

SLWS188A-JUNE 2006-REVISED SEPTEMBER 2008

1.8-V to 5-V DUAL UART WITH 64-BYTE FIFOS

FEATURES

- Larger FIFOs Reduce CPU Overhead
- Programmable Auto-RTS and Auto-CTS
- In Auto-CTS Mode, CTS Controls the Transmitter
- In Auto-RTS Mode, RCV FIFO Contents, and Threshold Control RTS
- Serial and Modem Control Outputs Drive a RJ11 Cable Directly When Equipment is on the Same Power Drop
- Capable of Running With All Existing TL16C450 Software
- After Reset, All Registers Are Identical to the TL16C450 Register Set
- Up to 48-MHz Clock Rate for up to 3-Mbps (Standard 16× Sampling) Operation, or up to 6-Mbps (Optional 8× Sampling) Operation With V_{CC} = 5 V Nominal
- Up to 32-MHz Clock Rate for up to 2-Mbps (Standard 16× Sampling) Operation, or up to 4-Mbps (Optional 8× Sampling) Operation With V_{CC} = 3.3 V Nominal
- Up to 24-MHz Clock Rate for up to 1.5-Mbps (Standard 16× Sampling) Operation, or up to 3-Mbps (Optional 8× Sampling) Operation With V_{CC} = 2.5 V Nominal
- Up to 16-MHz Clock Rate for up to 1-Mbps (Standard 16× Sampling) Operation, or up to 2-Mbps (Optional 8× Sampling) Operation With V_{CC} = 1.8 V Nominal
- In TL16C450 Mode, Hold and Shift Registers Eliminate the Need for Precise Synchronization Between the CPU and Serial Data
- Programmable Baud-Rate Generator Allows Division of Any Input Reference Clock by 1 to (2¹⁶ – 1) and Generates an Internal 16× Clock
- Standard Asynchronous Communication Bits (Start, Stop, and Parity) Added to or Deleted From the Serial Data Stream
- 5-V, 3.3-V, 2.5-V, and 1.8-V Operation
- Independent Receiver Clock Input
- Transmit, Receive, Line Status, and Data Set Interrupts Independently Controlled

- Fully Programmable Serial Interface Characteristics
 - 5-, 6-, 7-, or 8-Bit Characters
 - Even-, Odd-, or No-Parity Bit Generation and Detection
 - 1-, 1 = -, or 2-Stop Bit Generation
 - Baud Generation (DC to 1 Mbit/s)
- False-Start Bit Detection
- Complete Status Reporting Capabilities
- 3-State Output TTL Drive Capabilities for Bidirectional Data Bus and Control Bus
- Line Break Generation and Detection
- Internal Diagnostic Capabilities
 - Loopback Controls for Communications Link Fault Isolation
 - Break, Parity, Overrun, and Framing Error Simulation
- Fully Prioritized Interrupt System Controls
- Modem Control Functions (CTS, RTS, DSR, DTR, RI, and DCD)
- Available in 44-Pin PLCC (FN) or 32-Pin QFN (RHB) Packages
- Each UART's Internal Register Set May Be Written Concurrently to Save Setup Time
- Multifunction (MF) Output Allows Users to Select Among Several Functions, Saving Package Pins

APPLICATIONS

- Point-of-Sale Terminals
- Gaming Terminals
- Portable Applications
- Router Control
- Cellular Data
- Factory Automation

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

www.ti.com

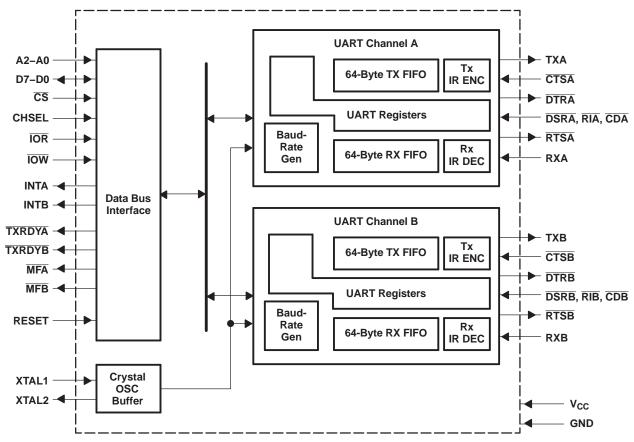
DESCRIPTION

The TL16C2752 is a speed and functional upgrade of the TL16C2552. Since they are pinout and software compatible, designs can easily migrate from the TL16C2552 to the TL16C2752 if needed. The additional functionality within the TL16C2752 is accessed via an extended register set. Some of the key new features are larger receive and transmit FIFOs, embedded IrDA encoders and decoders, RS-485 transceiver controls, software flow control (Xon/Xoff) modes, programmable transmit FIFO thresholds, extended receive and transmit threshold levels for interrupts, and extended receive threshold levels for flow control halt/resume operation.

The TL16C2752 is a dual universal asynchronous receiver and transmitter (UART). It incorporates the functionality of two independent UARTs: each UART having its own register set and transmit and receive FIFOs. The two UARTs share only the data bus interface and clock source, otherwise they operate independently. Another name for the UART function is asynchronous communications element (ACE), and these terms will be used interchangeably. The bulk of this document describes the behavior of each ACE, with the understanding that two such devices are incorporated into the TL16C2752.

Functionally equivalent to the TL16C450 on power up or reset (single character or TL16C450 mode), each ACE can be placed in an alternate FIFO mode. This relieves the CPU of excessive software overhead by buffering received and to-be-transmitted characters. Each receiver and transmitter store up to 64 bytes in their respective FIFOs, with the receive FIFO including three additional bits per byte for error status. In the FIFO mode, selectable hardware or software autoflow control features can significantly reduce program overload and increase system efficiency by automatically controlling serial data flow.

Each ACE performs serial-to-parallel conversions on data received from a peripheral device or modem and stores the parallel data in its receive buffer or FIFO, and each ACE performs parallel-to-serial conversions on data sent from its CPU after storing the parallel data in its transmit buffer or FIFO. The CPU can read the status of either ACE at any time. Each ACE includes complete modem control capability and a processor interrupt system that can be tailored to the application.


Each ACE includes a programmable baud rate generator capable of dividing a reference clock with divisors of from 1 to 65535, thus producing a 16× or 8× internal reference clock for the transmitter and receiver logic. Each ACE accommodates up to a 3-Mbaud serial data rate (48-MHz input clock). As a reference point, that speed would generate a 333-ns bit time and a 3.33- = s character time (for 8,N,1 serial data), with the internal clock running at 48 MHz and 16× sampling.

Each ACE has a TXRDY and RXRDY (via MF) output that can be used to interface to a DMA controller.

www.ti.com

TL16C2752 Block Diagram

A. MF output allows selection of OP, BAUDOUT, or RXRDY per channel.

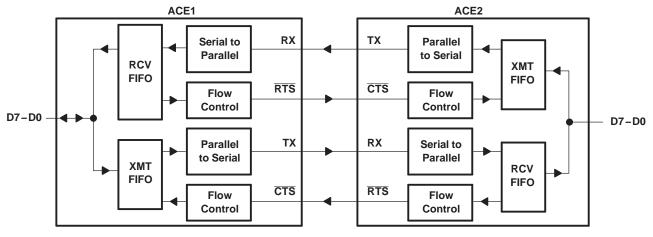
www.ti.com

INSTRUMENTS

Texas

TERMINAL FUNCTIONS

	TERMINAL		1/0	DESCRIPTION
NAME	FN NO.	RHB NO.	I/O	DESCRIPTION
A0	10	3	Ι	Address 0 select bit. Internal registers address selection.
A1	14	6	Ι	Address 1 select bit. Internal registers address selection.
A2	15	7	Ι	Address 2 select bit. Internal registers address selection.
CDA, CDB	42, 30	-	Ι	Carrier detect (active low). These inputs are associated with individual UART channels A and B. A low on these pins indicates that a carrier has been detected by the modem for that channel. The state of these inputs is reflected in the modem status register (MSR). These inputs should be pulled high if unused.
CHSEL	16	8	I	Channel select. UART channel A or B is selected by the state of this pin when \overline{CS} is a logic 0. A logic 0 on the CHSEL selects the UART channel B, while a logic 1 selects UART channel A. CHSEL could just be an address line from the user CPU such as A3. Bit 0 of the alternate function register (AFR) can temporarily override CHSEL function, allowing the user to write to both channel register simultaneously with one write cycle when \overline{CS} is low. It is especially useful during the initialization routine.
CS	18	10	Ι	UART chip select (active low). This pin selects channel A or B in accordance with the state of the CHSEL pin. This allows data to be transferred between the user CPU and the TL16C2752.
<u>CTSA</u> , CTSB	40, 28	25, 17	I	Clear to send (active low). These inputs are associated with individual UART channels A and B. A logic low on the CTS pins indicates the modem or data set is ready to accept transmit data from the TL16C2752. Status can be tested by reading MSR bit 4. These pins only affect the transmit and receive operations when auto CTS function is enabled through the enhanced feature register (EFR) bit 7, for hardware flow control operation. These inputs should be pulled high if unused.
D0–D4 D5–D7	2–6 7–9	27–31 32, 1, 2	I/O	Data bus (bidirectional). These pins are the 8-bit, 3-state data bus for transferring information to or from the controlling CPU. D0 is the least significant bit (LSB) and the first data bit in a transmit or receive serial data stream.
DSRA, DSRB	41, 29	_	I	Data set ready (active low). These inputs are associated with individual UART channels A and B. A logic low on these pins indicates the modem or data set is powered on and is ready for data exchange with the UART. The state of these inputs is reflected in the modem status register (MSR). These inputs should be pulled high if unused.
DTRA, DTRB	37, 27	_	0	Data terminal ready (active low). These outputs are associated with individual UART channels A and B. A logic low on these pins indicates that the TL16C2752 is powered on and ready. These pins can be controlled through the modem control register. Writing a 1 to MCR bit 0 sets the DTR output to low, enabling the modem. The output of these pins is high after writing a 0 to MCR bit 0, or after a reset.
GND	12, 22	20		Signal and power ground
INTA, INTB	34, 17	21, 9	0	Interrupt A and B (active high). These pins provide individual channel interrupts, INTA and INTB. INTA and INTB are enabled when MCR bit 3 is set to a logic 1, interrupt sources are enabled in the interrupt enable register (IER). Interrupt conditions include receiver errors, available receiver buffer data, available transmit buffer space, or when a modem status flag is detected. INTA and INTB are in the high-impedance state after reset.
IOR	24	14	I	Read input (active-low strobe). A high-to-low transition on $\overline{\text{IOR}}$ loads the contents of an internal register defined by address bits A0–A2 onto the TL16C2752 data bus (D0–D7) for access by an external CPU.
IOW	20	11	Ι	Write input (active-low strobe). A low-to-high transition on \overline{IOW} transfers the contents of the data bus (D0–D7) from the external CPU to an internal register that is defined by address bits A0–A2 and \overline{CSB} .
NC	_	18, 19		No internal connection
MFA, MFB	35, 19	_	0	 Multifunction. This output pin can function as the OP, BAUDOUT, or RXRDY pin. One of these output signal functions can be selected by the user-programmable bits 1–2 of the alternate function register (AFR). These signal functions are described as follows: 1. OP-When OP (active low) is selected, the MF pin is a logic 0 when MCR bit 3 is set to a logic 1 (see MCR bit 3). MCR bit 3 defaults to a logic 1 condition after a reset or powerup. 2. BAUDOUT-When BAUDOUT function is selected, the 16x baud rate clock output is available at this pin. 3. RXRDY-RXRDY (active low) is intended for monitoring DMA data transfers. If it is not used, leave it unconnected.


SLWS188A-JUNE 2006-REVISED SEPTEMBER 2008

Т	ERMINAL			
NAME	FN NO.	RHB NO.	I/O	DESCRIPTION
RESET	21	12	I	Reset. RESET will reset the internal registers and all the outputs. The UART transmitter output and the receiver input are disabled during reset time. See TL16C2752 external reset conditions for initialization details. RESET is an active-high input.
RIA, RIB	43, 31	_	I	Ring indicator (active low). These inputs are associated with individual UART channels A and B. A logic low on these pins indicates the modem has received a ringing signal from the telephone line. A low-to-high transition on these input pins generates a modem status interrupt, if enabled. The state of these inputs is reflected in the modem status register (MSR). These inputs should be pulled high if unused.
RTSA, RTSB	36, 23	22, 13	0	Request to send (active low). These outputs are associated with individual UART channels A and B. A low on the RTS pin indicates the transmitter has data ready and waiting to send. Writing a 1 in the modem control register (MCR bit 1) sets these pins to low, indicating data is available. After a reset, these pins are set to high. These pins only affects the transmit and receive operation when auto RTS function is enabled through the enhanced feature register (EFR) bit 6, for hardware flow control operation.
RXA, RXB	39, 25	24, 15	I	Receive data input. These inputs are associated with individual serial channel data to the TL16C2752. During the local loopback mode, these RX input pins are disabled and TX data is internally connected to the UART RX input internally.
TXA, TXB	38, 26	23, 16	0	Transmit data. These outputs are associated with individual serial transmit channel data from the TL16C2752. During the local loopback mode, the TX input pin is disabled and TX data is internally connected to the UART RX input.
TXRDYA, TXRDYB	1, 32	-	0	Transmit ready (active low). TXRDY A and B go low when there are at least a trigger-level number of spaces available. They go high when the TX buffer is full.
V _{CC}	33, 44	26	I	Power-supply inputs
XTAL1	11	4	I	Crystal or external clock. XTAL1 functions as a crystal input or as an external clock input. A crystal can be connected between XTAL1 and XTAL2 to form an internal oscillator circuit (see Figure 4). Alternatively, an external clock can be connected to XTAL1 to provide custom data rates.
XTAL2	13	5	0	Crystal oscillator or buffered clock (see also XTAL1). XTAL2 is used as a crystal oscillator output or buffered a clock output.

Detailed Description

Hardware Autoflow Control (see Figure 1)

Hardware autoflow control is comprised of auto-CTS and <u>auto-RTS</u>. With auto-CTS, the CTS input must be active before the transmitter FIFO can emit data. With <u>auto-RTS</u>, <u>RTS</u> becomes active when the receiver needs more data and notifies the sending serial device. When <u>RTS</u> is connected to <u>CTS</u>, data transmission does not occur unless the receiver FIFO has space for the data; thus, overrun errors are eliminated using ACE1 and ACE2 from a TLC16C2752 with the autoflow control enabled. If not, overrun errors can occur when the transmit data rate exceeds the receiver FIFO read latency.

Figure 1. Autoflow Control (Auto-RTS and Auto-CTS) Example

Auto-RTS

Auto-RTS data flow control originates in the receiver timing and control block (see Figure 4) and is linked to the programmed receiver FIFO trigger level. When the receiver FIFO level reaches the defined halt trigger level 8 (see Figure 3), RTS is deasserted. The sending ACE may send an additional byte after the trigger level is reached (assuming the sending ACE has another byte to send) because it may not recognize the deassertion of RTS until after it has begun sending the additional byte. RTS is automatically reasserted once the defined resume trigger level is reached.

Auto-CTS

The transmitter circuitry checks CTS before sending the next data byte. When CTS is active, it sends the next byte. To stop the transmitter from sending the following byte, CTS must be released before the middle of the last stop bit that is currently being sent (see Figure 2). The auto-CTS function reduces interrupts to the host system. When flow control is enabled, CTS level changes do not trigger host interrupts because the device automatically controls its own transmitter. Without auto-CTS, the transmitter sends any data present in the transmit FIFO and a receiver overrun error may result.

Auto-RTS and Auto-CTS Functional Timing

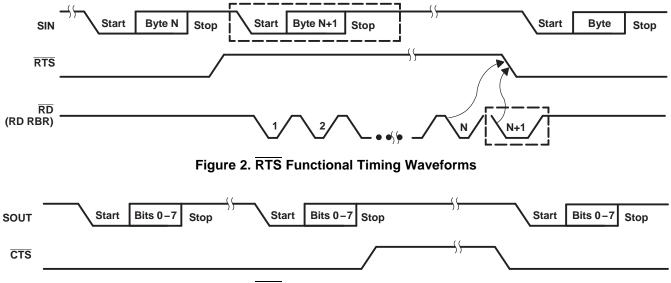


Figure 3. CTS Functional Timing Waveforms

A. Pin numbers shown are for 44-pin PLCC FN package.

Figure 4. Functional Block Diagram

www.ti.com

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range ⁽²⁾		-0.5	7	V
VI	Input voltage range at any input		-0.5	7	V
Vo	Output voltage range		-0.5	7	V
-	Operating free air temperature range	TL16C2752	0	70	°C
I A	Operating free-air temperature range	TL16C2752I	-40	85	
T _{stg}	Storage temperature range		-65	150	°C
	Lead temperature 1,6 mm (1/16 inch) from case	e for 10 s		260	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to V_{SS} .

RECOMMENDED OPERATING CONDITIONS

1.8 V = 10%

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage	1.62	1.8	1.98	V
VI	Input voltage	0		V_{CC}	V
VIH	High-level input voltage	1.4		1.98	V
V _{IL}	Low-level input voltage	-0.3		0.4	V
Vo	Output voltage	0		V _{CC}	V
I _{OH}	High-level output current (all outputs)			0.5	mA
I _{OL}	Low-level output current (all outputs)			1.8 1.98 V _{CC} 1.98 0.4 V _{CC}	mA
	Oscillator/clock speed			10	MHz

RECOMMENDED OPERATING CONDITIONS 2.5 V = 10%

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage	2.25	2.5	2.75	V
VI	Input voltage	0		V_{CC}	V
V _{IH}	High-level input voltage	1.8		2.75	V
VIL	Low-level input voltage	-0.3		0.6	V
Vo	Output voltage	0		V _{CC}	V
I _{OH}	High-level output current (all outputs)			1	mA
I _{OL}	Low-level output current (all outputs)			2	mA
	Oscillator/clock speed			16	MHz

www.ti.com

RECOMMENDED OPERATING CONDITIONS

3.3 V = 10%

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage	3	3.3	3.6	V
VI	Input voltage	0		V _{CC}	V
V _{IH}	High-level input voltage	$0.7 \times V_{CC}$			V
V _{IL}	Low-level input voltage			$0.3 \times V_{CC}$	V
Vo	Output voltage	0		V _{CC}	V
I _{OH}	High-level output current (all outputs)			1.8	mA
I _{OL}	Low-level output current (all outputs)			3.2	mA
	Oscillator/clock speed			20	MHz

RECOMMENDED OPERATING CONDITIONS 5 V = 10%

over operating free-air temperature range (unless otherwise noted)

			MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage		4.5	5	5.5	V
VI	Input voltage		0		V _{CC}	V
N		All except XTAL1, XTAL2	2			
V _{IH}	High-level input voltage	XTAL1, XTAL2	$0.7 \times V_{CC}$			V
		All except XTAL1, XTAL2			0.8	V
VIL	Low-level input voltage	XTAL1, XTAL2			$0.3 \times V_{CC}$	V
Vo	Output voltage	· · · · ·	0		V _{CC}	V
I _{OH}	High-level output current (all outp	puts)			4	mA
I _{OL}	Low-level output current (all outp	uts)			4	mA
	Oscillator/clock speed				24	MHz

ELECTRICAL CHARACTERISTICS 1.8 V Nominal

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
V _{OH}	High-level output voltage ⁽²⁾	$I_{OH} = -0.5 \text{ mA}$	1.3			V
V _{OL}	Low-level output voltage ⁽²⁾	I _{OL} = 1 mA			0.5	V
I _I	Input current	V_{CC} = 1.98 V, V_{SS} = 0, V_{I} = 0 to 1.98 V, All other terminals floating			10	= A
I _{OZ}	High-impedance-state output current	V_{CC} = 1.98 V, V_{SS} = 0, V_{I} = 0 to 1.98 V, Chip selected in write mode or chip deselected			±20	= A
I _{CC}	Supply current	V_{CC} = 1.98 V, T _A = 0°C, RXA, RXB, DSRA, DSRB, CDA, CDB, CTSA, CTSB, RIA, and RIB at 1.4 V, All other inputs at 0.4 V, XTAL1 at 16 MHz, No load on outputs				mA
C _{i(CLK)}	Clock input impedance			15	20	pF
C _{O(CLK)}	Clock output impedance	$V_{CC} = 0$, $V_{SS} = 0$, f = 1 MHz, T _A = 25°C, All other terminals grounded		20	30	pF
CI	Input impedance			6	10	pF
Co	Output impedance			10	20	рF

(1) All typical values are at V_{CC} = 1.8 V and T_A = 25°C. (2) These parameters apply for all outputs except XTAL2.

www.ti.com

ELECTRICAL CHARACTERISTICS 2.5 V Nominal

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
V _{OH}	High-level output voltage ⁽²⁾	$I_{OH} = -1 \text{ mA}$	1.8			V
V _{OL}	Low-level output voltage ⁽²⁾	$I_{OL} = 2 \text{ mA}$			0.5	V
I _I	Input current	V_{CC} = 2.75 V, V_{SS} = 0, V_I = 0 to 2.75 V, All other terminals floating			10	= A
I _{OZ}	High-impedance-state output current	V_{CC} = 2.75 V, V_{SS} = 0, V_I = 0 to 2.75 V, Chip selected in write mode or chip deselected			±20	= A
I _{CC}	Supply current	$V_{CC} = 2.75 \text{ V}, T_A = 0^{\circ}\text{C}, RXA, RXB, DSRA, DSRB, CDA, CDB, CTSA, CTSB, RIA, and RIB at 1.8 V, All other inputs at 0.6 V, XTAL1 at 24 MHz, No load on outputs$				mA
C _{i(CLK)}	Clock input impedance			15	20	pF
C _{O(CLK)}	Clock output impedance	$V_{CC} = 0$, $V_{SS} = 0$, f = 1 MHz, T _A = 25°C, All other terminals grounded		20	30	pF
CI	Input impedance			6	10	pF
Co	Output impedance			10	20	pF

(1)

All typical values are at V_{CC} = 2.5 V and T_A = 25°C. These parameters apply for all outputs except XTAL2. (2)

ELECTRICAL CHARACTERISTICS 3.3 V Nominal

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
V _{OH}	High-level output voltage ⁽²⁾	I _{OH} = -1.8 mA	2.4			V
V _{OL}	Low-level output voltage ⁽²⁾	I _{OL} = 3.2 mA			0.5	V
I _I	Input current	V_{CC} = 3.6 V, V_{SS} = 0, V_I = 0 to 3.6 V, All other terminals floating			10	= A
I _{OZ}	High-impedance-state output current	V_{CC} = 3.6 V, V_{SS} = 0, V_{I} = 0 to 3.6 V, Chip selected in write mode or chip deselected			±20	= A
I _{CC}	Supply current	V_{CC} = 3.6 V, T _A = 0°C, RXA, RXB, DSRA, DSRB, CDA, CDB, CTSA, CTSB, RIA, and RIB at 2 V, All other inputs at 0.8 V, XTAL1 at 32 MHz, No load on outputs				mA
C _{i(CLK)}	Clock input impedance			15	20	pF
C _{O(CLK)}	Clock output impedance	$V_{CC} = 0$, $V_{SS} = 0$, f = 1 MHz, T _A = 25°C, All other terminals grounded		20	30	pF
CI	Input impedance			6	10	pF
Co	Output impedance			10	20	pF

All typical values are at V_{CC} = 3.3 V and T_A = 25°C. These parameters apply for all outputs except XTAL2. (1)

(2)

ELECTRICAL CHARACTERISTICS 5 V Nominal

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
V _{OH}	High-level output voltage ⁽²⁾	$I_{OH} = -4 \text{ mA}$	4			V
V _{OL}	Low-level output voltage ⁽²⁾	I _{OL} = 4 mA			0.4	V
I _I	Input current	V_{CC} = 5.5 V, V_{SS} = 0, V_I = 0 to 5.5 V, All other terminals floating			10	= A
I _{OZ}	High-impedance-state output current	V_{CC} = 3.6 V, V_{SS} = 0, V_I = 0 to 3.6 V, Chip selected in write mode or chip deselected			= 20	= A
I _{CC}	Supply current	V_{CC} = 5.5 V, T_A = 0°C, RXA, RXB, DSRA, DSRB, CDA, CDB, CTSA, CTSB, RIA, and RIB at 2 V, All other inputs at 0.8 V, XTAL1 at 32 MHz, No load on outputs				mA
C _{i(CLK)}	Clock input impedance			15	20	pF
C _{O(CLK)}	Clock output impedance	$V_{CC} = 0$, $V_{SS} = 0$, f = 1 MHz, T _A = 25°C, All other terminals grounded		20	30	pF
CI	Input impedance			6	10	pF
Co	Output impedance			10	20	pF

(1) All typical values are at $V_{CC} = 3.3$ V and $T_A = 25^{\circ}C$. (2) These parameters apply for all outputs except XTAL2.

TIMING REQUIREMENTS

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

								LIM	ITS				
	PARAMETER	ALT. SYMBOL	FIGURE	TEST CONDITIONS	1.8	٧	2.5	v	3.3	v	5	v	UNIT
		01111202			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	l
t _{w8}	Pulse duration, RESET	t _{RESET}			1		1		1		1		= s
t _{w1}	Pulse duration, clock high	t _{XH}	6		25		16		12		8		20
t _{w2}	Pulse duration, clock low	t _{XL}	0		25		10		12		0		ns
t_{cR}	Cycle time, read $(t_{w7} + t_{d8} + t_{h7})$	RC	8		115		80		62		57		ns
$t_{\rm cW}$	Cycle time, write $(t_{w6} + t_{d5} + t_{h4})$	WC	7		115		80		62		57		ns
t _{w6}	Pulse duration, \overline{IOW} or \overline{CS}	t _{IOW}	7		80		55		45		40		ns
t _{w7}	Pulse duration, $\overline{\text{IOR}}$ or $\overline{\text{CS}}$	t _{IOR}	8		80		55		45		40		ns
t _{SU3}	Setup time, data valid before $\overline{IOW}{\uparrow}$ or $\overline{CS}{\uparrow}$	t _{DS}	7		25		20		15		15		ns
t _{h4}	Hold time, address valid after $\overline{IOW}\uparrow$ or $\overline{CS}\uparrow$	t _{WA}	7		20		15		10		10		ns
t _{h5}	Hold time, data valid after $\overline{\text{IOW}}\uparrow$ or $\overline{\text{CS}}\uparrow$	t _{DH}	7		15		10		5		5		ns
t _{h7}	Hold time, data valid after $\overline{\text{IOR}}\uparrow$ or $\overline{\text{CS}}\uparrow$	t _{RA}	8		20		15		10		10		ns
t _{d5}	Delay time, address valid before IOW↓ or CS↓	t _{AW}	7		15		10		7		7		ns
t _{d8}	Delay time, address valid to $\overline{\text{IOR}}{\downarrow}$ or $\overline{\text{CS}}{\downarrow}$	t _{AR}	8		15		10		7		7		ns
t _{d10}	Delay time, IOR ↓ or CS ↓ to data valid	t _{RVD}	8	C _L = 30 pF		55		35		25		20	ns
t _{d11}	Delay time, $\overline{\text{IOR}}\uparrow$ or $\overline{\text{CS}}\uparrow$ to floating data	t _{HZ}	8	C _L = 30 pF		40		30		20		20	ns
t _{d12}	Write cycle to write cycle delay		7			100		75		60		50	ns
t _{d13}	Read cycle to read cycle delay		8			100		75		60		50	ns

www.ti.com

BAUD GENERATOR SWITCHING CHARACTERISTICS

over recommended ranges of supply voltage and operating free-air temperature, C_L = 30 pF (for FN package only)

				TEST	LIMITS								
	PARAMETER	ΔΙΙ		2.5	V	3.3 V		5 V		UNIT			
		••••••		S	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{w3}	Pulse duration, BAUDOUT low	t _{LW}	6	CLK ÷ 2	50		35		27		16		ns
t _{w4}	Pulse duration, BAUDOUT high	t _{HW}	6	CLK ÷ 2	50		35		27		16		ns
t _{d1}	Delay time, XIN↑ to BAUDOUT↑	t _{BLD}	6			35		25		20		15	ns
t _{d2}	Delay time, XIN $\uparrow\downarrow$ to BAUDOUT \downarrow	t _{BHD}	6			35		25		20		15	ns

RECEIVER SWITCHING CHARACTERISTICS⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

					LIMITS								
	PARAMETER	ALT. SYMBOL	FIGURE	TEST CONDITIONS	1.8 V		2.5 V		3.3 V		5 V		UNIT
		••••••			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{d12}	Delay time, RCLK to sample	t _{SCD}	9			20		15		10		10	ns
t _{d13}	Delay time, stop to set INT or read RBR to LSI interrupt or stop to $\overrightarrow{\text{RXRDY}}$	t _{SINT}	8, 9, 10, 11, 12			1		1		1	1		RCLK cycle
t _{d14}	Delay time, read RBR/LSR to reset INT	t _{RINT}	8, 9, 10, 11, 12	C _L = 30 pF		100		90		80		70	ns
t _{d26}	Delay time, RCV threshold byte to RTS↑		19	C _L = 30 pF								2	baudout cycles ⁽²⁾
t _{d27}	Delay time, read of last byte in receive FIFO to $\overline{\text{RTS}}{\downarrow}$		19	C _L = 30 pF								2	baudout cycles
t _{d28}	Delay time, fi <u>rst d</u> ata bit of 16th character to RTS↑		20	C _L = 30 pF								2	baudout cycles
t _{d29}	Delay time, $\overline{\text{RBRRD}}$ low to $\overline{\text{RTS}}\downarrow$		20	C _L = 30 pF								2	baudout cycles

(1) In the FIFO mode, the read cycle (RC) = 1 baud clock (min) between reads of the receive FIFO and the status registers (interrupt identification register or line status register).

(2) A baudout cycle is equal to the period of the input clock divided by the programmed divider in DLL, DLM.

TRANSMITTER SWITCHING CHARACTERISTICS

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

								LIMI	TS				
	PARAMETER	ALT. SYMBOL	FIGURE	TEST CONDITIONS	1.8	v	2.	5 V	3.3 V		5 V		UNIT
		01		Comprise	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{d15}	Delay time, initial write to transmit start	t _{IRS}	14		8	24	8	24	8	24	8	24	baudout cycles
t _{d16}	Delay time, start to INT	t _{STI}	14		8	10	8	10	8	10	8	10	baudout cycles
t _{d17}	Delay time, IOW (WR THR) to reset INT	t _{HR}	14	C _L = 30 pF		70		60		50		50	ns
t _{d18}	Delay time, initial write to INT (THRE ⁽¹⁾)	t _{SI}	14		16	34	16	34	16	34	16	34	baudout cycles
t _{d19}	Delay time, read IOR ↑ to reset INT (THRE ⁽¹⁾)	t _{IR}	14	C _L = 30 pF		70		50		35		35	ns
t _{d20}	Delay time, write to TXRDY inactive	t _{WXI}	15, 16	C _L = 30 pF		60		45		35		35	ns
t _{d21}	Delay time, start to TXRDY active	t _{SXA}	15, 16	C _L = 30 pF		9		9		9		9	baudout cycles
t _{SU4}	Setup time, CTS↑ before midpoint of stop bit		18		30		20		10		10		ns
t _{d25}	Delay time, $\overline{\text{CTS}}$ low to TX		18	C _L = 30 pF		24		24		24		24	baudout cycles

(1) THRE = Transmitter holding register empty; IIR = interrupt identification register

Copyright © 2006–2008, Texas Instruments Incorporated

MODEM CONTROL SWITCHING CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

					LIMITS								
	PARAMETER	ALT. SYMBOL FIGURE		FIGURE CONDITIONS	1.8 V 2.5 V		3.3 V		5 V		UNIT		
					MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{d22}	Delay time, WR MCR to output	t _{MDO}	17	C _L = 30 pF		90		70		60		50	ns
t _{d23}	Delay time, modem interrupt to set INT	t _{SIM}	17	C _L = 30 pF		60		50		40		35	ns
t _{d24}	Delay time, RD MSR to reset INT	t _{RIM}	17	C _L = 30 pF		80		60		50		40	ns

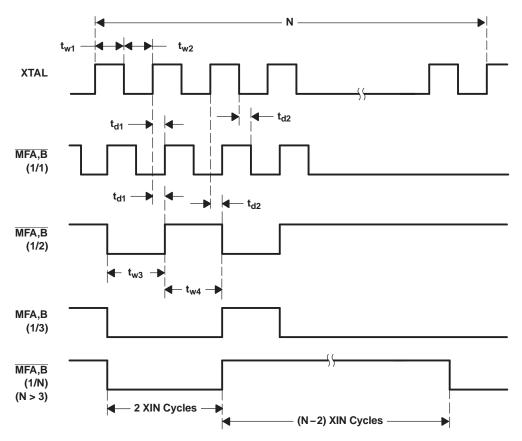


Figure 5. Input Clock and Baud Generator Timing Waveforms (for FN Package Only) (When AFR2:1 = 01)

12 Submit Documentation Feedback

www.ti.com

TL16C2752

SLWS188A-JUNE 2006-REVISED SEPTEMBER 2008

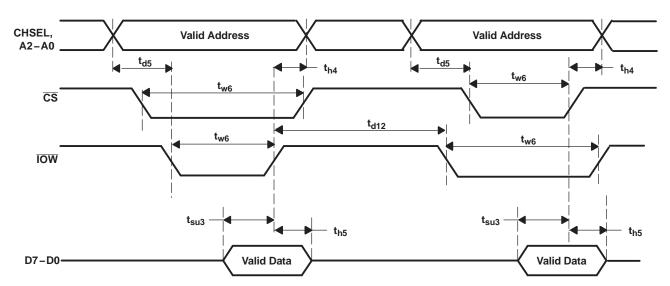


Figure 6. Write Cycle Timing Waveforms

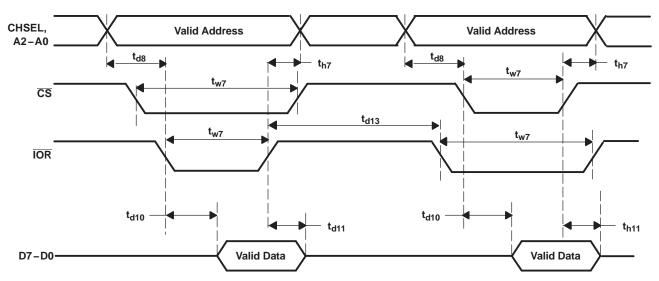


Figure 7. Read Cycle Timing Waveforms

TL16C2752

SLWS188A-JUNE 2006-REVISED SEPTEMBER 2008

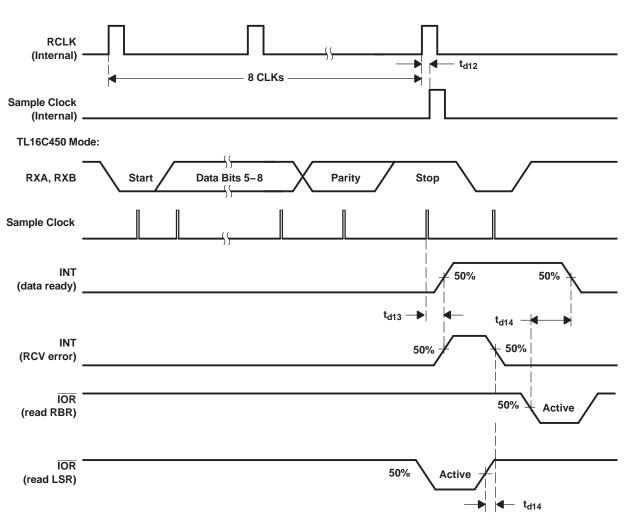


Figure 8. Receiver Timing Waveforms

www.ti.com

SLWS188A-JUNE 2006-REVISED SEPTEMBER 2008

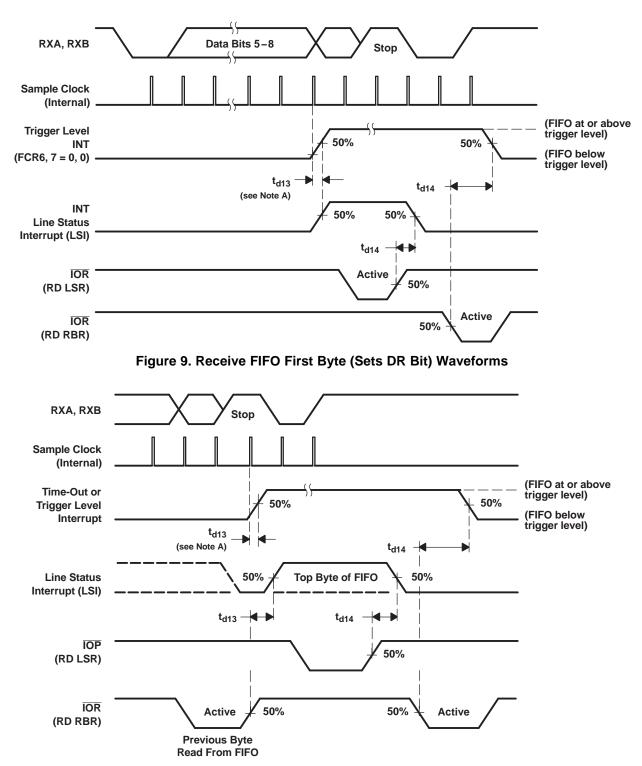


Figure 10. Receive FIFO Bytes Other Than the First Byte (DR Internal Bit Already Set) Waveforms

TL16C2752

SLWS188A-JUNE 2006-REVISED SEPTEMBER 2008

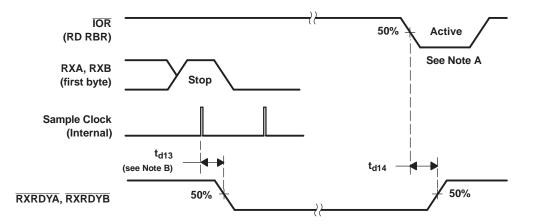
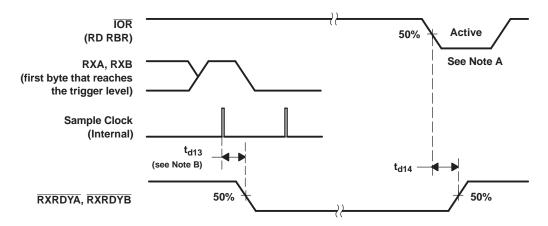
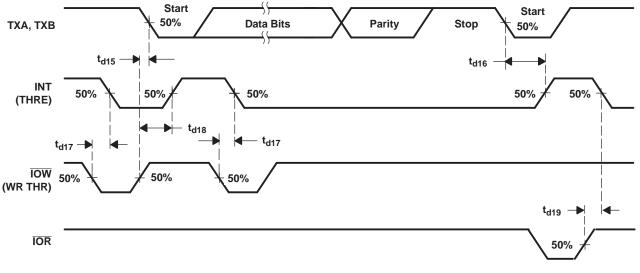
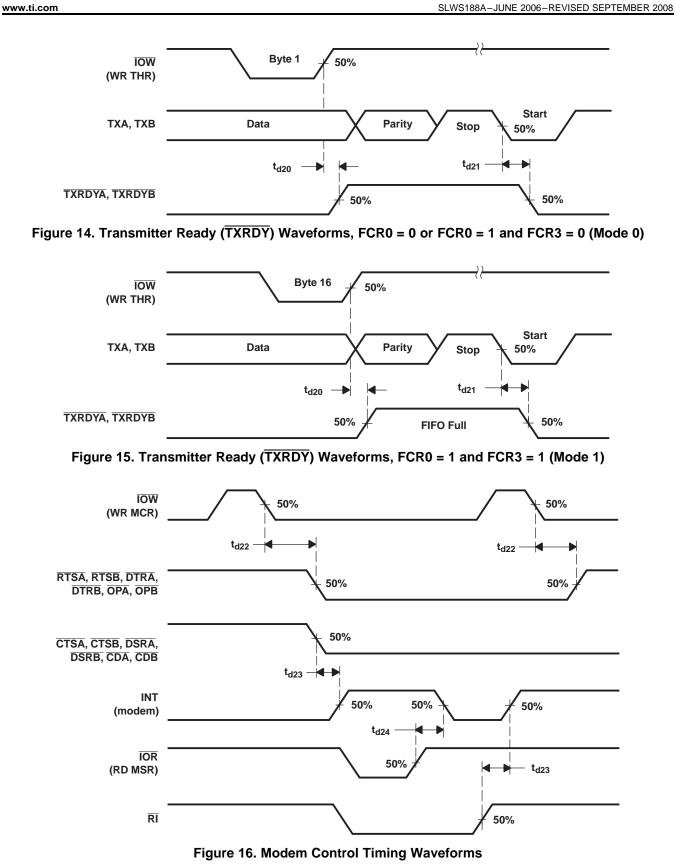
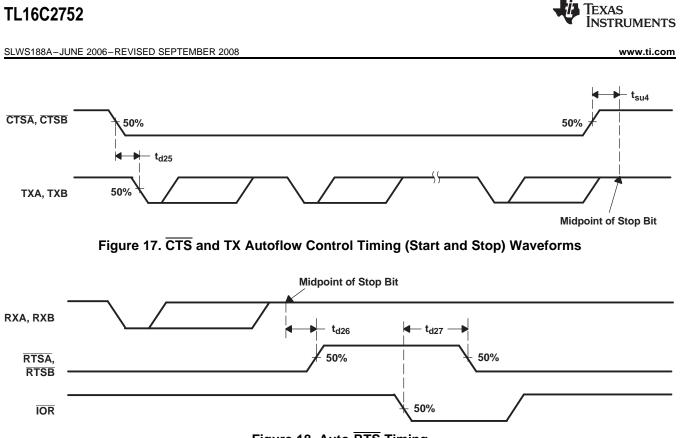


Figure 11. Receiver Ready (RXRDY) Waveforms, FCR0 = 0 or FCR0 = 1 and FCR3 = 0 (Mode 0)


Figure 12. Receiver Ready (RXRDY) Waveforms, FCR0 = 1 and FCR3 = 1 (Mode 1)


www.ti.com

EXAS

INSTRUMENTS

APPLICATION INFORMATION

A. Pin numbers shown are for 44-pin PLCC FN package.

Figure 19. Typical TL16C2752 Connection

www.ti.com

PRINCIPLES OF OPERATION

UART Internal Registers

Each of the UART channel in the TL16C2752 has its own set of configuration registers selected by address lines A0, A1, and A2 with \overline{CS} and CHSEL selecting the channel. The complete register set is shown in Table 1 and Table 2.

ADDRESS	RESET			
A2-A0	(HEX) VALUE	COMMENTS	REGISTER	READ/WRITE
		16C	550 Compatible Registers	
000	XX XX	LCR[7] = 0	RHR–Receive Holding Register THR–Transmit Holding Register	Read only Write only
000	XX		DLL-Div Latch Low Byte	Read/Write
001	XX	LCR[7] = 1, LCR ≠ 0xBF	DLM–Div Latch High Byte	Read/Write
010	00	_	AFR-Alternate Function Register	Read/Write
000	00	DLL, DLM = $0x00$,	DREV–Device Revision Code	Read only
001	0A	LCR[7] = 1, LCR ≠ 0xBF	DVID–Device Identification Code	Read only
001	00	LCR[7] = 0	IER-Interrupt Enable Register	Read/Write
010	01 00	LCR[7] = 0	ISR-Interrupt Status Register FCR-FIFO Control Register	Read only Write only
011	00		LCR-Line Control Register	Read/Write
100	00		MCR-Modem Control Register	Read/Write
101	60	LCR ≠ 0xBF	LSR–Line Status Register Reserved	Read only Write only
110	X0		MSR–Modem Status Register Reserved	Read only Write only
111	FF	LCR \neq 0xBF, FCTR[6] = 0	SPR-Scratch Pad Register	Read/Write
111	00		FLVL–RX/TX FIFO Level Counter Register	Read only
111	80	LCR ≠ 0xBF, FCTR[6] = 1	EMSR–Enhanced Mode Select Register	Write only
			Enhanced Registers	
000	00 00		TRG–RX/TX FIFO Trigger Level Register FC–RX/TX FIFO Level Counter Register	Write only Read only
001	00		FCTR-Feature Control Register	Read/Write
010	00		EFR–Enhanced Function Register	Read/Write
100	00	LCR = 0xBF	Xon-1–Xon Character 1	Read/Write
101	00		Xon-2–Xon Character 2	Read/Write
110	00		Xoff-1–Xoff Character 1	Read/Write
111	00	7	Xoff-2–Xoff Character 2	Read/Write

Table 1. UART Channel A and B UART Internal Registers

TL16C2752

www.ti.com

SLWS188A-JUNE 2006-REVISED SEPTEMBER 2008

Table 2. Internal Registers	Description ⁽¹⁾
-----------------------------	----------------------------

Address A2–A0	Register Name	Read/ Write	Comments	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
			I.	I.	16C550 C	ompatible Regis	sters			r.	r.
000	RHR	RD	LCR[7] = 0	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
000	THR	WR		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
001	IER	RD/WR	-	0/	0/	0/	0/				
				CTS Int. Enable	RTS Int. Enable	Xoff Int. Enable	Sleep Mode Enable	Modem Stat. Int. Enable	RX Line Stat. Int. Enable	TX Empty Int. Enable	RX Data Int. Enable
010	ISR	RD	-	FIFOs Enabled	FIFOs Enabled	0/ INT Source Bit 5	0/ INT Source Bit 4	INT Source Bit 3	INT Source Bit 2	INT Source Bit 1	INT Source Bit 0
010	FCR	WR		RXFIFO Trigger	RXFIFO Trigger	0/ TXFIFO Trigger	0/ TXFIFO Trigger	DMA Mode Enable	TX FIFO Reset	RX FIFO Reset	FIFOs Enable
011	LCR	RD/WR	LCR ≠ 0xBF	Divisor Enable	Set TX Break	Set Parity	Even Parity	Parity Enable	Stop Bits	Word Length Bit 1	Word Length Bit 0
100	MCR	RD/WR		0/	0/	0/	Internal	00011001001		DTO# Output	DTD# Output
				BRG Prescaler	IR Mode Enable	XonAny	Loopback Enable	OP2# Output Control	Rsrvd (OP1#)	RTS# Output Control	DTR# Output Control
101	LSR	RD		RX FIFO Global Error	THR & TSR Empty	THR Empty	RX Break	RX Framing Error	RX Parity Error	RX Overrun Error	RX Data Ready
110	MSR	RD		CD# Input	RI# Input	DSR# Input	CTS# Input	Delta CD#	Delta RI#	Delta DSR#	Delta CTS#
111	SPR	RD/WR	LCR ≠ 0xBF FCTR Bit 6 = 0	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
111	EMSR	WR	LDR ≠ 0xBF FCTR Bit 6 = 1	16X Sampling Rate Mode	LSR Error Interrupt Imd/Dly#	Auto RTS Hyst. Bit 3	Auto RTS Hyst Bit 2	Auto RS485 Output Inversion	Rsrvd	Rx/Tx FIFO Count	Rx/Tx FIFo Count
111	FLVL	RD		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
			1	1	Baud-Rat	te Generator Div	isor	1	1	1	1
000	DLL	RD/WR		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
001	DLM	RD/WR	LCR[7] = 1 LCR	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
010	AFR	RD/WR	≠ 0xBF	Rsvd	Rsvd	Rsvd	Rsvd	Rsvd	RXRDY# Select	Baudout# Select	Concurrent Write
000	DREV	RD	LCR[7] = 1 LCR	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
001	DVID	RD	≠ 0xBF DLL = 0x00 DLM = 0x00	0	0	0	0	1	0	1	0
					Enha	anced Registers					
000	TRG	WR		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
000	FC	RD		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
001	FCTR	RD/WR		RX/TX Mode	SCPAD Swap	Trig Table Bit 1	Trig Table Bit 0	Auto RS485 Direction Control	RX IR Input Inv.	Auto RTS Hyst Bit 1	Auto RTS Hyst Bit 0
010	EFR	RD/WR	LCR = 0xBF	Auto CTS Enable	Auto RTS Enable	Special Char Select	Enable IER[7:4], ISR[5:4], FCT[5:4], MCR[7:5]	Software Flow Cntl Bit 3	Software Flow Cntl Bit 2	Software Flow Cntl Bit 1	Software Flow Cntl Bit 0
100	XON1	RD/WR		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
101	XON2	RD/WR		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
110	XOFF1	RD/WR		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
111	XOFF2	RD/WR		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0

(1) Shaded bits are accessible when EFR Bit 4 = 1.

24-Aug-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•	Pins	•	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TL16C2752FN	ACTIVE	PLCC	FN	44	26	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	0 to 70	2752FN	Samples
TL16C2752IFN	ACTIVE	PLCC	FN	44	26	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	2752IFN	Samples
TL16C2752IFNR	ACTIVE	PLCC	FN	44	500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	2752IFN	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

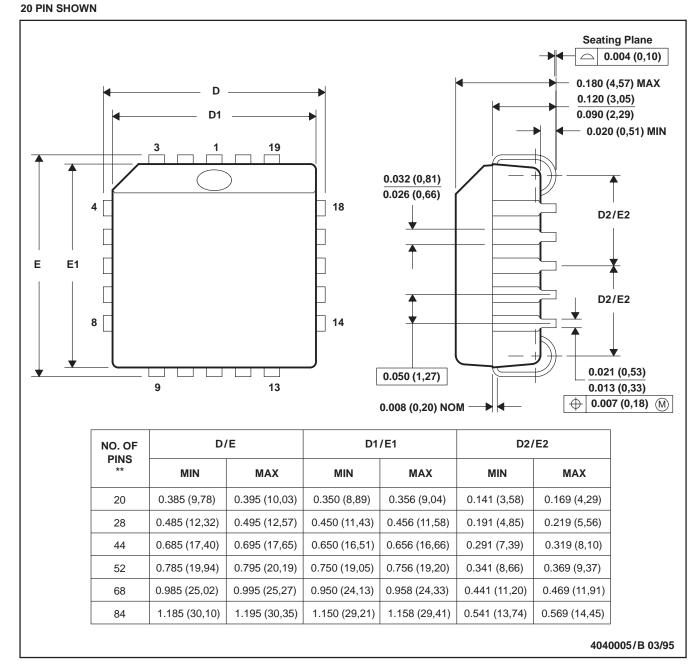
⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

24-Aug-2014

continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

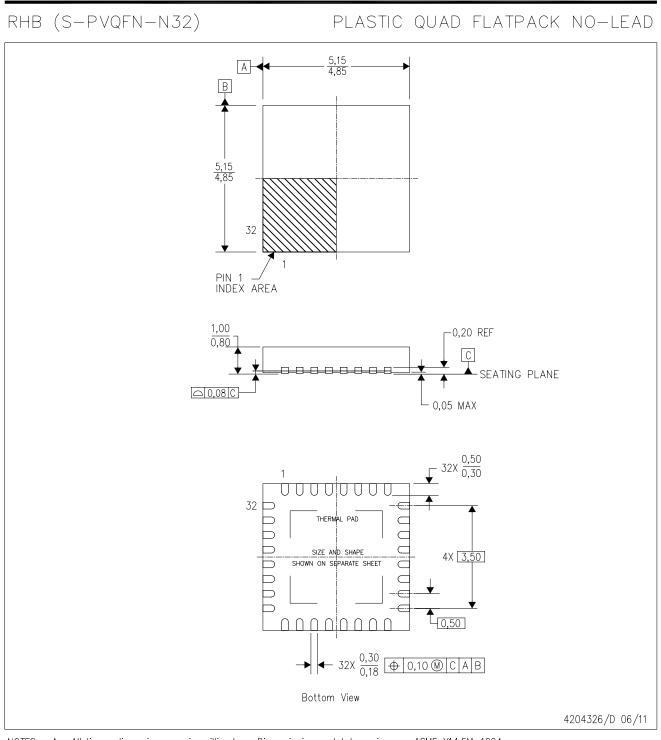

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

MECHANICAL DATA

MPLC004A - OCTOBER 1994

PLASTIC J-LEADED CHIP CARRIER

FN (S-PQCC-J**)



NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Falls within JEDEC MS-018

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-Lead) Package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- F. Falls within JEDEC MO-220.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated