











**TMP302** 

SBOS488C - JUNE 2009-REVISED AUGUST 2015

# TMP302 Easy-to-Use, Low-Power, Low-Supply Temperature Switch in Micropackage

#### 1 Features

Low Power: 15 μA (maximum)

• SOT563 Package: 1.6-mm x 1.6-mm x 0.6 mm

 Trip-Point Accuracy: ±0.2°C (typical) From +40°C to +125°C

• Pin-Selectable Trip Points

Open-Drain Output

Pin-Selectable Hysteresis: 5°C and 10°C

Low Supply Voltage Range: 1.4 V to 3.6 V

# 2 Applications

Cell Phone Handsets

· Portable Media Players

Consumer Electronics

Servers

Power-Supply Systems

DC-DC Modules

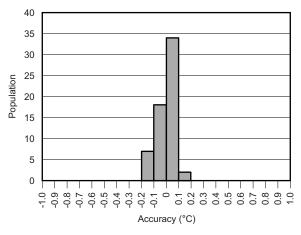
Thermal Monitoring

• Electronic Protection Systems

# 3 Description

The TMP302 is a temperature switch in a micropackage (SOT563). The TMP302 offers low power (15-µA maximum) and ease-of-use through pin-selectable trip points and hysteresis.

These devices require no additional components for operation; they can function independent of microprocessors or microcontrollers.


The TMP302 is available in several different versions. For additional trip points, contact a TI representative.

#### Device Information<sup>(1)</sup>

| PART NUMBER | PACKAGE | SELECTABLE TRIP<br>POINTS (°C) <sup>(2)</sup> |  |  |
|-------------|---------|-----------------------------------------------|--|--|
| TMP302A     | SOT (6) | 50, 55, 60, 65                                |  |  |
| TMP302B     | SOT (6) | 70, 75, 80, 85                                |  |  |
| TMP302C     | SOT (6) | 90, 95, 100, 105                              |  |  |
| TMP302D     | SOT (6) | 110, 115, 120, 125                            |  |  |

- (1) For all available packages, see the orderable addendum at the end of the datasheet.
- (2) For other available trip points, contact a TI representative.

## **Trip Threshold Accuracy**

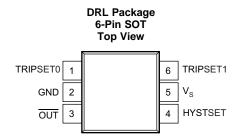




# **Table of Contents**

| 1 | Features 1                           | 7.3 Feature Description                             | 9        |
|---|--------------------------------------|-----------------------------------------------------|----------|
| 2 | Applications 1                       | 7.4 Device Functional Modes                         | <u>9</u> |
| 3 | Description 1                        | 8 Application and Implementation                    | 10       |
| 4 | Revision History                     | 8.1 Application Information                         | 10       |
| 5 | Pin Configuration and Functions      | 8.2 Typical Application                             |          |
| 6 | Specifications4                      | 9 Power Supply Recommendations                      |          |
| U | 6.1 Absolute Maximum Ratings         | 10 Layout                                           | 13       |
|   | 6.2 ESD Ratings                      | 10.1 Layout Guidelines                              | 13       |
|   | 6.3 Recommended Operating Conditions | 10.2 Layout Example                                 | 13       |
|   | 6.4 Thermal Information              | 11 Device and Documentation Support                 | 14       |
|   | 6.5 Electrical Characteristics       | 11.1 Community Resources                            | 14       |
|   | 6.6 Typical Characteristics          | 11.2 Trademarks                                     | 14       |
| 7 | Detailed Description 8               | 11.3 Electrostatic Discharge Caution                | 14       |
| • | 7.1 Overview 8                       | 11.4 Glossary                                       | 14       |
|   | 7.2 Functional Block Diagram         | 12 Mechanical, Packaging, and Orderable Information | 14       |

# 4 Revision History


| Cr | nanges from Revision B (December 2014) to Revision C                                                                                          | Page |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------|------|
| •  | Changed device names by simplifying from TMP302A, TMP302B, TMP302C, and TMP302D to TMP302                                                     | 1    |
| •  | Added plus-minus symbol to Machine Model value in ESD Ratings table                                                                           | 4    |
| •  | Moved Specified Operating Temperature parameter from <i>Electrical Characteristics</i> table to <i>Recommended Operating Conditions</i> table | 4    |
| •  | Added Community Resources section                                                                                                             | 14   |
| Cł | nanges from Revision A (September 2009) to Revision B                                                                                         | Page |
|    |                                                                                                                                               |      |

Submit Documentation Feedback

Copyright © 2009–2015, Texas Instruments Incorporated



# 5 Pin Configuration and Functions



#### **Pin Functions**

| PIN |          | 1/0            | DESCRIPTION                                                                           |
|-----|----------|----------------|---------------------------------------------------------------------------------------|
| NO. | NAME     | I/O            | DESCRIPTION                                                                           |
| 1   | TRIPSET0 | Digital Input  | Used in combination with TRIPSET1 to select the temperature at which the device trips |
| 2   | GND      | Ground         | Ground                                                                                |
| 3   | OUT      | Digital Output | Open drain, active-low output                                                         |
| 4   | HYSTSET  | Digital Input  | Used to set amount of thermal hysteresis                                              |
| 5   | $V_S$    | Power Supply   | Power supply                                                                          |
| 6   | TRIPSET1 | Digital Input  | Used in combination with TRIPSET0 to select the temperature at which the device trips |

Copyright © 2009–2015, Texas Instruments Incorporated



# 6 Specifications

# 6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

|             |                                         | MIN         | MAX           | UNIT |
|-------------|-----------------------------------------|-------------|---------------|------|
|             | Supply                                  |             | 3.6           |      |
| Voltage     | Input pin (TRIPSET0, TRIPSET1, HYSTSET) | -0.5        | $V_{S} + 0.5$ | V    |
|             | Output pin (OUT)                        | -0.5        | 3.6           |      |
| Current     | Output pin (OUT)                        |             | 10            | mA   |
|             | Operating                               | <b>–</b> 55 | 130           |      |
| Temperature | Junction                                |             | 150           | °C   |
|             | Storage, T <sub>stg</sub>               | -60         | 150           |      |

<sup>(1)</sup> Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

# 6.2 ESD Ratings

|                    |                         |                                                                     | VALUE | UNIT |
|--------------------|-------------------------|---------------------------------------------------------------------|-------|------|
|                    |                         | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)              | ±2000 |      |
| V <sub>(ESD)</sub> | Electrostatic discharge | Charged-device model (CDM), per JEDEC specification JESD22-C101 (2) | ±1000 | V    |
| , ,                |                         | Machine model (MM)                                                  | ±500  |      |

<sup>(1)</sup> JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

## 6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

|                     |                                                      | MIN | NOM | MAX | UNIT |
|---------------------|------------------------------------------------------|-----|-----|-----|------|
| V <sub>S</sub>      | Power supply voltage                                 | 1.4 | 3.3 | 3.6 | V    |
| R <sub>pullup</sub> | Pullup resistor connected from OUT to V <sub>S</sub> | 10  |     | 100 | kΩ   |
| T <sub>A</sub>      | Specified temperature range                          | -40 |     | 125 | °C   |

# 6.4 Thermal Information

|                      |                                              | TMP302    |      |
|----------------------|----------------------------------------------|-----------|------|
|                      | THERMAL METRIC <sup>(1)</sup>                | DRL (SOT) | UNIT |
|                      |                                              | 6 PINS    |      |
| $R_{\theta JA}$      | Junction-to-ambient thermal resistance       | 200       | °C/W |
| $R_{\theta JC(top)}$ | Junction-to-case (top) thermal resistance    | 73.7      | °C/W |
| $R_{\theta JB}$      | Junction-to-board thermal resistance         | 34.4      | °C/W |
| ΨЈТ                  | Junction-to-top characterization parameter   | 3.1       | °C/W |
| ΨЈВ                  | Junction-to-board characterization parameter | 34.2      | °C/W |

 For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

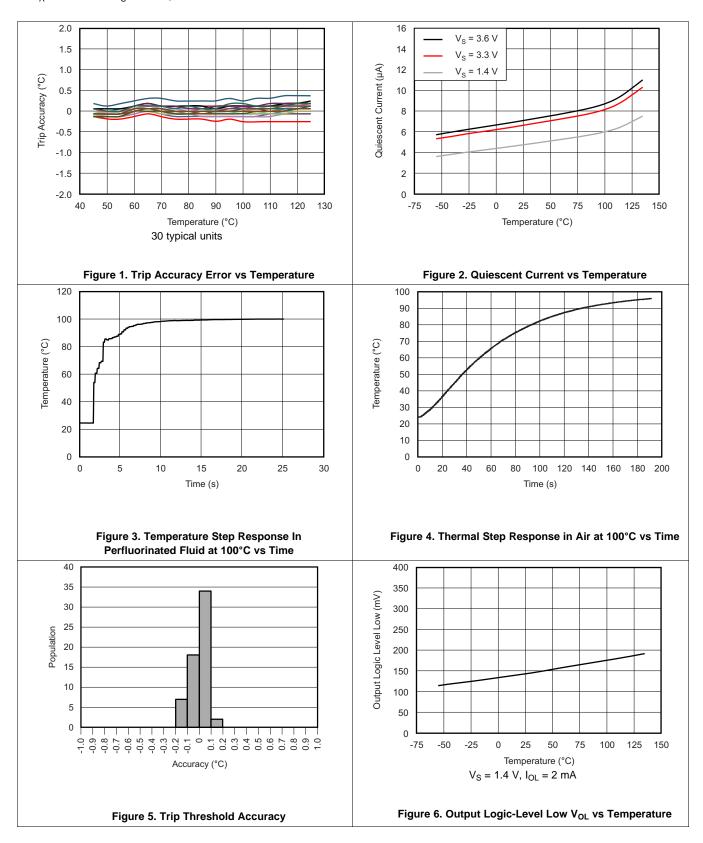
Product Folder Links: TMP302

<sup>(2)</sup> JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.



# 6.5 Electrical Characteristics

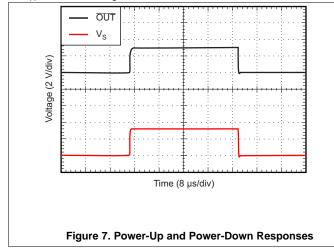
At  $T_A = -40$ °C to +125°C, and  $V_S = 1.4$  to 3.6 V (unless otherwise noted). 100% of all units are production tested at  $T_A = 25$ °C; overtemperature specifications are specified by design.

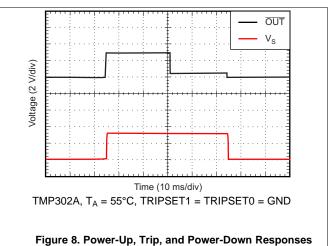

|                 | PARAMETER                         | TEST CONDITIONS                                       | MIN                  | TYP         | MAX                  | UNIT |  |
|-----------------|-----------------------------------|-------------------------------------------------------|----------------------|-------------|----------------------|------|--|
| TEMPI           | ERATURE MEASUREMENT               |                                                       |                      |             |                      |      |  |
|                 | Trip point accuracy               |                                                       |                      | ±0.2        | ±2                   | °C   |  |
|                 | Trip point accuracy versus supply |                                                       |                      | ±0.2        | ±0.5                 | °C/V |  |
|                 | Trip point hyptorogic             | HYSTSET = GND                                         |                      | 5           |                      | °C   |  |
|                 | Trip point hysteresis             | HYSTSET = V <sub>S</sub>                              |                      | 10          |                      |      |  |
| TEMPI           | ERATURE TRIP POINT SET            |                                                       |                      |             |                      |      |  |
|                 |                                   | TRIPSET1 = GND, TRIPSET0 = GND                        |                      | Default     |                      |      |  |
|                 | Town areture trip point out       | TRIPSET1 = GND, TRIPSET0 = V <sub>S</sub> Default + 5 |                      | efault + 5  |                      | °C   |  |
|                 | Temperature trip point set        | TRIPSET1 = V <sub>S</sub> , TRIPSET0 = GND            | efault + 10          |             |                      |      |  |
|                 |                                   | TRIPSET1 = $V_S$ , TRIPSET0 = $V_S$                   | De                   | efault + 15 | 5                    |      |  |
| HYSTE           | ERESIS SET INPUT                  |                                                       |                      |             |                      |      |  |
| $V_{IH}$        | Input logic level high            |                                                       | 0.7 × V <sub>S</sub> |             | Vs                   | V    |  |
| $V_{IL}$        | Input logic level low             |                                                       | -0.5                 |             | $0.3 \times V_S$     | V    |  |
| I <sub>I</sub>  | Input current                     | 0 < V <sub>I</sub> < 3.6 V                            |                      |             | 1                    | μΑ   |  |
| DIGITA          | AL OUTPUT                         |                                                       |                      |             |                      |      |  |
| \/              | Output logic lovel low            | $V_S > 2 \text{ V}, I_{OL} = 3 \text{ mA}$            | 0                    |             | 0.4                  | \/   |  |
| V <sub>OL</sub> | Output logic level low            | $V_S < 2 V$ , $I_{OL} = 3 \text{ mA}$                 | 0                    |             | 0.2 × V <sub>S</sub> | V    |  |
| POWE            | R SUPPLY                          |                                                       |                      |             |                      |      |  |
|                 | Quiescent Current                 |                                                       |                      | 8           | 15                   |      |  |
| IQ              | Quiescent Current                 | V <sub>S</sub> = 3.3V, T <sub>A</sub> = 50°C          |                      | 7           |                      | μA   |  |

Copyright © 2009–2015, Texas Instruments Incorporated



# 6.6 Typical Characteristics


At  $T_A = 25$ °C and  $V_S = 3.3$  V, unless otherwise noted.






# **Typical Characteristics (continued)**

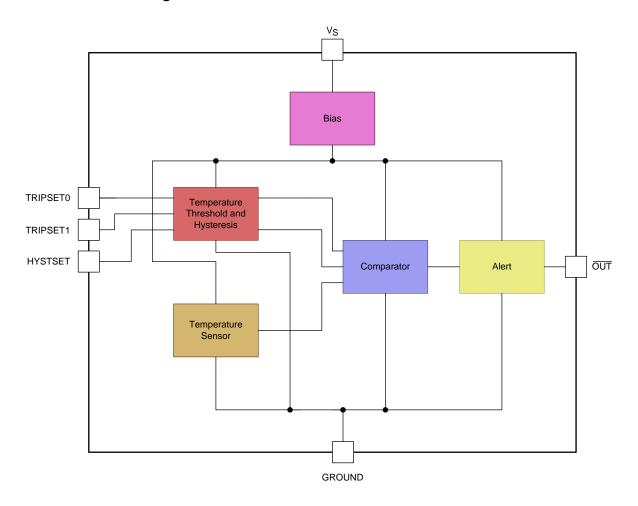
At  $T_A = 25$ °C and  $V_S = 3.3$  V, unless otherwise noted.







# 7 Detailed Description


#### 7.1 Overview

The TMP302 temperature switch is optimal for ultra low-power applications that require accurate trip thresholds. A temperature switch is a device that issues an alert response when a temperature threshold is reached or exceeded. The trip thresholds are programmable to four different settings using the TRIPSET1 and TRIPSET0 pins. Table 1 lists the pin settings versus trip points.

Table 1. Trip Point versus TRIPSET1 and TRIPSET0

| TRIPSET1       | TRIPSET0       | TMP302A | TMP302B | TMP302C | TMP302D |
|----------------|----------------|---------|---------|---------|---------|
| GND            | GND            | 50°C    | 70°C    | 90°C    | 110°C   |
| GND            | V <sub>S</sub> | 55°C    | 75°C    | 95°C    | 115°C   |
| Vs             | GND            | 60°C    | 80°C    | 100°C   | 120°C   |
| V <sub>S</sub> | V <sub>S</sub> | 65°C    | 85°C    | 105°C   | 125°C   |

# 7.2 Functional Block Diagram



Submit Documentation Feedback



#### 7.3 Feature Description

#### 7.3.1 HYSTSET

If the temperature trip threshold is crossed, the open-drain, active low output  $(\overline{OUT})$  goes low and does not return to the original high state (that is,  $V_S$ ) until the temperature returns to a value within a hysteresis window set by the HYSTSET pin. The HYSTSET pin allows the user to choose between a 5°C and a 10°C hysteresis window. Table 2 lists the hysteresis window that corresponds to the HYSTSET setting.

**Table 2. HYSTSET Window** 

| HYSTSET        | THRESHOLD HYSTERESIS |
|----------------|----------------------|
| GND            | 5°C                  |
| V <sub>S</sub> | 10°C                 |

For the specific case of the TMP302A device, if the HYSTSET pin is set to  $10^{\circ}$ C (that is, connected to  $V_S$ ) and the device is configured with a  $60^{\circ}$ C trip point (TRIPSET1 =  $V_S$ , TRIPSET0 = GND), when this threshold is exceeded the output does not return to the original high state until it reaches  $50^{\circ}$ C. This case is more clearly shown in Figure 9.

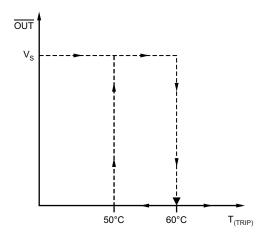



Figure 9. TMP302A: HYSTSET =  $V_S$ , TRIPSET1 =  $V_S$ , TRIPSET0 = GND

#### 7.4 Device Functional Modes

The TMP302 family of devices has a single functional mode. Normal operation for the TMP302 family of devices occurs when the power-supply voltage applied between the  $V_S$  pin and GND is within the specified operating range of 1.4 to 3.6 V. The temperature threshold is selected by connecting the TRIPSET0 and TRIPSET1 pins to either the GND or  $V_S$  pins (see Table 1). Hysteresis is selected by connecting the HYSTSET pin to either the GND or  $V_S$  pins (see Table 2). The output pin,  $\overline{OUT}$ , remains high when the temperature is below the selected temperature threshold. The  $\overline{OUT}$  pin remains low when the temperature is at or above the selected temperature threshold. The  $\overline{OUT}$  pin returns from a low state back to the high state based upon the amount of selected hysteresis (see the *HYSTSET* section).

Product Folder Links: TMP302



# 8 Application and Implementation

#### NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

# 8.1 Application Information

#### 8.1.1 Configuring the TMP302

The TMP302 family of devices is simple to configure. The only external components that the device requires are a bypass capacitor and pullup resistor. Power-supply bypassing is strongly recommended. Use a 0.1- $\mu$ F capacitor placed as close as possible to the supply pin. To minimize the internal power dissipation of the TMP302 family of devices, use a pullup resistor value greater than 10 k $\Omega$  from the  $\overline{\text{OUT}}$  pin to the V<sub>S</sub> pin. Refer to Table 1 for trip-point temperature configuration. The TRIPSET pins can be toggled dynamically; however, the voltage of these pins must not exceed V<sub>S</sub>. To ensure a proper logic high, the voltage must not drop below 0.7 V × V<sub>S</sub>.

#### 8.2 Typical Application

Figure 10 shows the typical circuit configuration for the TMP302 family of devices. The TMP302 family of devices is configured for the default temperature threshold by connecting the TRIPSET0 and TRIPSET1 pins directly to ground. Connecting the HYSTSET pin to ground configures the device for 5°C of hysteresis. Place a 10-k $\Omega$  pullup resistor between the  $\overline{\text{OUT}}$  and  $V_S$  pins. Place a 0.1- $\mu$ F bypass capacitor between the  $V_S$  pin and ground, close to the TMP302 device.

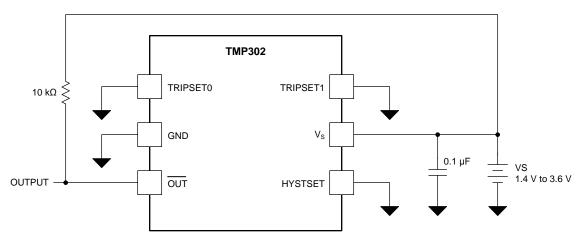



Figure 10. TMP302 Typical Application Schematic

Submit Documentation Feedback



## **Typical Application (continued)**

Figure 11 shows the most generic implementation of the TMP302 family of devices. Switches are shown connecting the TMPSET0, TMPSET1, and HYSTSET pins to either  $V_S$  or ground. The use of switches is not strictly required; the switches are shown only to illustrate the various pin connection combinations. In practice, connecting the TMPSET0, TMPSET1, and HYSTSET pins to ground or directly to the  $V_S$  pin is sufficient and minimizes space and cost. If additional flexibility is desired, connections from the TMPSET0, TMPSET1, and HYSTSET pins can be made through 0- $\Omega$  resistors which can be either populated or not populated depending upon the desired connection.

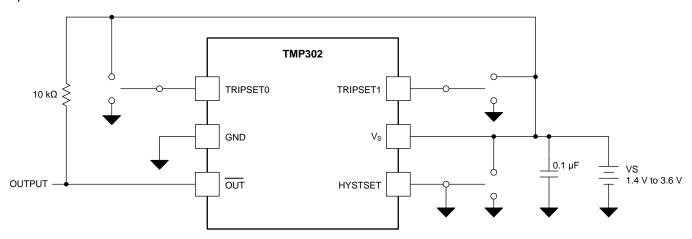



Figure 11. TMP302 Generic Application Schematic

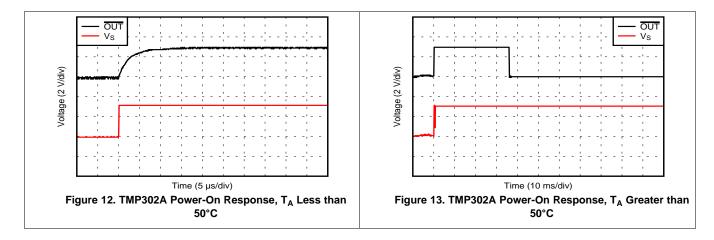
#### 8.2.1 Design Requirements

Designing with the TMP302 family of devices is simple. The TMP302 is a temperature switch commonly used to signal a microprocessor in the event of an over temperature condition. The temperature at which the TMP302 issues an active low alert is determined by the configuration of the TRIPSET0 and TRIPSET1 pins. These two pins are digital inputs and must be tied either high or low, according to Table 1. The TMP302 will issue an active low alert when the temperature threshold is exceeded. To avoid the TMP302 signaling the microprocessor as soon as the temperature drops below the temperature threshold the TMP302 has built-in hysteresis. The amount of hysteresis is determined by the Hystest pin. This pin is a digital input and must be tied either high or low, according to Table 2.

See Figure 10 and Figure 11 for typical circuit configurations.

#### 8.2.2 Detailed Design Procedure

Determine the threshold temperature and hysteresis required for the application. Connect the TMPSET0, TMPSET1, and HYSTSET pins according to the application requirements. Refer to Table 1 and Table 2. Use a  $10\text{-k}\Omega$  pullup resistor from the  $\overline{\text{OUT}}$  pin to the  $V_S$  pin. To minimize power, a larger-value pullup resistor can be used but must not exceed  $100 \text{ k}\Omega$ . Place a  $0.1\text{-}\mu\text{F}$  bypass capacitor close to the TMP302 device to reduce noise coupled from the power supply.


Product Folder Links: TMP302



# **Typical Application (continued)**

# 8.2.3 Application Curves

Figure 12 and Figure 13 show the TMP302A power on response with the ambient temperature less than  $50^{\circ}$ C and greater than  $50^{\circ}$ C respectively. The TMP302A was configured with trip point set to  $50^{\circ}$ C. TMP302B, C and D parts behave similarly with regards to power on response with  $T_A$  below or above the trip point. Note that the OUT signal typically requires 35 ms following power on to become valid.





# 9 Power Supply Recommendations

The TMP302 family of devices is designed to operate from a single power supply within the range 1.4 and 3.6 V. No specific power supply sequencing with respect to any of the input or output pins is required. The TMP302 family of devices is fully functional within 35 ms of the voltage at the  $V_S$  pin reaching or exceeding 1.4 V.

# 10 Layout

# 10.1 Layout Guidelines

Place the power supply bypass capacitor as close as possible to the  $V_S$  and GND pins. The recommended value for this bypass capacitor is 0.1- $\mu$ F. Additional bypass capacitance can be added to compensate for noisy or high-impedance power supplies. Place a 10- $k\Omega$  pullup resistor from the open drain  $\overline{OUT}$  pin to the power supply pin  $V_S$ .

## 10.2 Layout Example

O VIA to Power Ground Plane

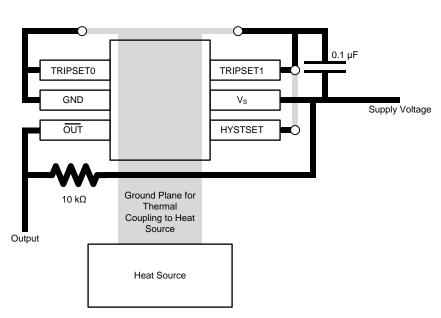



Figure 14. PCB Layout Example

Copyright © 2009–2015, Texas Instruments Incorporated

Submit Documentation Feedback



# 11 Device and Documentation Support

## 11.1 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

**Design Support** *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

#### 11.2 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

#### 11.3 Electrostatic Discharge Caution



This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

#### 11.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

# 12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Product Folder Links: TMP302





6-Aug-2015

#### PACKAGING INFORMATION

| Orderable Device | Status | Package Type | Package | Pins | Package | Eco Plan                   | Lead/Ball Finish | MSL Peak Temp      | Op Temp (°C) | Device Marking | Samples |
|------------------|--------|--------------|---------|------|---------|----------------------------|------------------|--------------------|--------------|----------------|---------|
|                  | (1)    |              | Drawing |      | Qty     | (2)                        | (6)              | (3)                |              | (4/5)          |         |
| TMP302ADRLR      | ACTIVE | SOT          | DRL     | 6    | 4000    | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 125   | OCP            | Samples |
| TMP302ADRLT      | ACTIVE | SOT          | DRL     | 6    | 250     | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 125   | OCP            | Samples |
| TMP302BDRLR      | ACTIVE | SOT          | DRL     | 6    | 4000    | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 125   | OCT            | Samples |
| TMP302BDRLT      | ACTIVE | SOT          | DRL     | 6    | 250     | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 125   | OCT            | Samples |
| TMP302CDRLR      | ACTIVE | SOT          | DRL     | 6    | 4000    | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 125   | OCR            | Samples |
| TMP302CDRLT      | ACTIVE | SOT          | DRL     | 6    | 250     | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 125   | OCR            | Samples |
| TMP302DDRLR      | ACTIVE | SOT          | DRL     | 6    | 4000    | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 125   | ocs            | Samples |
| TMP302DDRLT      | ACTIVE | SOT          | DRL     | 6    | 250     | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 125   | ocs            | Samples |

<sup>(1)</sup> The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

**Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

<sup>(2)</sup> Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

<sup>(3)</sup> MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.



# PACKAGE OPTION ADDENDUM

6-Aug-2015

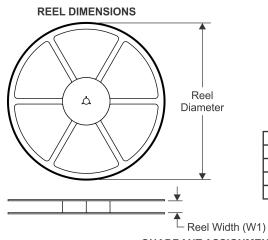
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

#### OTHER QUALIFIED VERSIONS OF TMP302:

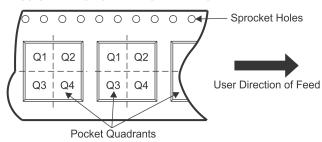
Automotive: TMP302-Q1


NOTE: Qualified Version Definitions:

Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

PACKAGE MATERIALS INFORMATION

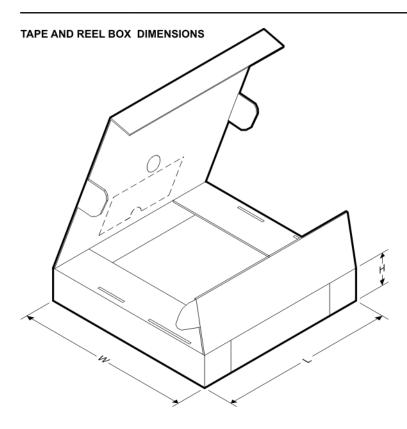
www.ti.com 6-Aug-2015


# TAPE AND REEL INFORMATION



# TAPE DIMENSIONS KO P1 BO W Cavity AO

|    | Dimension designed to accommodate the component width     |
|----|-----------------------------------------------------------|
| B0 | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |

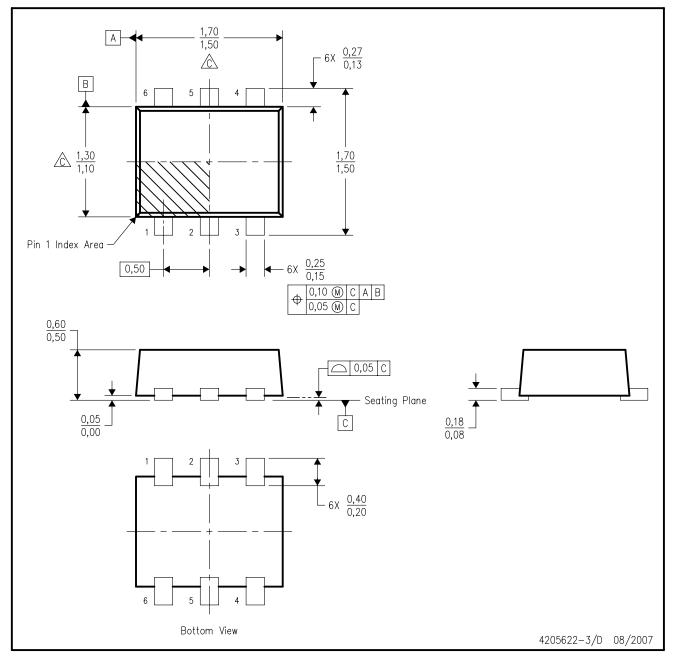

# QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



#### \*All dimensions are nominal

| *All dimensions are nominal |                 |                    |   |      |                          |                          |            |            |            |            |           |                  |
|-----------------------------|-----------------|--------------------|---|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| Device                      | Package<br>Type | Package<br>Drawing |   | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
| TMP302ADRLR                 | SOT             | DRL                | 6 | 4000 | 180.0                    | 8.4                      | 1.98       | 1.78       | 0.69       | 4.0        | 8.0       | Q3               |
| TMP302ADRLT                 | SOT             | DRL                | 6 | 250  | 180.0                    | 8.4                      | 1.98       | 1.78       | 0.69       | 4.0        | 8.0       | Q3               |
| TMP302BDRLR                 | SOT             | DRL                | 6 | 4000 | 180.0                    | 8.4                      | 1.98       | 1.78       | 0.69       | 4.0        | 8.0       | Q3               |
| TMP302BDRLR                 | SOT             | DRL                | 6 | 4000 | 180.0                    | 9.5                      | 1.78       | 1.78       | 0.69       | 4.0        | 8.0       | Q3               |
| TMP302BDRLT                 | SOT             | DRL                | 6 | 250  | 180.0                    | 8.4                      | 1.98       | 1.78       | 0.69       | 4.0        | 8.0       | Q3               |
| TMP302BDRLT                 | SOT             | DRL                | 6 | 250  | 180.0                    | 9.5                      | 1.78       | 1.78       | 0.69       | 4.0        | 8.0       | Q3               |
| TMP302CDRLR                 | SOT             | DRL                | 6 | 4000 | 180.0                    | 9.5                      | 1.78       | 1.78       | 0.69       | 4.0        | 8.0       | Q3               |
| TMP302CDRLR                 | SOT             | DRL                | 6 | 4000 | 180.0                    | 8.4                      | 1.98       | 1.78       | 0.69       | 4.0        | 8.0       | Q3               |
| TMP302CDRLT                 | SOT             | DRL                | 6 | 250  | 180.0                    | 9.5                      | 1.78       | 1.78       | 0.69       | 4.0        | 8.0       | Q3               |
| TMP302DDRLR                 | SOT             | DRL                | 6 | 4000 | 180.0                    | 9.5                      | 1.78       | 1.78       | 0.69       | 4.0        | 8.0       | Q3               |
| TMP302DDRLR                 | SOT             | DRL                | 6 | 4000 | 180.0                    | 8.4                      | 1.98       | 1.78       | 0.69       | 4.0        | 8.0       | Q3               |
| TMP302DDRLT                 | SOT             | DRL                | 6 | 250  | 180.0                    | 8.4                      | 1.98       | 1.78       | 0.69       | 4.0        | 8.0       | Q3               |
| TMP302DDRLT                 | SOT             | DRL                | 6 | 250  | 180.0                    | 9.5                      | 1.78       | 1.78       | 0.69       | 4.0        | 8.0       | Q3               |

www.ti.com 6-Aug-2015




\*All dimensions are nominal

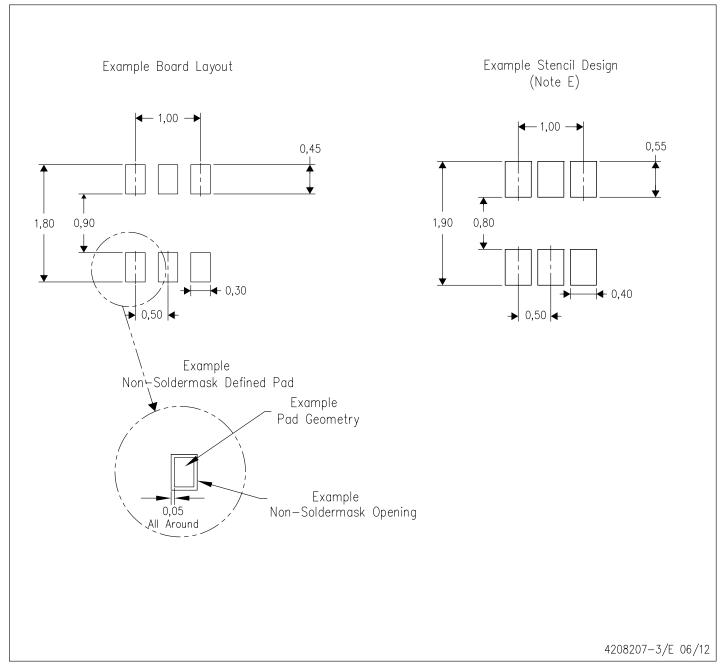
| Device      | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|-------------|--------------|-----------------|------|------|-------------|------------|-------------|
| TMP302ADRLR | SOT          | DRL             | 6    | 4000 | 202.0       | 201.0      | 28.0        |
| TMP302ADRLT | SOT          | DRL             | 6    | 250  | 202.0       | 201.0      | 28.0        |
| TMP302BDRLR | SOT          | DRL             | 6    | 4000 | 202.0       | 201.0      | 28.0        |
| TMP302BDRLR | SOT          | DRL             | 6    | 4000 | 184.0       | 184.0      | 19.0        |
| TMP302BDRLT | SOT          | DRL             | 6    | 250  | 202.0       | 201.0      | 28.0        |
| TMP302BDRLT | SOT          | DRL             | 6    | 250  | 184.0       | 184.0      | 19.0        |
| TMP302CDRLR | SOT          | DRL             | 6    | 4000 | 184.0       | 184.0      | 19.0        |
| TMP302CDRLR | SOT          | DRL             | 6    | 4000 | 202.0       | 201.0      | 28.0        |
| TMP302CDRLT | SOT          | DRL             | 6    | 250  | 184.0       | 184.0      | 19.0        |
| TMP302DDRLR | SOT          | DRL             | 6    | 4000 | 184.0       | 184.0      | 19.0        |
| TMP302DDRLR | SOT          | DRL             | 6    | 4000 | 202.0       | 201.0      | 28.0        |
| TMP302DDRLT | SOT          | DRL             | 6    | 250  | 202.0       | 201.0      | 28.0        |
| TMP302DDRLT | SOT          | DRL             | 6    | 250  | 184.0       | 184.0      | 19.0        |

# DRL (R-PDSO-N6)

# PLASTIC SMALL OUTLINE



NOTES:


- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body dimensions do not include mold flash, interlead flash, protrusions, or gate burrs.

  Mold flash, interlead flash, protrusions, or gate burrs shall not exceed 0,15 per end or side.
- D. JEDEC package registration is pending.



# DRL (R-PDSO-N6)

# PLASTIC SMALL OUTLINE



NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.
- E. Maximum stencil thickness 0,127 mm (5 mils). All linear dimensions are in millimeters.
- F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- G. Side aperture dimensions over—print land for acceptable area ratio > 0.66. Customer may reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening.



#### IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

#### Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity