                                          |
| RECEIVER           | SPECIFICATIONS                                               |                                                                                                                                                                                                                                                                                                                                                                                           |                   |                     |                      |                                                             |
| V <sub>ID</sub>    | Differential Input<br>Voltage Range                          | AC Coupled Differential Signal<br>Below 1.25 Gbps<br>At 1.25 Gbps–3.125 Gbps<br>Above 3.125 Gbps<br>This parameter is not production tested.                                                                                                                                                                                                                                              | 100<br>100<br>100 |                     | 1750<br>1560<br>1200 | mV <sub>P-P</sub><br>mV <sub>P-P</sub><br>mV <sub>P-P</sub> |
| V <sub>ICM</sub>   | Common Mode Voltage at Receiver Inputs                       | Measured at receiver inputs reference to ground.                                                                                                                                                                                                                                                                                                                                          |                   | 1.3                 |                      | V                                                           |
| R <sub>ITD</sub>   | Input Differential<br>Termination                            | On-chip differential termination between IN+ or IN <sup>(2)</sup>                                                                                                                                                                                                                                                                                                                         | 84                | 100                 | 116                  | Ω                                                           |
| DRIVER SI          | PECIFICATIONS                                                | ·                                                                                                                                                                                                                                                                                                                                                                                         |                   |                     |                      |                                                             |
| VODB               | Output Differential<br>Voltage Swing without<br>Pre-Emphasis | $R_{L} = 100\Omega \pm 1\%$<br>$PRES_1=PRES_0=0$<br>$PREL_1=PREL_0=0$<br>Driver pre-emphasis disabled.<br>Running K28.7 pattern at 4.25 Gbps. <sup>(3)</sup><br>See Figure 6 for test circuit.                                                                                                                                                                                            | 1000              | 1200                | 1400                 | mV <sub>P-P</sub>                                           |
| V <sub>PE</sub>    | Output Pre-Emphasis<br>Voltage Ratio<br>20*log(VODPE/VODB)   | $\begin{array}{l} R_{L} = 100\Omega \pm 1\% \\ Running \ K28.7 \ pattern \ at \ 4.25 \ Gbps^{(3)} \\ PREx\_[1:0]{=}00 \\ PREx\_[1:0]{=}01 \\ PREx\_[1:0]{=}10 \\ PREx\_[1:0]{=}11 \\ x=S \ for \ switch \ side \ pre-emphasis \ control \\ x=L \ for \ line \ side \ pre-emphasis \ control \\ See \ Figure \ 2 \ on \ waveform. \\ See \ Figure \ 6 \ for \ test \ circuit. \end{array}$ |                   | 0<br>-3<br>-6<br>-9 |                      | dB<br>dB<br>dB<br>dB                                        |
| t <sub>PE</sub>    | Pre-Emphasis Width <sup>(4)</sup>                            | Tested at -9 dB pre-emphasis level, PREx[1:0]=11<br>x=S for switch side pre-emphasis control<br>x=L for line side pre-emphasis control<br>See Figure 5 on measurement condition.                                                                                                                                                                                                          | 125               | 200                 | 250                  | ps                                                          |
| R <sub>OTSE</sub>  | Output Termination                                           | On-chip termination from OUT+ or OUT- to $V_{CC}$                                                                                                                                                                                                                                                                                                                                         | 42                | 50                  | 58                   | Ω                                                           |
| R <sub>otd</sub>   | Output Differential<br>Termination                           | On-chip differential termination between OUT+ and OUT-                                                                                                                                                                                                                                                                                                                                    |                   | 100                 |                      | Ω                                                           |
| ΔR <sub>OTSE</sub> | Mis-Match in Output<br>Termination Resistors                 | Mis-match in output terminations at OUT+ and OUT-                                                                                                                                                                                                                                                                                                                                         |                   |                     | 5                    | %                                                           |
| V <sub>OCM</sub>   | Output Common Mode<br>Voltage                                |                                                                                                                                                                                                                                                                                                                                                                                           | 2.4               |                     | 2.9                  | V                                                           |

(1)

Typical parameters measured at  $V_{CC} = 3.3V$ ,  $T_A = 25^{\circ}C$ . They are for reference purposes and are not production-tested. IN+ and IN- are generic names refer to one of the many pairs of complimentary inputs of the DS42MB200. OUT+ and OUT- are generic names refer to one of the many pairs of the complimentary outputs of the DS42MB200. Differential input voltage  $V_{ID}$  is defined (2)

as |IN+-IN-|. Differential output voltage V<sub>OD</sub> is defined as |OUT+-OUT-|. K28.7 pattern is a 10-bit repeating pattern of K28.7 code group {001111 1000}K28.5 pattern is a 20-bit repeating pattern of +K28.5 and (3)

-K28.5 code groups {110000 0101 001111 1010}

Specified by desigh and characterization using statistical analysis. (4)

**ISTRUMENTS** 

**EXAS** 

### **Electrical Characteristics (continued)**

Over recommended operating supply and temperature ranges unless otherwise specified.

| Symbol            | Parameter                                        | Conditions                                                                                                                                                          | Min  | Typ <sup>(1)</sup> | Max    | Units          |
|-------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------|--------|----------------|
| POWER D           | ISSIPATION                                       | · · · · ·                                                                                                                                                           |      |                    |        |                |
| P <sub>D</sub>    | Power Dissipation                                | $V_{DD}$ = 3.465V<br>All outputs terminated by 100Ω ±1%.<br>PREL_[1:0]=0, PRES_[1:0]=0<br>Running PRBS 2 <sup>7</sup> -1 pattern at 4.25 Gbps                       |      |                    | 1      | w              |
| AC CHARA          | ACTERISTICS                                      |                                                                                                                                                                     |      |                    |        |                |
| t <sub>R</sub>    | Differential Low to High<br>Transition Time      | Measured with a clock-like pattern at 100 MHz,<br>between 20% and 80% of the differential output                                                                    |      | 80                 |        | ps             |
| t <sub>F</sub>    | Differential High to Low<br>Transition Time      | voltage. Pre-emphasis disabled.<br>Transition time is measured with fixture as shown in<br>Figure 6, adjusted to reflect the transition time at the<br>output pins. |      | 80                 |        | ps             |
| t <sub>PLH</sub>  | Differential Low to High<br>Propagation Delay    | Measured at 50% differential voltage from input to output.                                                                                                          |      | 0.5                | 2      | ns             |
| t <sub>PHL</sub>  | Differential High to Low<br>Propagation Delay    |                                                                                                                                                                     |      | 0.5                | 2      | ns             |
| t <sub>SKP</sub>  | Pulse Skew <sup>(5)</sup>                        | t <sub>PHL</sub> _t <sub>PLH</sub>                                                                                                                                  |      |                    | 20     | ps             |
| t <sub>sko</sub>  | Output Skew <sup>(6)(5)</sup>                    | Difference in propagation delay among data paths in the same device.                                                                                                |      |                    | 200    | ps             |
| t <sub>SKPP</sub> | Part-to-Part Skew <sup>(5)</sup>                 | Difference in propagation delay between the same output from devices operating under identical condition.                                                           |      |                    | 500    | ps             |
| t <sub>SM</sub>   | Mux Switch Time                                  | Measured from $V_{IH}$ or $V_{IL}$ of the mux-control or loopback control to 50% of the valid differential output.                                                  |      | 1.8                | 6      | ns             |
| RJ                | Device Random<br>Jitter <sup>(7)(5)</sup>        | See Figure 6 for test circuit.<br>Alternating-1-0 pattern.<br>Pre-emphasis disabled.<br>At 1.25 Gbps<br>At 4.25 Gbps                                                |      |                    | 2<br>2 | psrms<br>psrms |
| DJ                | Device Deterministic<br>Jitter <sup>(8)(5)</sup> | See Figure 6 for test circuit.<br>Pre-emphasis disabled.<br>At 4.25 Gbps, PRBS7 pattern for DS42MB200@ –<br>40° to 85°C                                             |      |                    | 35     | pspp           |
| DR <sub>MAX</sub> | Maximum Data Rate <sup>(5)</sup>                 | Tested with alternating-1-0 pattern                                                                                                                                 | 4.25 |                    |        | Gbps           |

(5) Specified by desigh and characterization using statistical analysis.

(6) t<sub>SKO</sub> is the magnitude difference in the propagation delays among data paths between switch A and switch B of the same port and similar data paths between port 0 and port 1. An example is the output skew among data paths from SIA\_0± to LO\_0±, SIB\_0± to LO\_0±, SIA\_1± to LO\_1± and SIB\_1± to LO\_1±. Another example is the output skew among data paths from LI\_0± to SOA\_0±, LI\_0± to SOB\_0±, LI\_1± to SOA\_1± and LI\_1± to SOB\_1±. t<sub>SKO</sub> also refers to the delay skew of the loopback paths of the same port and between similar data paths between port 0 and port 1. An example is the output skew among data paths SIA\_0± to SOA\_0±, SIB\_0± to SOB\_0±, LI\_1± to SOA\_1± and LI\_1± to SOB\_1±. t<sub>SKO</sub> also refers to the delay skew of the loopback paths of the same port and between similar data paths between port 0 and port 1. An example is the output skew among data paths SIA\_0± to SOA\_0±, SIB\_0± to SOB\_0±, SIA\_1± to SOA\_1± and SIB\_1± to SOB\_1±.

(7) Device output random jitter is a measurement of the random jitter contribution from the device. It is derived by the equation sqrt(RJ<sub>OUT</sub><sup>2</sup>-RJ<sub>IN</sub><sup>2</sup>), where RJ<sub>OUT</sub> is the random jitter measured at the output of the device in psrms, RJ<sub>IN</sub> is the random jitter of the pattern generator driving the device.

(8) Device output deterministic jitter is a measurement of the deterministic jitter contribution from the device. It is derived by the equation (DJ<sub>OUT</sub>-DJ<sub>IN</sub>), where DJ<sub>OUT</sub> is the peak-to-peak deterministic jitter measured at the output of the device in pspp, DJ<sub>IN</sub> is the peak-to-peak deterministic jitter of the pattern generator driving the device.

SNOSAT8G - JANUARY 2006 - REVISED APRIL 2013

# **Timing Diagrams**

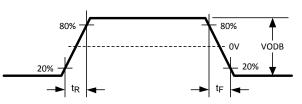



Figure 3. Driver Output Transition Time

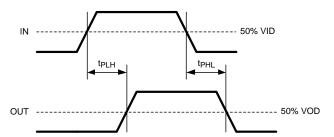



Figure 4. Propagation Delay from input to output

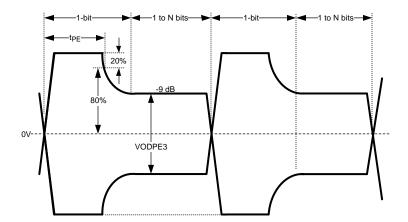



Figure 5. Test condition for output pre-emphasis duration

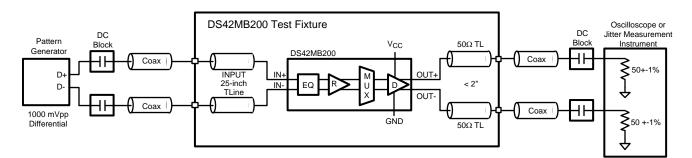



Figure 6. AC Test Circuit



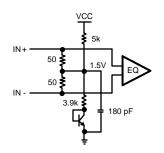



Figure 7. Receiver Input Termination and Biasing Circuit

# **APPLICATIONS INFORMATION**

The DS42MB200 input equalizer provides equalization to compensate about 5 dB of transmission loss from a short backplane transmission line. For characterization purposes, a 25-inch FR4 coupled micro-strip board trace is used in place of the short backplane link. The 25-inch microstrip board trace has approximately 5 dB of attenuation between 375 MHz and 1.875 GHz, representing closely the transmission loss of the short backplane transmission line. The 25-inch microstrip board trace has approximately 5 dB of attenuation between 375 MHz and 1.875 GHz, representing closely the transmission loss of the short backplane transmission line. The 25-inch microstrip is connected between the pattern generator and the differential inputs of the DS42MB200 for AC measurements.

| Trace Length | Finished Trace<br>Width W | Separation between<br>Traces | Dielectric Height H | Dielectric Constant<br>ε <sub>R</sub> | Loss Tangent |
|--------------|---------------------------|------------------------------|---------------------|---------------------------------------|--------------|
| 25 inches    | 8.5 mil                   | 11.5 mil                     | 6 mil               | 3.8                                   | 0.022        |

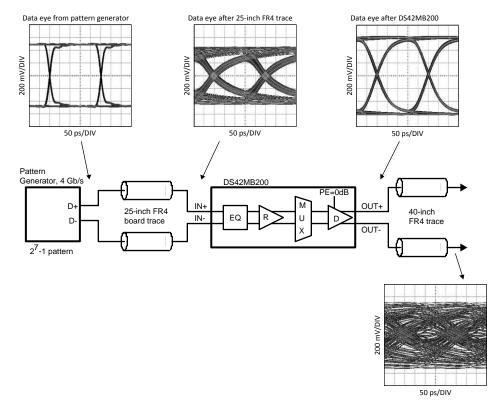



Figure 8. Data input and output eye patterns with driver set to 0 dB pre-emphasis



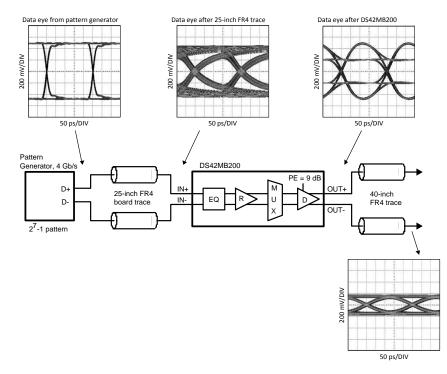



Figure 9. Data input and output eye patterns with driver set to 9dB pre-emphasis

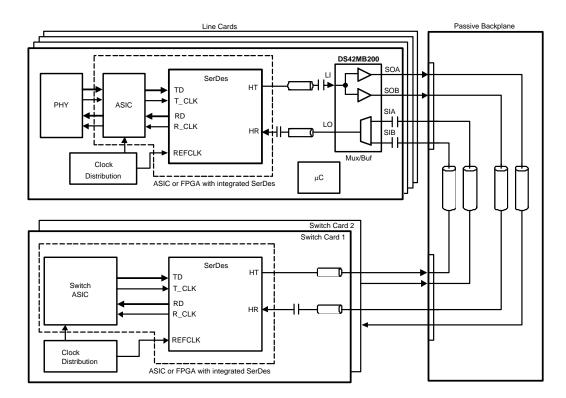



Figure 10. Application diagram (showing data paths of port 0)

SNOSAT8G-JANUARY 2006-REVISED APRIL 2013

12 Submit Documentation Feedback Copyright © 2006–2013, Texas Instruments Incorporated

# **REVISION HISTORY**

| Cł | nanges from Revision F (April 2013) to Revision G  | Page |
|----|----------------------------------------------------|------|
| •  | Changed layout of National Data Sheet to TI format | 11   |

www.ti.com



1-Dec-2014

# PACKAGING INFORMATION

| Orderable Device  | Status | Package Type | Package | Pins | Package | Eco Plan                   | Lead/Ball Finish | MSL Peak Temp       | Op Temp (°C) | Device Marking | Samples |
|-------------------|--------|--------------|---------|------|---------|----------------------------|------------------|---------------------|--------------|----------------|---------|
|                   | (1)    |              | Drawing |      | Qty     | (2)                        | (6)              | (3)                 |              | (4/5)          |         |
| DS42MB200TSQ/NOPB | ACTIVE | WQFN         | NJU     | 48   | 250     | Green (RoHS<br>& no Sb/Br) | CU SN            | Level-3-260C-168 HR | -40 to 85    | 42MB200        | Samples |

<sup>(1)</sup> The marketing status values are defined as follows:

**ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

**PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

<sup>(2)</sup> Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

**TBD:** The Pb-Free/Green conversion plan has not been defined.

**Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

<sup>(3)</sup> MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

<sup>(4)</sup> There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

<sup>(5)</sup> Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

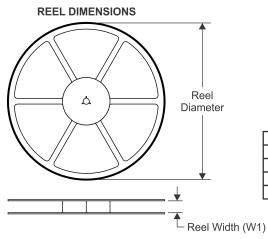
(<sup>6)</sup> Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

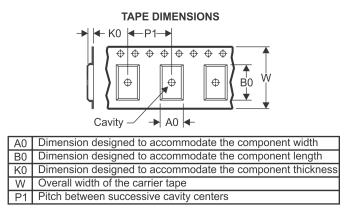
**Important Information and Disclaimer:**The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



# PACKAGE OPTION ADDENDUM


1-Dec-2014


# PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

# TAPE AND REEL INFORMATION





# QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



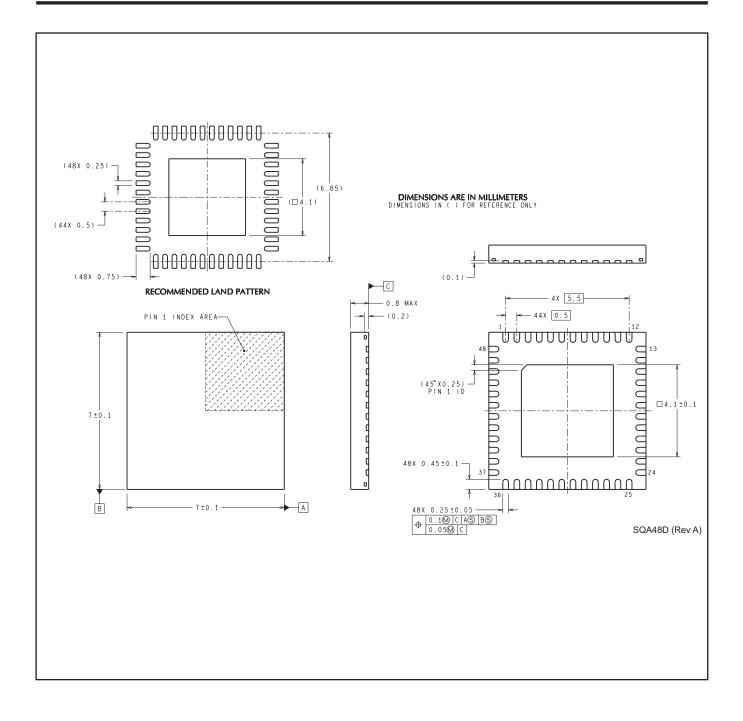

| *All dimensions are nominal |                 |                    |    |     |                          |                          |            |            |            |            |           |                  |
|-----------------------------|-----------------|--------------------|----|-----|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| Device                      | Package<br>Type | Package<br>Drawing |    | SPQ | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
| DS42MB200TSQ/NOPB           | WQFN            | NJU                | 48 | 250 | 178.0                    | 16.4                     | 7.3        | 7.3        | 1.3        | 12.0       | 16.0      | Q1               |

TEXAS INSTRUMENTS

www.ti.com

# PACKAGE MATERIALS INFORMATION

20-Sep-2016




\*All dimensions are nominal

| Device            | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) |
|-------------------|--------------|-----------------|------|-----|-------------|------------|-------------|
| DS42MB200TSQ/NOPB | WQFN         | NJU             | 48   | 250 | 210.0       | 185.0      | 35.0        |

# **MECHANICAL DATA**

# NJU0048D





#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

| Products                     |                          | Applications                  |                                   |
|------------------------------|--------------------------|-------------------------------|-----------------------------------|
| Audio                        | www.ti.com/audio         | Automotive and Transportation | www.ti.com/automotive             |
| Amplifiers                   | amplifier.ti.com         | Communications and Telecom    | www.ti.com/communications         |
| Data Converters              | dataconverter.ti.com     | Computers and Peripherals     | www.ti.com/computers              |
| DLP® Products                | www.dlp.com              | Consumer Electronics          | www.ti.com/consumer-apps          |
| DSP                          | dsp.ti.com               | Energy and Lighting           | www.ti.com/energy                 |
| Clocks and Timers            | www.ti.com/clocks        | Industrial                    | www.ti.com/industrial             |
| Interface                    | interface.ti.com         | Medical                       | www.ti.com/medical                |
| Logic                        | logic.ti.com             | Security                      | www.ti.com/security               |
| Power Mgmt                   | power.ti.com             | Space, Avionics and Defense   | www.ti.com/space-avionics-defense |
| Microcontrollers             | microcontroller.ti.com   | Video and Imaging             | www.ti.com/video                  |
| RFID                         | www.ti-rfid.com          |                               |                                   |
| OMAP Applications Processors | www.ti.com/omap          | TI E2E Community              | e2e.ti.com                        |
| Wireless Connectivity        | www.ti.com/wirelessconne | ctivity                       |                                   |

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated