

SN74LVC1G139

SCES602D - AUGUST 2004 - REVISED AUGUST 2015

SN74LVC1G139 2-to-4 Line Decoder

Features

- Available in the Texas Instruments NanoStar™ and NanoFree™ Packages
- Supports 5-V V_{CC} Operation
- Inputs Accept Voltages to 5.5 V
- Supports Down Translation to V_{CC}
- Maximum t_{pd} of 4.9 ns at 3.3 V and 15 pF
- Low Power Consumption, 10-µA Maximum I_{CC}
- ±24-mA Output Drive at 3.3 V
- Ioff Supports Live Insertion, Partial-Power-Down Mode, and Back-Drive Protection
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

2 Applications

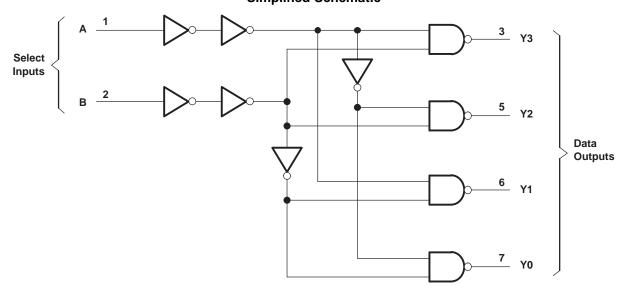
- **AV Receivers**
- Solid State Drives (SSDs): Client and Enterprise
- TVs: LCD/Digital and High-Definition (HDTVs)
- Tablets: Enterprise
- Video Analytics: Server

3 Description

This 2-to-4 line decoder is designed for 1.65-V to 5.5-V V_{CC} operation.

The LVC1G139 2-line to 4-line decoder is designed to be used in high-performance memory-decoding or data-routing applications requiring very propagation times. In high-performance delay memory systems, this decoder can be used to minimize the effects of system decoding. When used with high-speed memories using a fast enable circuit, the delay times of these decoders and the enable time of the memory usually are less than the typical access time of the memory. This means that the effective system delay introduced by the decoder is negligible.

NanoStar and NanoFree package technology is a major breakthrough in IC packaging concepts, using the die as the package.


This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
SN74LVC1G139DC T	SM8 (8)	2.95 mm × 2.80 mm
SN74LVC1G139DC U	VSSOP (8)	2.30 mm × 2.00 mm
SN74LVC1G139YZ P	DSBGA (8)	1.91 mm × 0.91 mm

(1) For all available packages, see the orderable addendum at the end of the datasheet.

Simplified Schematic

Table of Contents

1	Features 1		8.2 Functional Block Diagram	9
2	Applications 1		8.3 Feature Description	9
3	Description 1		8.4 Device Functional Modes	9
4	Revision History2	9	Application and Implementation	10
5	Pin Configuration and Functions		9.1 Application Information	10
6	Specification		9.2 Typical Application	10
•	6.1 Absolute Maximum Ratings	10	Power Supply Recommendations	11
	6.2 ESD Ratings	11	Layout	11
	6.3 Recommended Operating Conditions		11.1 Layout Guidelines	11
	6.4 Thermal Information		11.2 Layout Example	11
	6.5 Electrical Characteristics5	12	Device and Documentation Support	12
	6.6 Switching Characteristics5		12.1 Documentation Support	1 <mark>2</mark>
	6.7 Operating Characteristics 5		12.2 Community Resources	12
	6.8 Typical Characteristics		12.3 Trademarks	12
7	Parameter Measurement Information 7		12.4 Electrostatic Discharge Caution	12
8	Detailed Description9		12.5 Glossary	12
	8.1 Overview	13	Mechanical, Packaging, and Orderable Information	12

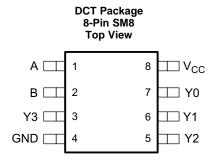
4 Revision History

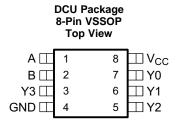
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision C (December 2005) to Revision D

Page

Changes from Revision B (December 2005) to Revision C


Page


Updated document to new TI data sheet format.
 Updated Features.
 Removed Ordering Information table.

Submit Documentation Feedback

5 Pin Configuration and Functions

YZP Package 8-Pin DSBGA Bottom View

GND	0450	Y2
Y3	0360	Y1
В	0270	Y0
Α	0180	Vcc

See mechanical drawings for dimensions.

Pin Functions

PIN		1/0	DESCRIPTION			
NAME	NO.	1/0	DESCRIPTION			
Α	1	I	Adress input, bit 0			
В	2	I	Adress input, bit 1			
Y ₃	3	0	Output 3, low when B is high and A is high			
GND	4	_	Ground			
Y ₂	5	0	Output 2, low when B is high and A is low			
Y ₁	6	0	Output 1, low when B is low and A is high			
Y ₀	7	0	Output 0, low when B is low and A is low			
V _{CC}	8	_	Power pin			

6 Specification

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	MAX	UNIT
V_{CC}	Supply voltage	Supply voltage			V
VI	Input voltage		-0.5	6.5	٧
Vo	Voltage applied to any output in	the high-impedance or power-off state (2)	-0.5	6.5	V
Vo	Voltage applied to any output in the high or low state (2)(3)		-0.5	$V_{CC} + 0.5$	V
I _{IK}	Input clamp current	V _I < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
Io	Continuous output current			±50	mA
Icc	Continuous current through V _{CC} or GND			±100	mA
TJ	Junction temperature			150	°C
T _{stg}	Storage temperature		-65	150	°C

⁽¹⁾ Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

(3) The value of V_{CC} is provided in the Recommended Operating Conditions table.

Copyright © 2004–2015, Texas Instruments Incorporated

6.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±2500	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾		V
		Machine model	±200	

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	MAX	UNIT
.,	Committee	Operating	1.65	5.5	
V_{CC}	Supply voltage	Data retention only	1.5		V
		V _{CC} = 1.65 V to 1.95 V	0.65 × V _{CC}		
.,	High lavel input values	V_{CC} = 2.3 V to 2.7 V	1.7		V
V_{IH}	High-level input voltage	V _{CC} = 3 V to 3.6 V	2		V
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	$0.7 \times V_{CC}$		
		V _{CC} = 1.65 V to 1.95 V		0.35 × V _{CC}	
\/	Low lovel input voltage	V _{CC} = 2.3 V to 2.7 V		0.7	V
V_{IL}	Low-level input voltage	$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$		0.8	V
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		$0.3 \times V_{CC}$	
V_{I}	Input voltage	,	0	5.5	V
Vo	Output voltage		0	V _{CC}	V
		V _{CC} = 1.65 V		-4	
	High-level output current	$V_{CC} = 2.3 \text{ V}$		-8	
I_{OH}		V _{CC} = 3 V		-16	mA
		V _{CC} = 3 V		-24	
		V _{CC} = 4.5 V		-32	
		V _{CC} = 1.65 V		4	
		V _{CC} = 2.3 V		8	
I_{OL}	Low-level output current	V 2.V		16	mA
		V _{CC} = 3 V		24	
		V _{CC} = 4.5 V			
		$V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}, 2.5 \text{ V} \pm 0.2 \text{ V}$		20	
Δt/Δν	Input transition rise or fall rate	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		ns/V	
		$V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$			
T _A	Operating free-air temperature		-40	85	°C

All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, SCBA004.

Product Folder Links: SN74LVC1G139

JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.4 Thermal Information

			SN74LVC1G139		
	THERMAL METRIC ⁽¹⁾	DCT (SM8)	DCU (VSSOP)	YZP (DSBGA)	UNIT
		8 PINS	8 PINS	8 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	194	195	106	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	124	74	1.6	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	106	74	11	°C/W
ΨЈТ	Junction-to-top characterization parameter	48	6.7	3.1	°C/W
ΨЈВ	Junction-to-board characterization parameter	105	73	11	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	_	_	_	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{cc}	MIN TYP(1)	MAX	UNIT	
	$I_{OH} = -100 \mu A$	1.65 V to 5.5 V	V _{CC} - 0.1			
	$I_{OH} = -4 \text{ mA}$	1.65 V	1.2			
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$I_{OH} = -8 \text{ mA}$	2.3 V	1.9		V	
V _{OH}	$I_{OH} = -16 \text{ mA}$	3 V	2.4		V	
	$I_{OH} = -24 \text{ mA}$	3 V	2.3			
	$I_{OH} = -32 \text{ mA}$	4.5 V	3.8			
	I _{OL} = 100 μA	1.65 V to 5.5 V		0.1		
	$I_{OL} = 4 \text{ mA}$	1.65 V	0.4			
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	I _{OL} = 8 mA	2.3 V		0.3	V	
V _{OL}	I _{OL} = 16 mA	3 V		0.4	V	
	$I_{OL} = 24 \text{ mA}$	3 V		0.55		
	$I_{OL} = 32 \text{ mA}$	4.5 V	0			
I _I A or B inputs	$V_I = 5.5 \text{ V or GND}$	0 to 5.5 V		±1	μA	
I _{off}	V_I or $V_O = 5.5 \text{ V}$	0		±5	μA	
Icc	$V_I = 5.5 \text{ V or GND}, \qquad I_O = 0$	1.65 V to 5.5 V		10	μΑ	
ΔI _{CC}	One input at $V_{CC} = 0.6 \text{ V}$, Other inputs at V_{CC} or GND	3 V to 5.5 V		500	μΑ	
C _i	$V_I = V_{CC}$ or GND	3.3 V	4		pF	

⁽¹⁾ All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

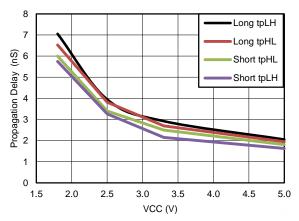
6.6 Switching Characteristics

over recommended operating free-air temperature range, $C_L = 15 \text{ pF}$ (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	V _{CC} = 1 ± 0.1		V _{CC} = 1 ± 0.2		V _{CC} = ± 0.3		V _{CC} :		UNIT
	(INPUT)	(OUTFUT)	CONDITIONS	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	A or D	V	See Figure 2	2.7	15.3	1.5	7.5	0.9	4.9	8.0	3.6	20
^L pd	A or B	r	See Figure 3	3	16.7	1.6	8.2	1.2	5.9	1.1	4.2	ns

6.7 Operating Characteristics

 $T_A = 25^{\circ}C$

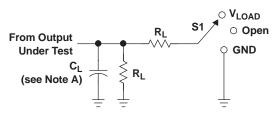

PARAMETER		TEST	V _{CC} = 1.8 V	V _{CC} = 2.5 V	V _{CC} = 3.3 V	V _{CC} = 5 V	UNIT
		CONDITIONS	TYP	TYP	TYP	TYP	UNIT
C _{pd} ⁽¹⁾	Power dissipation capacitance	f = 10 MHz	31	34	36	39	pF

Product Folder Links: SN74LVC1G139

⁽¹⁾ Two outputs switching.

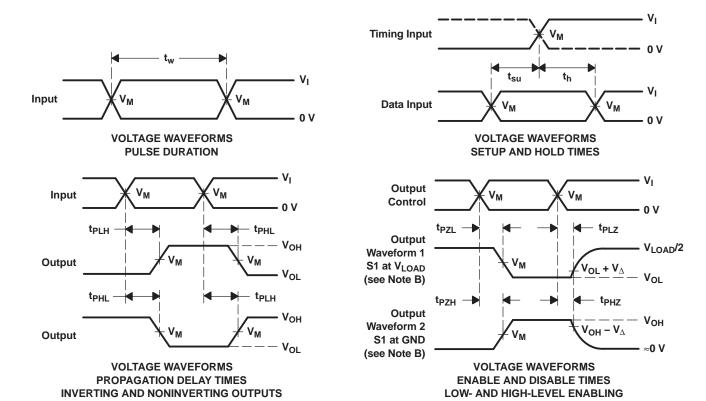
6.8 Typical Characteristics

Short is 2 inverter path; Long is 3 inverter path.


Figure 1. Propagation Delay vs. VCC

Submit Documentation Feedback

Copyright © 2004–2015, Texas Instruments Incorporated


7 Parameter Measurement Information

TEST	S1
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	V _{LOAD}
t _{PHZ} /t _{PZH}	GND

Т	0	Δ	ח	CI	R	CI	Ш	т
_			_	v	1.	•	u	

.,	INF	PUTS	.,	.,		_	V	
V _{CC}	VI	t _r /t _f	V _M	V _{LOAD}	CL	R _L	V_Δ	
1.8 V \pm 0.15 V	V _{CC}	≤2 ns	V _{CC} /2	2×V _{CC}	15 pF	1 M Ω	0.15 V	
2.5 V \pm 0.2 V	V_{CC}	≤2 ns	V _{CC} /2	2×V _{CC}	15 pF	1 M Ω	0.15 V	
3.3 V \pm 0.3 V	3 V	≤2.5 ns	1.5 V	6 V	15 pF	1 M Ω	0.3 V	
5 V \pm 0.5 V	v_{cc}	≤2.5 ns	V _{CC} /2	2×V _{CC}	15 pF	1 M Ω	0.3 V	

NOTES: A. C_L includes probe and jig capacitance.

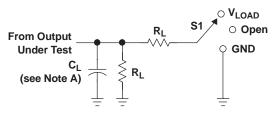
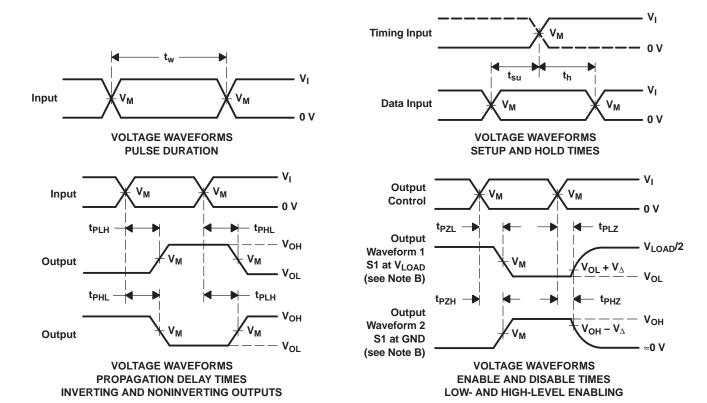

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50 \Omega$.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 2. Load Circuit and Voltage Waveforms

Submit Documentation Feedback


Parameter Measurement Information (continued)

TEST	S1
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	V _{LOAD}
t _{PHZ} /t _{PZH}	GND

LOAD CIRCUIT

.,	INF	PUTS	.,	V	0	_	.,
V _{CC}	VI	t _r /t _f	V _M	V _{LOAD}	CL	R _L	V_{Δ}
1.8 V \pm 0.15 V	V _{CC}	≤2 ns	V _{CC} /2	2×V _{CC}	30 pF	1 k Ω	0.15 V
2.5 V \pm 0.2 V	V _{CC}	≤2 ns	V _{CC} /2	2×V _{CC}	30 pF	500 Ω	0.15 V
3.3 V \pm 0.3 V	3 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V
5 V \pm 0.5 V	V _{CC}	≤2.5 ns	V _{CC} /2	2×V _{CC}	50 pF	500 Ω	0.3 V

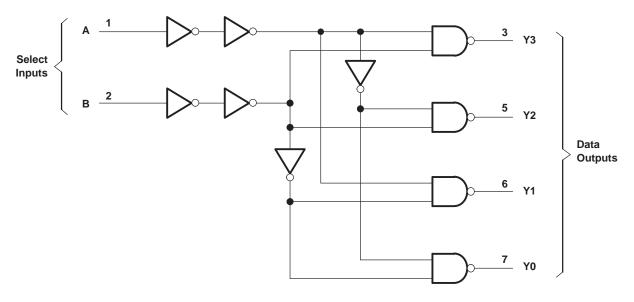
NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_O = 50 Ω.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 3. Load Circuit and Voltage Waveforms

Submit Documentation Feedback

Copyright © 2004–2015, Texas Instruments Incorporated



8 Detailed Description

8.1 Overview

The LVC1G139 decodes the 2-bit input to one of the four outputs. The B input is the most significant bit and the Y outputs are active low. The propagation delays are very short and well matched (see Figure 1). Supply voltage from 1.65-V to 5.5-V is supported.

8.2 Functional Block Diagram

8.3 Feature Description

NanoStar and NanoFree package technology is a major breakthrough in IC packaging concepts, using the die as the package.

This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

8.4 Device Functional Modes

Table 1 lists the functional modes of the SN74LVC1G139.

Table 1. Function Table

INP	UTS	OUTPUTS							
В	Α	Y ₀	Y ₁	Y ₂	Y ₃				
L	L	L	Н	Н	Н				
L	Н	Н	L	Н	Н				
Н	L	Н	Н	L	Н				
Н	Н	Н	Н	Н	L				

Product Folder Links: SN74LVC1G139

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The SN74LVC1G139 device is a 2-of-4 decoder and demultiplexer. This device decodes the 2-bit address on inputs A (bit 0) and B (bit 1) then provides a logic low on the matching address output. It can produce 24 mA of drive current at 3.3 V, making it ideal for driving multiple outputs.

9.2 Typical Application

This is an address line decoder using a 16-bit bus example; address bus lines 14 and 15 are decoded and drive four active low chip selects. Each output covers 16k address space mapped by the address bus lines 0 through 13.

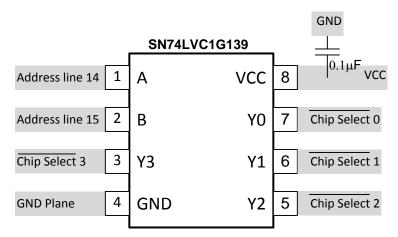


Figure 4. Typical Application Diagram

9.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Take care to avoid bus contention because it can drive currents that would exceed maximum limits. Outputs can be combined to produce higher drive but the high drive will also create faster edges into light loads so routing and load conditions should be considered to prevent ringing.

9.2.2 Detailed Design Procedure

- 1. Recommended Input Conditions:
 - For rise time and fall time specifications, see (Δt/ΔV) in Recommended Operating Conditions table.
 - For specified high and low levels, see (V_{IH} and V_{IL}) in Recommended Operating Conditions table.
 - Inputs are overvoltage tolerant allowing them to go as high as 5.5 V at any valid V_{CC}.

2. Recommend Output Conditions:

- Load currents should not exceed 50 mA per output and 100 mA total for the part.
- Series resistors on the output may be used if the user desires to slow the output edge signal or limit the output current.

Submit Documentation Feedback

Copyright © 2004–2015, Texas Instruments Incorporated

Typical Application (continued)

9.2.3 Application Curve

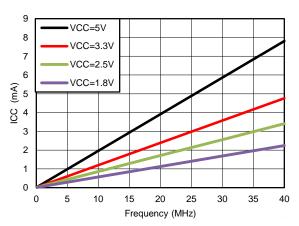


Figure 5. I_{CC} vs Frequency Load is 15 pF

10 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in *Recommended Operating Conditions* table.

Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, a 0.1- μ F capacitor is recommended. If there are multiple V_{CC} terminals then 0.01- μ F or 0.022- μ F capacitors are recommended for each power terminal. It is ok to parallel multiple bypass capacitors to reject different frequencies of noise. Multiple bypass capacitors may be paralleled to reject different frequencies of noise. The bypass capacitor should be installed as close to the power terminal as possible for the best results.

11 Layout

11.1 Layout Guidelines

When using multiple bit logic devices, inputs should not float. In many cases, functions or parts of functions of digital logic devices are unused. Some examples are when only two inputs of a triple-input AND gate are used, or when only 3 of the 4-buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states.

Specified in Figure 6 are rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or V_{CC}, whichever makes more sense or is more convenient.

11.2 Layout Example

Copyright © 2004-2015, Texas Instruments Incorporated

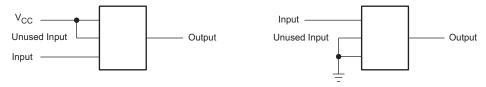


Figure 6. Layout Diagram

Product Folder Linke: SN741 VC

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation, see the following:

Implications of Slow or Floating CMOS Inputs, SCBA004

12.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.3 Trademarks

NanoStar, NanoFree, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

12.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Product Folder Links: SN74LVC1G139

ubinii Documentation Feedback

12-Sep-2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty		Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)				Qty	(2)	(6)	(3)		(4/5)	
74LVC1G139DCTRE4	ACTIVE	SM8	DCT	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	C39 Z	Samples
74LVC1G139DCTTE4	ACTIVE	SM8	DCT	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	C39 Z	Samples
74LVC1G139DCURE4	ACTIVE	VSSOP	DCU	8		TBD	Call TI	Call TI	-40 to 85		Samples
74LVC1G139DCUTG4	ACTIVE	VSSOP	DCU	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	C39R	Samples
SN74LVC1G139DCTR	ACTIVE	SM8	DCT	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	C39 Z	Samples
SN74LVC1G139DCTT	ACTIVE	SM8	DCT	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	C39 Z	Samples
SN74LVC1G139DCUR	ACTIVE	VSSOP	DCU	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	-40 to 85	(C39Q ~ C39R)	Samples
SN74LVC1G139DCUT	ACTIVE	VSSOP	DCU	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	-40 to 85	(C39Q ~ C39R)	Samples
SN74LVC1G139YZPR	ACTIVE	DSBGA	YZP	8	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	DFN	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

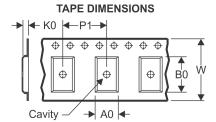
⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

PACKAGE OPTION ADDENDUM

12-Sep-2016

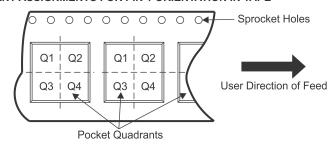
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

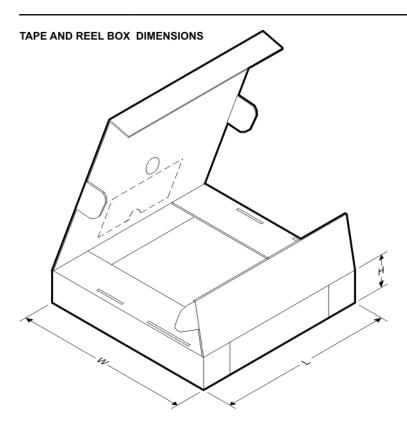

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 29-Jan-2016


TAPE AND REEL INFORMATION

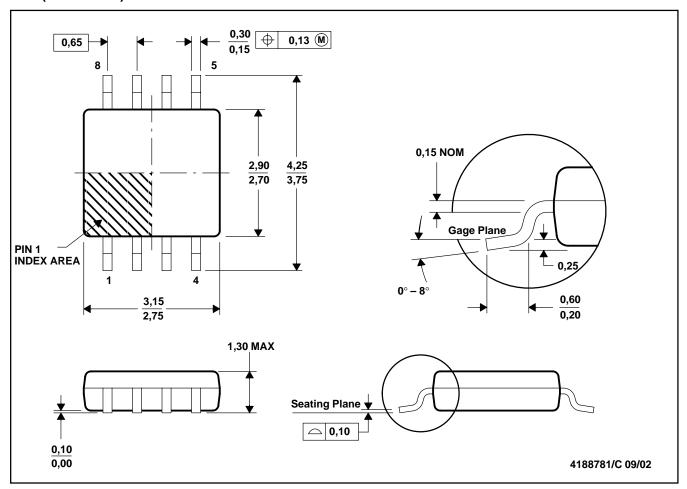
	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
74LVC1G139DCUTG4	VSSOP	DCU	8	250	180.0	8.4	2.25	3.35	1.05	4.0	8.0	Q3
SN74LVC1G139DCTR	SM8	DCT	8	3000	180.0	13.0	3.35	4.5	1.55	4.0	12.0	Q3
SN74LVC1G139DCTT	SM8	DCT	8	250	180.0	13.0	3.35	4.5	1.55	4.0	12.0	Q3
SN74LVC1G139DCUR	VSSOP	DCU	8	3000	180.0	8.4	2.25	3.35	1.05	4.0	8.0	Q3
SN74LVC1G139DCUR	VSSOP	DCU	8	3000	178.0	9.5	2.25	3.35	1.05	4.0	8.0	Q3
SN74LVC1G139DCUT	VSSOP	DCU	8	250	178.0	9.5	2.25	3.35	1.05	4.0	8.0	Q3
SN74LVC1G139YZPR	DSBGA	YZP	8	3000	178.0	9.2	1.02	2.02	0.63	4.0	8.0	Q1

www.ti.com 29-Jan-2016

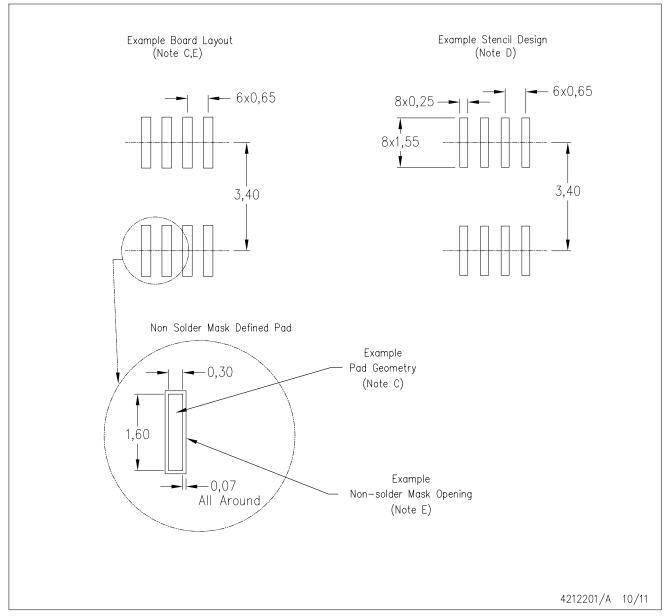


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
74LVC1G139DCUTG4	VSSOP	DCU	8	250	202.0	201.0	28.0
SN74LVC1G139DCTR	SM8	DCT	8	3000	182.0	182.0	20.0
SN74LVC1G139DCTT	SM8	DCT	8	250	182.0	182.0	20.0
SN74LVC1G139DCUR	VSSOP	DCU	8	3000	202.0	201.0	28.0
SN74LVC1G139DCUR	VSSOP	DCU	8	3000	202.0	201.0	28.0
SN74LVC1G139DCUT	VSSOP	DCU	8	250	202.0	201.0	28.0
SN74LVC1G139YZPR	DSBGA	YZP	8	3000	220.0	220.0	35.0

DCT (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

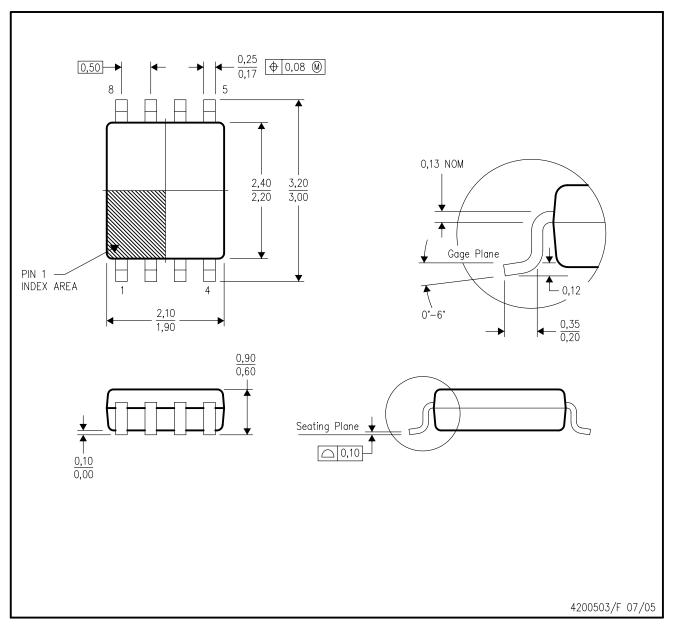


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion
- D. Falls within JEDEC MO-187 variation DA.

DCT (R-PDSO-G8)

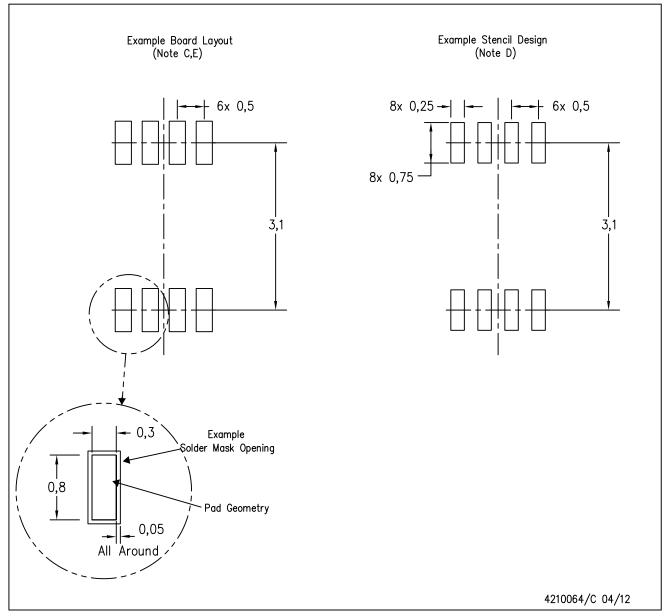
PLASTIC SMALL OUTLINE


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

DCU (R-PDSO-G8)

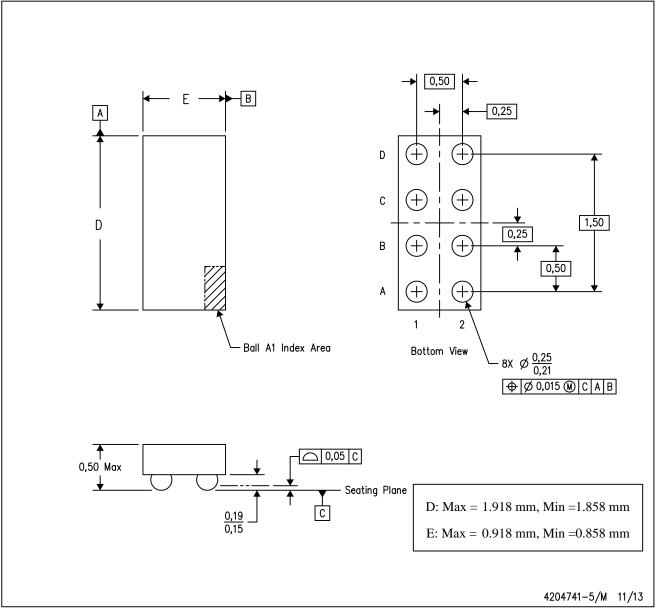
PLASTIC SMALL-OUTLINE PACKAGE (DIE DOWN)


NOTES:

- A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
 - D. Falls within JEDEC MO-187 variation CA.

DCU (S-PDSO-G8)

PLASTIC SMALL OUTLINE PACKAGE (DIE DOWN)


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

YZP (R-XBGA-N8)

DIE-SIZE BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. NanoFree™ package configuration.

NanoFree is a trademark of Texas Instruments.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID www.ti-rfid.com

OMAP Applications Processors <u>www.ti.com/omap</u> TI E2E Community <u>e2e.ti.com</u>

Wireless Connectivity www.ti.com/wirelessconnectivity