

MAX660

SNOS405A - NOVEMBER 1999-REVISED OCTOBER 2016

MAX660 Switched Capacitor Voltage Converter

Features

- Inverts or Doubles Input Supply Voltage
- Narrow SO-8 Package
- $6.5-\Omega$ Typical Output Resistance
- 88% Typical Conversion Efficiency at 100 mA
- Selectable Oscillator Frequency: 10 kHz/80 kHz

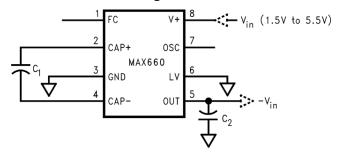
Applications

- **Laptop Computers**
- Cellular Phones
- Medical Instruments
- Operational Amplifier Power Supplies
- Interface Power Supplies
- Handheld Instruments

3 Description

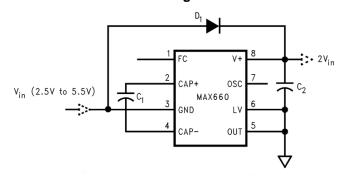
The MAX660 CMOS charge-pump voltage converter is a versatile unregulated switched-capacitor inverter or doubler. Operating from a wide 1.5-V to 5.5-V supply voltage, the MAX660 uses two low-cost capacitors to provide 100 mA of output current without the cost, size and EMI related to inductorbased converters. With an operating current of only 120 µA and operating efficiency greater than 90% at most loads, the MAX660 provides ideal performance for battery-powered systems. MAX660 devices can be operated directly in parallel to lower output impedance, thus providing more current at a given voltage.

The FC (frequency control) pin selects between a nominal 10-kHz or 80-kHz oscillator frequency. The oscillator frequency can be lowered by adding an external capacitor to the OSC pin. Also, the OSC pin may be used to drive the MAX660 with an external clock up to 150 kHz. Through these methods, output ripple frequency and harmonics may be controlled.


Additionally, the MAX660 may be configured to divide a positive input voltage precisely in half. In this mode, input voltages as high as 11 V may be used.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
MAX660	SOIC (8)	4.90 mm × 3.91 mm


(1) For all available packages, see the orderable addendum at the end of the data sheet.

Voltage Inverter

Copyright © 2016, Texas Instruments Incorporated

Positive Voltage Doubler

Copyright © 2016, Texas Instruments Incorporated

Table of Contents

1	Features 1		9.3 Feature Description	. 10
2	Applications 1		9.4 Device Functional Modes	. 10
3	Description 1	10	Application and Implementation	11
4	Revision History2		10.1 Application Information	. 11
5	Device Comparison Tables2		10.2 Typical Applications	. 11
6	Pin Configuration and Functions		10.3 Split V+ in Half	. 17
7	Specifications4	11	Power Supply Recommendations	17
•	7.1 Absolute Maximum Ratings	12	Layout	18
	7.2 ESD Ratings		12.1 Layout Guidelines	. 18
	7.3 Recommended Operating Conditions		12.2 Layout Example	. 18
	7.4 Thermal Information	13	Device and Documentation Support	19
	7.5 Electrical Characteristics 5		13.1 Device Support	. 19
	7.6 Typical Characteristics		13.2 Receiving Notification of Documentation Updates	19
8	Parameter Measurement Information 8		13.3 Community Resources	. 19
U	8.1 MAX660 Test Circuit		13.4 Trademarks	. 19
9	Detailed Description 9		13.5 Electrostatic Discharge Caution	. 19
J	9.1 Overview		13.6 Glossary	. 19
	9.2 Functional Block Diagram	14	Mechanical, Packaging, and Orderable Information	19

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (SNOS405) to Revision A

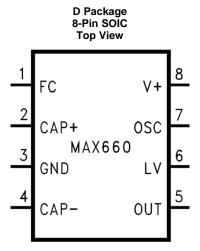
Page

•	Added additional info to DescriptionDevice Information and Pin Configuration and Functions sections, ESD Ratings and Thermal Information tables, Feature Description, Device Functional Modes, Application and Implementation, Power Supply Recommendations, Layout, Device and Documentation Support, and Mechanical, Packaging, and	4
	Orderable Information sections	. 1
•	Deleted obsolete device number information from Device Comparison table	. 2
•	Added additional thermal values; changed R _{θJA} from "170°C/W" to "114.4°C/W"	. 4
•	Changed "PL" to "PM" and "PF" to PJ" - manufacturers changed their part number prefix	13
•	Changed "Sprague" to "Vishay Sprague" per website	13

5 Device Comparison Tables

	LM2664	LM2665	MAX660
Package	SOT-23 (6)	SOT-23 (6)	SOIC
Supply current (typical) (mA)	0.22	0.22	0.12 at 10 kHz, 1 at 80 kHz
Output (typical) (Ω)	12 12		6.5
Oscillator (kHz)	80	80	10, 80
Input (V)	1.8 to 5.5	1.8 to 5.5	1.8 to 5.5
Output mode(s)	Invert	Double	Invert, Double

	MAX660	LM2662	LM2663
Package	SOIC, VSSOP (8)	SOIC (8)	SOIC (8)
Supply current (typical) (mA)	0.12 at 10 kHz, 1 at 80 kHz	0.3 at 10 kHz, 1.3 at 70 kHz	1.3
Output (typical) (Ω)	6.5	3.5	3.5
Oscillator (kHz)	10, 80	10, 70	70
Input (V)	1.8 to 5.5	1.8 to 5.5	1.8 to 5.5



www.ti.com

	MAX660	LM2662	LM2663
Output mode(s)	Invert, Double	Invert, Double	Invert, Double

6 Pin Configuration and Functions

Pin Functions

Р	IN I/O		DESCRIPTION	V
NAME	NO.	I/O	VOLTAGE INVERTER	VOLTAGE DOUBLER
CAP+	2	Power	Connect this pin to the positive terminal of charge-pump capacitor.	Same as inverter
CAP-	4	Power	Connect this pin to the negative terminal of charge-pump capacitor.	Same as inverter
FC	1	Input	Frequency control for internal oscillator: FC = open, $f_{\rm OSC}$ = 10 kHz (typical); FC = V+, $f_{\rm OSC}$ = 80 kHz (typical); FC has no effect when OSC pin is driven externally	Same as inverter
GND	3	Ground	Power supply ground input.	Power supply positive voltage input
LV	6	Input	Low-voltage operation input. Tie LV to GND when input voltage is less than 3.5 V. Above 3.5 V, LV can be connected to GND or left open. When driving OSC with an external clock, LV must be connected to GND.	LV must be tied to OUT.
osc	7	Input	Oscillator control input. OSC is connected to an internal 15-pF capacitor. An external capacitor can be connected to slow the oscillator. Also, an external clock can be used to drive OSC.	Same as inverter except that OSC cannot be driven by an external clock
OUT	5	Power	Negative voltage output	Positive supply ground input
V+	8	Power	Power supply positive voltage input	Positive voltage output

7 Specifications

7.1 Absolute Maximum Ratings

	MIN	MAX	UNIT
Supply voltage (V+ to GND, or GND to OUT)		6	V
LV	(OUT - 0.3 V)	GND + 3 V)	
FC, OSC	The least negative of (OUT (V+ 0.3)		
V+ and OUT continuous output current		120	mA
Output short-circuit duration to GND ⁽³⁾		1	sec
Power dissipation, $T_A = 25^{\circ}C^{(4)}$		735	mW
T _J , maximum ⁽⁴⁾		150	°C
Operating junction temperature	-40	85	°C
Storage temperature, T _{stg}	-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

			VALUE	UNIT
$V_{(ESD)}$	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±2000	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
	Inverter, LV = open	3.5	5.5	
V+ (supply voltage)	Inverter, LV = GND	1.5	5.5	V
	Doubler, LV = out	2.5	5.5	
Junction temperature (T _J)	Junction temperature (T _J)		85	°C

7.4 Thermal Information

		MAX660	
	THERMAL METRIC ⁽¹⁾	SOIC (D)	UNIT
		8 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	114.4	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	61.4	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	55.5	°C/W
ΨЈТ	Junction-to-top characterization parameter	9.8	°C/W
ΨЈВ	Junction-to-board characterization parameter	54.9	°C/W

(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.

⁽²⁾ If Military/Aerospace specified devices are required, contact the Texas Instruments Sales Office/ Distributors for availability and specifications.

⁽³⁾ OUT may be shorted to GND for one second without damage. However, shorting OUT to V+ may damage the device and must be avoided. Also, for temperatures above 85°C, OUT must not be shorted to GND or V+, or device may be damaged.

⁽⁴⁾ The maximum allowable power dissipation is calculated by using $P_{D_MAX} = (T_{J_MAX} - T_A) / R_{\theta JA}$, where T_{J_MAX} is the maximum junction temperature, T_A is the ambient temperature, and $R_{\theta JA}$ is the junction-to-ambient thermal resistance of the specified package.

7.5 Electrical Characteristics

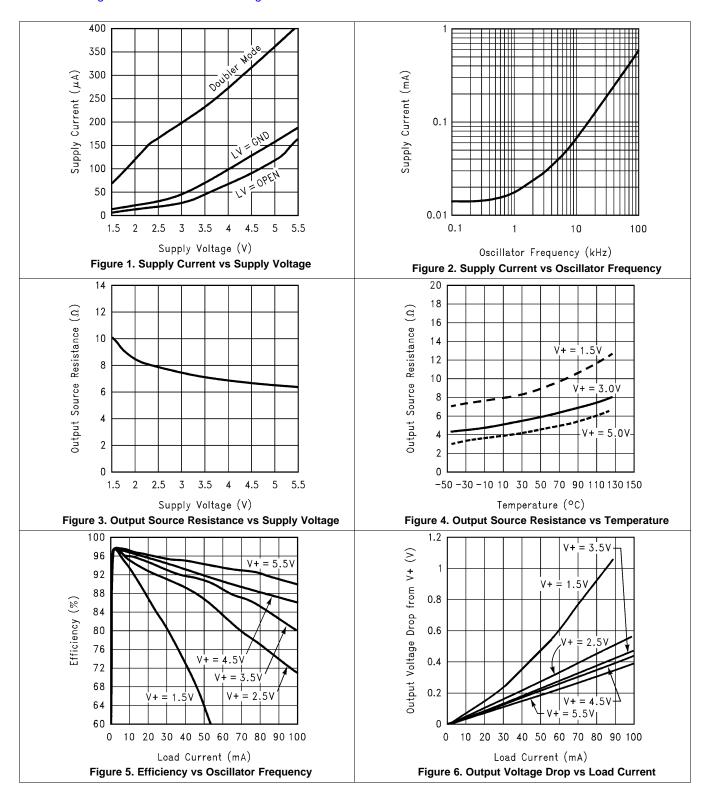
Unless otherwise specified: Limits apply for $T_J = 25^{\circ}C$, V+ = 5 V, FC = open, $C1 = C2 = 150 \mu F$. (1)

	PARAMETER	TE	ST CONDITIONS	MIN	TYP	MAX	UNIT
			Inverter LV = open ⁽³⁾ , $T_J = -40$ °C to 85°C	3.5		5.5	
V+ ⁽²⁾	Supply voltage	$R_L = 1 k\Omega$	Inverter, LV = GND, $T_J = -40^{\circ}\text{C}$ to 85°C	1.5		5.5	V
			Doubler, LV = OUT, $T_J = -40$ °C to 85°C	2.5		5.5	
			FC = open		0.12		
	Cupaly aureat	No lood IV open	FC = open, $T_J = -40$ °C to 85°C			0.5	A
Ι _Q	Supply current	No load, LV = open	FC = V+		1		mA
			FC = V+, T _J = -40°C to 85°C			3	
-	Outrast assessed	T _A ≤ 85°C, OUT ≤ −4	V	100			A
I∟	Output current	$T_A > 85^{\circ}C$, OUT ≤ -3	T _A > 85°C, OUT ≤ −3.8 V				mA
	Output resistance (2)		T _A ≤ 85°C		6.5	10	Ω
R_{OUT}		$I_L = 100 \text{ mA}$	$T_J = -40$ °C to 85°C			10	
			$T_A > 85^{\circ}C$, $T_J = -40^{\circ}C$ to $85^{\circ}C$			12	
	Oscillator frequency	Oscillator frequency OSC = open	FC = open		10		kHz
f			FC = open, $T_J = -40^{\circ}C$ to $85^{\circ}C$	5			
fosc			FC = V+		80		
			$FC = V+, T_J = -40^{\circ}C \text{ to } 85^{\circ}C$	40			
1	OSC input current	FC = open			±2		μA
losc	OSC input current	FC = V+			±16		μΛ
		R_L (1 k Ω) between V-	+ and OUT		98%		
		R_L (1 k Ω) between V- T _J = -40°C to 85°C	+ and OUT	96%			
P_{EFF}	Power efficiency	R_L (500 Ω) between 0	R _L (500 Ω) between GND and OUT		96%		
	$T_J = -40$ °Ć to	R_L (500 Ω) between 0 $T_J = -40^{\circ}$ C to 85°C	GND and OUT	92%			
		$I_L = 100 \text{ mA to GND}$			88%		
V	Voltage conversion	No load			99.96%		
V_{OEFF}	efficiency	No load, $T_J = -40^{\circ}C$	to 85°C	99%			

⁽¹⁾ In the test circuit, capacitors C1 and C2 are 0.2-Ω maximum ESR capacitors. Capacitors with higher ESR increase output resistance, reduce output voltage, and efficiency.

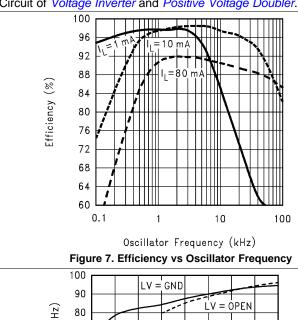
Submit Documentation Feedback

Copyright © 1999–2016, Texas Instruments Incorporated


⁽²⁾ Specified output resistance includes internal switch resistance and capacitor ESR.

⁽³⁾ The minimum limit for this parameter is different from the limit of 3 V for the industry-standard 660 product. For inverter operation with supply voltage below 3.5 V, connect the LV pin to GND.

7.6 Typical Characteristics


Circuit of Voltage Inverter and Positive Voltage Doubler.

STRUMENTS

Typical Characteristics (continued)

Circuit of Voltage Inverter and Positive Voltage Doubler.

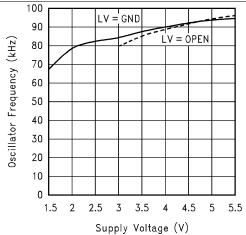


Figure 9. Oscillator Frequency Supply Voltage

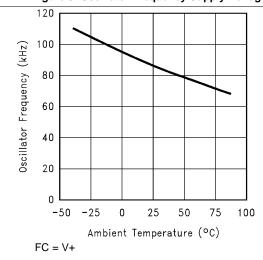


Figure 11. Oscillator Frequency vs Temperature

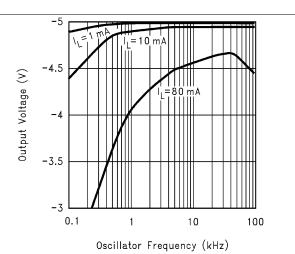


Figure 8. Output Voltage vs Oscillator Frequency

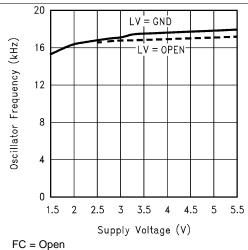
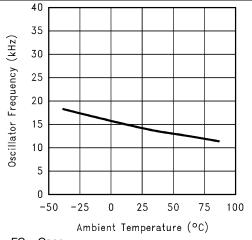



Figure 10. Oscillator Frequency vs Supply Voltage

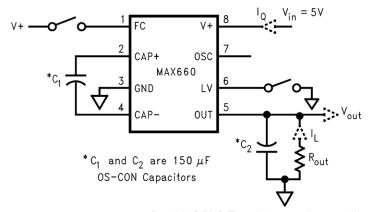

FC = Open

Figure 12. Oscillator Frequency vs Temperature

8 Parameter Measurement Information

8.1 MAX660 Test Circuit

Copyright © 2016, Texas Instruments Incorporated

9 Detailed Description

9.1 Overview

The MAX660 contains four large CMOS switches which are switched in a sequence to invert the input supply voltage. Energy transfer and storage are provided by external capacitors. Figure 13 shows the voltage conversion scheme. When S1 and S3 are closed, C1 charges to the supply voltage V+. During this time interval switches S2 and S4 are open. In the second time interval, S1 and S3 are open and S2 and S4 are closed, C1 is charging C2. After a number of cycles, the voltage across C2 is pumped to V+. Because the anode of C2 is connected to ground, the output at the cathode of C2 equals -(V+) assuming no load on C2, no loss in the switches, and no ESR in the capacitors. In reality, the charge transfer efficiency depends on the switching frequency, the on-resistance of the switches, and the ESR of the capacitors.

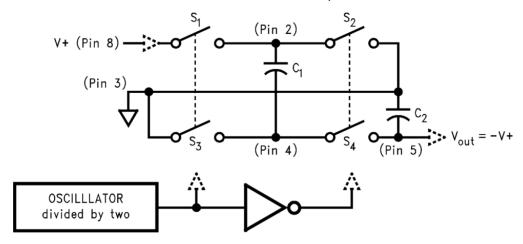
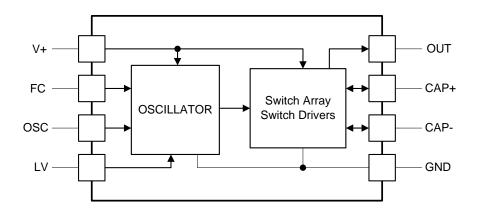



Figure 13. Voltage Inverting Principle

9.2 Functional Block Diagram

Copyright@2016, Texas Instruments Incorporated

9.3 Feature Description

The internal oscillator frequency can be selected using the frequency control (FC) pin. When FC is open, the oscillator frequency is 10 kHz; when FC is connected to V+, the frequency increases to 80 kHz. A higher oscillator frequency allows use of smaller capacitors for equivalent output resistance and ripple, but increases the typical supply current from 0.12 mA to 1 mA. The oscillator frequency can be lowered by adding an external capacitor between OSC and GND. (See *Typical Characteristics*.) Also, in the inverter mode, an external clock that swings within 100 mV of V+ and GND can be used to drive OSC. Any CMOS logic gate is suitable for driving OSC. LV must be grounded when driving OSC. The maximum external clock frequency is limited to 150 kHz.

The switching frequency of the converter (also called the charge-pump frequency) is half of the oscillator frequency.

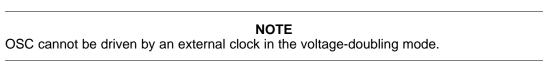


Table 1. MAX660 Oscillator Frequency Selection

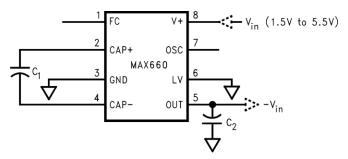
FC	OSC	OSCILLATOR		
Open	Open	10 kHz		
V+	Open	80 kHz		
Open or V+	External capacitor	See Typical Characteristics		
N/A	External clock (inverter mode only)	External clock frequency		

9.4 Device Functional Modes

When V+ is applied to the MAX660, the device becomes enabled and operates in whichever configuration the device is placed (inverter, doubler, etc.).

10 Application and Implementation

NOTE


Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

The MAX660 CMOS charge-pump voltage converter is a versatile, unregulated switched-capacitor inverter or doubler. Operating from a wide 1.5-V to 5.5-V supply voltage, the MAX660 uses two low-cost capacitors to provide 100 mA of output current without the cost, size, and EMI related to inductor-based converters. With an operating current of only 120 μ A and operating efficiency greater than 90% at most loads, the MAX660 provides ideal performance for battery-powered systems. MAX660 devices can be operated directly in parallel to lower output impedance, thus providing more current at a given voltage.

10.2 Typical Applications

10.2.1 Voltage Inverter

Copyright © 2016, Texas Instruments Incorporated

Figure 14. MAX660 Voltage Inverter

10.2.1.1 Design Requirements

For typical switched capacitor applications, use the parameters in Table 2:

Table 2. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE
Input voltage	5.5 V (maximum)
Negative output voltage	−1.5 V to −5.5 V
Output current	100 mA

10.2.1.2 Detailed Design Procedure

The main application of MAX660 is to generate a negative supply voltage. The voltage inverter circuit uses only two external capacitors as shown in the Figure 14. The range of the input supply voltage is 1.5 V to 5.5 V. For a supply voltage less than 3.5 V, the LV pin must be connected to ground to bypass the internal regulator circuitry. This gives the best performance in low-voltage applications. If the supply voltage is greater than 3.5 V, LV may be connected to ground or left open. The choice of leaving LV open simplifies the direct substitution of the MAX660 for the LMC7660 switched capacitor voltage converter.

The output characteristics of this circuit can be approximated by an ideal voltage source in series with a resistor. The voltage source equals $\neg(V+)$. The output resistance R_{out} is a function of the ON resistance of the internal MOS switches, the oscillator frequency, and the capacitance and ESR of C_1 and C_2 . A good approximation is:

$$R_{out} \cong 2R_{SW} + \frac{2}{f_{osc} \times C_1} + 4ESR_{C1} + ESR_{C2}$$

where

High-value, low-ESR capacitors reduce the output resistance. Instead of increasing the capacitance, the oscillator frequency can be increased to reduce the $2/(f_{OSC}c \times C1)$ term. Once this term is trivial compared with R_{SW} and ESRs, further increase to oscillator frequency and capacitance become ineffective. The peak-to-peak output voltage ripple is determined by the oscillator frequency, and the capacitance and ESR of the output capacitor C2:

$$V_{ripple} = \frac{I_L}{f_{osc} \times C_2} + 2 \times I_L \times ESR_{C2}$$
 (2)

Again, using a low-ESR capacitor results in lower ripple.

10.2.1.2.1 Capacitor Selection

The output resistance and ripple voltage are dependent on the capacitance and ESR values of the external capacitors. The output voltage drop is the load current times the output resistance, and the power efficiency is shown in Equation 3:

$$\eta = \frac{P_{out}}{P_{in}} = \frac{I_L^2 R_L}{I_L^2 R_L + I_L^2 R_{out} + I_O(V+)}$$

where

- I_{Q(V+)} is the quiescent power loss of the device
- I_L²_{ROUT} is the conversion loss associated with the switch on-resistance, the two external capacitors and their ESRs

Because the switching current charging and discharging C1 is approximately twice that of the output current, the effect of the ESR of the pumping capacitor C1 is multiplied by four in the output resistance. The output capacitor C2 is charging and discharging at a current approximately equal to the output current; therefore, its ESR only counts once in the output resistance. However, the ESR of C2 directly affects the output voltage ripple. Therefore, TI recommends low-ESR capacitors (Table 3) for both capacitors to maximize efficiency, reduce the output voltage drop and voltage ripple. For convenience, C1 and C2 are usually chosen to be the same. The output resistance varies with the oscillator frequency and the capacitors. In Figure 15, the output resistance vs oscillator frequency curves are drawn for three different tantalum capacitors. At very low frequency range, capacitance plays the most important role in determining the output resistance. Once the frequency is increased to some point (such as 20 kHz for the 150-μF capacitors), the output resistance is dominated by the ON resistance of the internal switches and the ESRs of the external capacitors. A low-value, smaller size capacitor usually has a higher ESR compared with a larger size capacitor of the same type. For lower ESR, use ceramic capacitors.

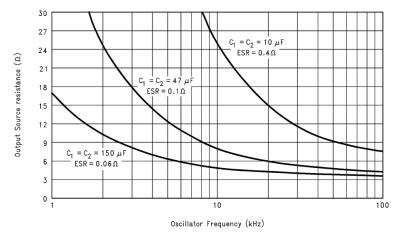
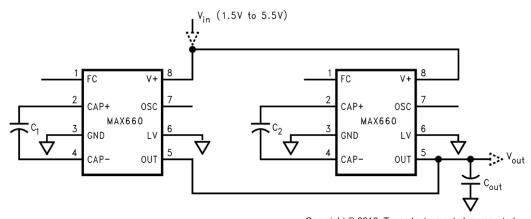


Figure 15. Output Source Resistance vs Oscillator Frequency


Table 3. Low-ESR Capacitor Manufacturers

MANUFACTURER	CAPACITOR TYPE
Nichicon Corp.	PM, PJ series, through-hole aluminum electrolytic
AVX Corp.	TPS series, surface-mount tantalum
Vishay Sprague	593D, 594D, 595D series, surface-mount tantalum
Sanyo	OS-CON series, through-hole aluminum electrolytic

10.2.1.2.2 Paralleling Devices

Any number of MAX660 devices can be paralleled to reduce the output resistance. Each device must have its own pumping capacitor C_1 , while only one output capacitor C_{OUT} is required as shown in Figure 16. The composite output resistance is:

Copyright © 2016, Texas Instruments Incorporated

Figure 16. Lowering Output Resistance by Paralleling Devices

10.2.1.2.3 Cascading Devices

Cascading the MAX660s is an easy way to produce a greater negative voltage (as shown in Figure 17). If n is the integer representing the number of devices cascaded, the unloaded output voltage V_{out} is $(-nV_{in})$. The effective output resistance is equal to the weighted sum of each individual device:

$$R_{out} = nR_{out_{-1}} + \frac{n}{2}R_{out_{-2}} + \dots + R_{out_{-n}}$$
(5)

A three-stage cascade circuit shown in Figure 18 generates -3 V_{in}, from V_{in}.

Cascading is also possible when devices are operating in doubling mode. In Figure 19, two devices are cascaded to generate $3 V_{IN}$.

An example of using the circuit in Figure 18 or Figure 19 is generating +15 V or −15 V from a +5-V input.

NOTE

The number of n is practically limited because the increasing of n significantly reduces the efficiency and increases the output resistance and output voltage ripple.

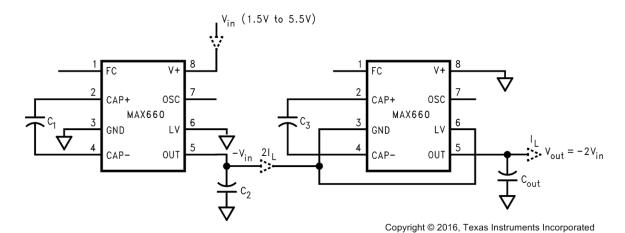


Figure 17. Increasing Output Voltage by Cascading Devices

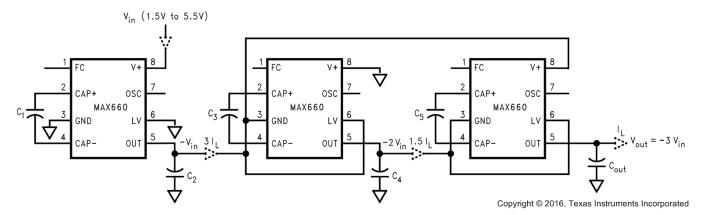
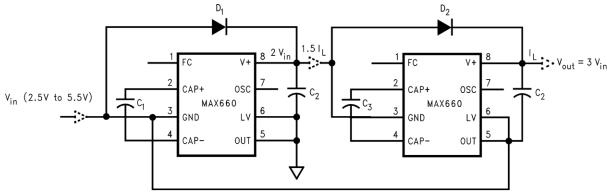



Figure 18. Generating −3V_{IN} From +V_{IN}

Copyright © 2016, Texas Instruments Incorporated

Figure 19. Generating +3V_{IN} From +V_{IN}

Copyright © 1999–2016, Texas Instruments Incorporated Submit Documentation Feedback

10.2.1.2.4 Regulating Output Voltage

Output of the MAX660 can be regulated by use of a low-dropout regulator (such as LP2951). The whole converter is depicted in Figure 20. This converter can give a regulated output from -1.5 V to -5.5 V by choosing the proper resistor ratio:

$$V_{out} = V_{ref} \left(1 + \frac{R_I}{R_2} \right) \tag{6}$$

The error flag on pin 5 of the LP2951 goes low when the regulated output at pin 4 drops by about 5%. The LP2951 can be shut down by taking pin 3 high.

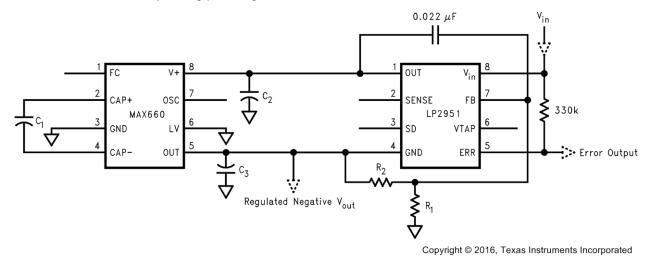
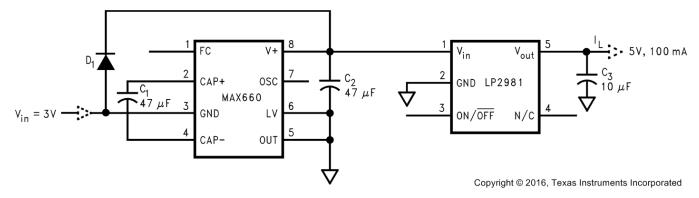
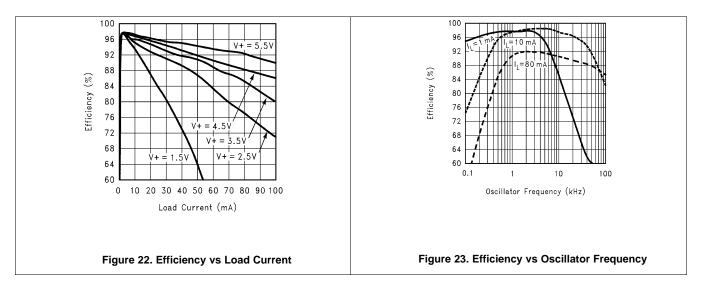
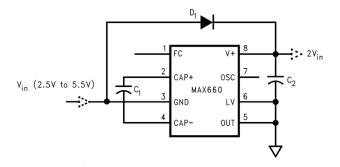


Figure 20. Combining MAX660 With LP2951 to Make a Negative Regulator

As shown in Figure 21 by operating MAX660 in voltage doubling mode and adding a linear regulator (such as LP2981) at the output, the user can get +5-V output from an input as low as +3 V.


Figure 21. Generating +5 V From +3-V Input Voltage

10.2.1.3 Application Curves

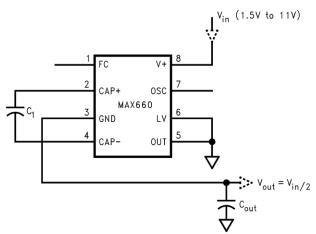
10.2.2 Positive Voltage Doubler

Copyright © 2016, Texas Instruments Incorporated

Figure 24. MAX660 Voltage Doubler

10.2.2.1 Design Requirements

The MAX660 can operate as a positive voltage doubler (as shown in the Figure 24). The doubling function is achieved by reversing some of the connections to the device. The input voltage is applied to the GND pin with an allowable voltage from 2.5 V to 5.5 V. The V+ pin is used as the output. The LV pin and OUT pin must be connected to ground. The OSC pin cannot be driven by an external clock in this operation mode. The unloaded output voltage is twice of the input voltage and is not reduced by the forward drop of the diode (D₁).


10.2.2.2 Detailed Design Procedure

The Schottky diode D_1 is only needed for start-up. The internal oscillator circuit uses the V+ pin and the LV pin (connected to ground in the voltage doubler circuit) as its power rails. Voltage across V+ and LV must be larger than 1.5 V to ensure the operation of the oscillator. During start-up, D_1 is used to charge up the voltage at V+ pin to start the oscillator; also, it protects the device from turning on its own parasitic diode and potentially latching up. Therefore, the Schottky diode D_1 must have enough current carrying capability to charge the output capacitor at start-up, as well as a low forward voltage to prevent the internal parasitic diode from turning on. A Schottky diode like 1N5817 can be used for most applications. If the input voltage ramp is less than 10V/ms, a smaller Schottky diode like MBR0520LT1 can be used to reduce the circuit size.

10.3 Split V+ in Half

Another interesting application shown in Figure 25 is to use the MAX660 as a precision voltage divider. Because the off-voltage across each switch equals VIN/2, the input voltage can be raised to 11 V.

Copyright © 2016, Texas Instruments Incorporated

Figure 25. Splitting V_{IN} in Half

11 Power Supply Recommendations

The MAX660 is designed to operate from as an inverter over an input voltage supply range between 1.5 V and 5.5 V when the LV pin is grounded. This input supply must be well regulated and capable to supply the required input current. If the input supply is located far from the MAX660 additional bulk capacitance may be required in addition to the ceramic bypass capacitors.

12 Layout

12.1 Layout Guidelines

The high switching frequency and large switching currents of the MAX660 make the choice of layout important. The following steps should be used as a reference to ensure the device is stable and maintains proper LED current regulation across its intended operating voltage and current range:

- Place C_{IN} on the top layer (same layer as the MAX60) and as close as possible to the device. Connecting the input capacitor through short, wide traces to both the V+ and GND pins reduces the inductive voltage spikes that occur during switching which can corrupt the V+ line.
- Place C_{OUT} on the top layer (same layer as the MAX660) and as close as possible to the OUT and GND pin. The returns for both C_{IN} and C_{OUT} must come together at one point, as close as possible to the GND pin. Connecting Court through short, wide traces reduce the series inductance on the OUT and GND pins that can corrupt the V_{OLIT} and GND lines and cause excessive noise in the device and surrounding circuitry.
- Place C₁ on the top layer (same layer as the MAX660) and as close as possible to the device. Connect the flying capacitor through short, wide traces to both the CAP+ and CAP- pins.

12.2 Layout Example

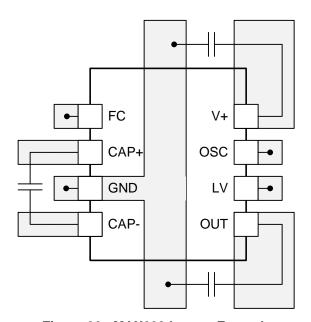


Figure 26. MAX660 Layout Example

Copyright © 1999-2016, Texas Instruments Incorporated

13 Device and Documentation Support

13.1 Device Support

13.1.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

13.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

13.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community T's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

13.4 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

13.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

13.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGE OPTION ADDENDUM

27-Jan-2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
MAX660M	NRND	SOIC	D	8	95	TBD	Call TI	Call TI		MAX 660M	
MAX660M/NOPB	ACTIVE	SOIC	D	8	95	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		MAX 660M	Samples
MAX660MX/NOPB	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM		MAX 660M	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

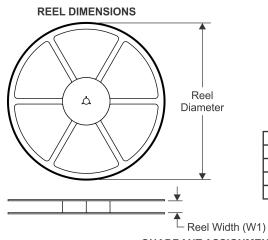
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

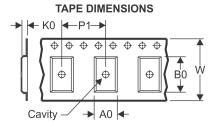
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

PACKAGE OPTION ADDENDUM

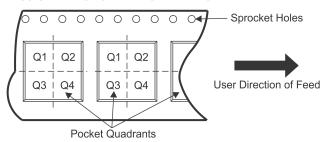
27-Jan-2016


continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

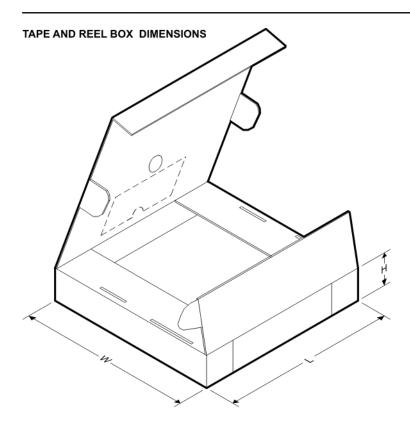

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 27-Jan-2016


TAPE AND REEL INFORMATION

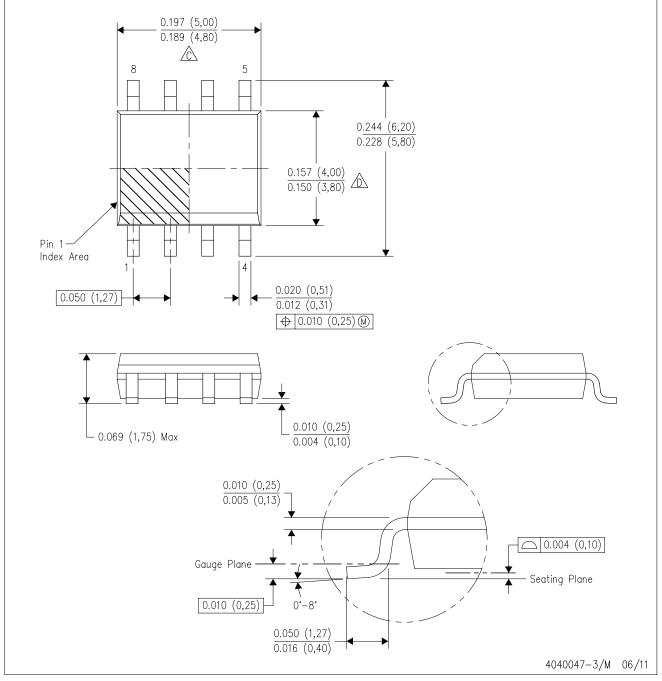
	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
MAX660MX/NOPB	SOIC	D	8	2500	330.0	12.4	6.5	5.4	2.0	8.0	12.0	Q1

www.ti.com 27-Jan-2016



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
MAX660MX/NOPB	SOIC	D	8	2500	367.0	367.0	35.0	

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID www.ti-rfid.com

OMAP Applications Processors <u>www.ti.com/omap</u> TI E2E Community <u>e2e.ti.com</u>

Wireless Connectivity www.ti.com/wirelessconnectivity