

Sample &

Buy

ISO7820, ISO7820F

SLLSEP0A-JULY 2015-REVISED MARCH 2016

ISO7820x High-Performance, 8000 V_{PK} Reinforced Dual Channel Digital Isolator

Technical

Documents

Features 1

- Signaling Rate: Up to 100 Mbps
- Wide Supply Range: 2.25 V to 5.5 V
- 2.25 V to 5.5 V Level Translation
- Wide Temperature Range: -55°C to 125°C
- Low Power Consumption, Typical 1.7 mA per Channel at 1 Mbps
- Low Propagation Delay: 11 ns Typical (5 V Supplies)
- Industry leading CMTI(Min): ±100 kV/µs
- Robust Electromagnetic Compatibility (EMC)
- System-Level ESD, EFT, and Surge Immunity
- Low Emissions
- Isolation Barrier Life: > 25 Years
- SOIC-16 Wide Body (DW) and Extra-Wide Body (DWW) Package Options
- Safety and Regulatory Approvals:
 - 8000 V_{PK} Reinforced Isolation per DIN V VDE V 0884-10 (VDE V 0884-10):2006-12
 - 5.7 kV_{RMS} Isolation for 1 minute per UL 1577
 - CSA Component Acceptance Notice 5A, IEC 60950-1 and IEC 60601-1 End Equipment Standards
 - CQC Certification per GB4943.1-2011
 - TUV Certification per EN 61010-1 and EN 60950-1
 - All DW Package Certifications Complete; DWW Package Certifications Complete per UL, TUV and Planned for VDE, CSA, and CQC

Applications 2

- Industrial Automation
- Motor Control
- **Power Supplies**
- Solar Inverters
- Medical Equipment
- Hybrid Electric Vehicles

3 Description

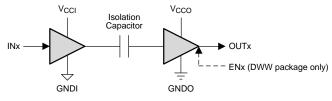
Tools &

Software

The ISO7820 is a high-performance, dual-channel digital isolator with 8000 VPK isolation voltage. This reinforced isolation certifications device has according to VDE, CSA, CQC, and TUV. The isolator provides high electromagnetic immunity and low emissions at low power consumption, while isolating CMOS or LVCMOS digital I/O's. Each isolation channel has a logic input and output buffer separated by silicon dioxide (SiO₂) insulation barrier. ISO7820 has two forward channels and no reverse-direction channel. If the input power or signal is lost, default output is 'high' for the ISO7820 and 'low' for the ISO7820F device. Used in conjunction with isolated power supplies, this device prevents noise currents on a data bus or other circuits from entering the local ground and interfering with or damaging sensitive circuitry. Through innovative chip design and layout techniques, electromagnetic compatibility of ISO7820 has been significantly enhanced to ease system-level ESD, EFT, Surge and Emissions compliance. ISO7820 is available in 16-pin SOIC wide-body (DW) and extra-wide body (DWW) packages. The DWW package option comes with enable pins which can be used to put the respective outputs in high impedance for multi-master driving applications and to reduce power consumption.

Support &

Community


20

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)					
1007000	SOIC, DW (16)	10.30 mm x 7.50 mm					
ISO7820, ISO7820F	Extra wide SOIC, DWW (16)						

(1) For all available packages, see the orderable addendum at the end of the datasheet.

Simplified Schematic

- V_{CCI} and GNDI are supply and ground (1) connections respectively for the input channels.
- (2) V_{CCO} and GNDO are supply and ground connections respectively for the output channels.

TEXAS INSTRUMENTS

www.ti.com

Table of Contents

1	Feat	ures 1
2	App	lications1
3		cription1
4		sion History2
5	Pin (Configuration and Functions 4
6	Spee	cifications
	6.1	Absolute Maximum Ratings 5
	6.2	ESD Ratings
	6.3	Recommended Operating Conditions5
	6.4	Thermal Information 6
	6.5	Power Dissipation Characteristics 6
	6.6	Electrical Characteristics, 5 V 7
	6.7	Electrical Characteristics, 3.3 V 7
	6.8	Electrical Characteristics, 2.5 V 8
	6.9	Switching Characteristics, 5 V 9
	6.10	Switching Characteristics, 3.3 V 9
	6.11	Switching Characteristics, 2.5 V 10
	6.12	Typical Characteristics 11
7	Para	meter Measurement Information 12
8	Deta	iled Description 14

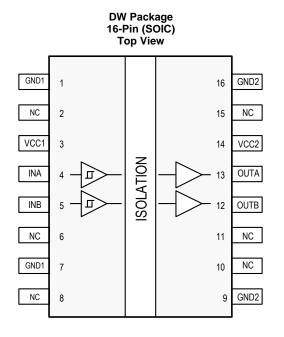
	8.1	Overview	14
	8.2	Functional Block Diagram	14
	8.3	Feature Description	15
	8.4	Device Functional Modes	19
9	App	ications and Implementation	<mark>2</mark> 1
	9.1	Application Information	21
	9.2	Typical Application	21
10	Pow	er Supply Recommendations	23
11	Laye	out	24
	11.1	PCB Material	24
	11.2	Layout Guidelines	24
	11.3	Layout Example	24
12	Dev	ice and Documentation Support	25
	12.1	Documentation Support	
	12.2	Related Links	25
	12.3	Community Resources	25
	12.4	Trademarks	25
	12.5	Electrostatic Discharge Caution	25
	12.6	Glossary	25
13	Mec	hanical, Packaging, and Orderable	
	Infor	mation	25

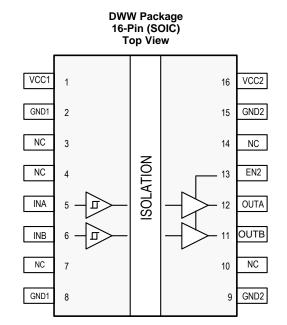
4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (July 2015) to Revision A

Page


•	Changed the Safety and Regulatory Approvals list of Features	1
•	Changed Features From: 8000 VPK VIOTM and 2121 VPK VIORM ReinforcedTo: 8000 VPK Reinforced	1
•	Added Features "TUV Certification per EN 61010-1 and EN 60950-1"	1
•	Added package: Extra wide SOIC, DWW (16) to the Device Information table	1
•	Changed text in the first paragraph of the <i>Description</i> From: "certifications according to VDE, CSA, and CQC". To: "certifications according to VDE, CSA, CQC, and TUV."	1
•	Changed the Simplified Schematic	1
•	Added the DWW pinout image	4
•	Added the DWW package to the Thermal Information	6
•	Changed the Supply Current section of the <i>Electrical Characteristics</i> , 5 V to include the DWW package information	7
•	Deleted Note 1 From the Electrical Characteristics, 5 V	7
•	Changed the Supply Current section of the <i>Electrical Characteristics</i> , 3.3 V to include the DWW package information	7
•	Deleted Note 1 From the Electrical Characteristics, 3.3 V	8
•	Changed the Supply Current section of the <i>Electrical Characteristics</i> , 2.5 V to include the DWW package information	
•	Deleted Note 1 From the Electrical Characteristics, 2.5 V	9
•	Added "Channel-to-channel output skew time" to Switching Characteristics, 5 V	9
•	Added "Channel-to-channel output skew time" to Switching Characteristics, 3.3 V	9
•	Added "Channel-to-channel output skew time" to Switching Characteristics, 2.5 V	. 10
•	Added Note: "This coupler" to the High Voltage Feature Description section	
•	Changed the Table 1, added DWW package information	15
•	Added Note 1 to Table 2	



Revision History (continued)

•	Added "Climatic category" to Table 2 and deleted Note 1	16
•	Changed the CSA column in Table 4	17
•	Added TUV to the <i>Regulatory Information</i> section and Table 4. Deleted Note 1 in Table 4	17
•	Changed Table 6	19
•	Changed Figure 15	20
•	Changed the <i>Typical Application</i> text and Figure 16	21

5 Pin Configuration and Functions

Pin Functions

	PIN			
	NO.	NO.	I/O	DESCRIPTION
NAME	DW	DWW		
GND1	1, 7	2, 8	-	Ground connection for V _{CC1}
GND2	9, 16	9, 15	-	Ground connection for V _{CC2}
INA	4	5	I	Input, channel A
INB	5	6	I	Input, channel B
NC	2, 6, 8, 10 ,11, 15	4, 7, 10	-	Not connected
OUTA	13	12	0	Output, channel A
OUTB	12	11	0	Output, channel B
VCC1	3	1	-	Power supply, V _{CC1}
VCC2	14	16	-	Power supply, V _{CC2}
EN2	_	13	I	Output enable 2. Output pins on side 2 are enabled when EN2 is high or open and in high-impedance state when EN2 is low.

Specifications 6

6.1 Absolute Maximum Ratings⁽¹⁾

		MIN	MAX	UNIT
Supply voltage ⁽²⁾	V _{CC1} , V _{CC2}	-0.5	6	V
Voltage	INx, OUTx	-0.5	$V_{CC} + 0.5^{(3)}$	V
Output Current	Io	-15	15	mA
Surge Immunity			12.8	kV
Storage temperature, T _{stg}		-65	150	°C

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GND1 or GND2) and are peak (2)voltage values.

(3)Maximum voltage must not exceed 6 V.

6.2 ESD Ratings

					UNIT
V		Electrostatio discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins $^{\left(1\right)}$	±6000	V
V _{ESD}	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	±1500	V	

JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. (1)

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

			MIN	TYP	MAX	UNIT
V_{CC1}, V_{CC2}	Supply voltage		2.25		5.5	V
		$V_{CCO}^{(1)} = 5 V$	-4			
I _{OH}	High-level output current	$V_{CCO} = 3.3 V$	-2			mA
		$V_{CCO} = 2.5 V$	-1			
		$V_{CCO} = 5 V$			4	
I _{OL}	Low-level output current	$V_{CCO} = 3.3 V$			2	1
		$V_{CCO} = 2.5 V$			1	
V _{IH}	High-level input voltage		0.7 x V _{CCI} ⁽¹⁾		V _{CCI}	V
VIL	Low-level input voltage		0		$0.3 \times V_{CCI}$	V
DR	Signaling rate		0		100	Mbps
TJ	Junction temperature ⁽²⁾		-55		150	°C
T _A	Ambient temperature		-55	25	125	°C

V_{CCI} = Input-side V_{CC}; V_{CCO} = Output-side V_{CC}.
 To maintain the recommended operating conditions for T_J, see the *Thermal Information* table.

ISO7820, ISO7820F

SLLSEP0A – JULY 2015–REVISED MARCH 2016

www.ti.com

6.4 Thermal Information

		ISO7820		
	THERMAL METRIC	DW (SOIC)	UNIT	
		16 PINS	16-PINS	
$R_{ extsf{ heta}JA}$	Junction-to-ambient thermal resistance	84.7	84.7	°C/W
R _{0JC(top)}	Junction-to-case(top) thermal resistance	47.3	46.0	°C/W
$R_{ extsf{ heta}JB}$	Junction-to-board thermal resistance	49.4	54.5	°C/W
Ψ _{JT}	Junction-to-top characterization parameter	19.1	18.5	°C/W
Ψ _{JB}	Junction-to-board characterization parameter	48.8	53.8	°C/W
$R_{\theta JC(bottom)}$	Junction-to-case(bottom) thermal resistance	n/a	n/a	°C/W

6.5 **Power Dissipation Characteristics**

			VALUE	UNIT
P_D	Maximum power dissipation by ISO7820x		100	
P _{D1}	Maximum power dissipation by side-1 of ISO7820x	$V_{CC1} = V_{CC2} = 5.5 \text{ V}, \text{ T}_{\text{J}} = 150^{\circ}\text{C},$ $C_{\text{L}} = 15 \text{ pF}, \text{ input a 50 MHz 50\% duty cycle}$	20	mW
P _{D2}	Maximum power dissipation by side-2 of ISO7820x	square wave	80	

Copyright © 2015–2016, Texas Instruments Incorporated

6.6 Electrical Characteristics, 5 V

 $V_{CC1} = V_{CC2} = 5 \text{ V} \pm 10\%$ (over recommended operating conditions unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS	MIN	ТҮР	MAX	UNIT
V _{OH}	High-level output voltage	I _{OH} = -4 mA; see Figure 7		$V_{CC2} - 0.4$	$V_{CC2} - 0.2$		V
V _{OL}	Low-level output voltage	I _{OL} = 4 mA; see Figure 7			0.2	0.4	V
V _{I(HYS)}	Input threshold voltage hysteresis			0.1 x V _{CC2}			V
I _{IH}	High-level input current	$V_{IH} = V_{CC1}$ at INx				10	μA
IIL	Low-level input current	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			μΑ		
CMTI	Common-mode transient immunity	$V_I = V_{CC1}$ or 0 V; see Figure 10	V _{CC1} or 0 V; see Figure 10				kV/µs
I _{CC1}	Supply current, Disable	$EN2 = 0V V_{1} = 0 V (ISO7820ED)$	$W(W) = V_{000}$		0.8	1.3	
I _{CC2}	(ISO7820DWW and ISO7820FDWW only)	(ISO7820DWW)				0.4	mA
I _{CC1}	Supply current, Disable	$FN2 = 0V$, $V_1 = V_{CC1}$ (ISO7820F)				4.6	mA
I _{CC2}	(ISO7820DWW and ISO7820FDWW only)	(ISO7820DWW)				0.4	
I _{CC1}	Supply surrent DC Signal		1007000)		0.9	1.3	
I _{CC2}	Supply current, DC Signal	$v_{\rm I} = 0 v (1507820F), v_{\rm I} = v_{\rm CC1}($	DDWW)		1.2	1.8	mA
I _{CC1}	Supply surrent DC Signal		(1607020)		3.2	4.6	
I _{CC2}	Supply current, DC Signal	$v_{\rm I} = v_{\rm CC1} (1307820F), v_{\rm I} = 0 v$	(1507820)		1.3 2		mA
I _{CC1}	Quantu aurant	4 Mbaa			2.1	-	
I _{CC2}	Supply current	1 MDps	switching with square wave clock input;		1.3		mA
I _{CC1}	Quantu aurant	40 Mh			2.1	3	
I _{CC2}	Supply current				2.3	3.8	mA
I _{CC1}	Supply ourrent	100 Mbpa	– C _L = 15 pF		2.7	3.3	
I _{CC2}	Supply current	100 Mbps			11.9	15.3	mA

6.7 Electrical Characteristics, 3.3 V

 $V_{CC1} = V_{CC2} = 3.3 \text{ V} \pm 10\%$ (over recommended operating conditions unless otherwise noted)

	PARAMETER	TEST	CONDITIONS	MIN	TYP	MAX	UNIT
V _{OH}	High-level output voltage	$I_{OH} = -2 \text{ mA}; \text{ see Figure 7}$		$V_{CC2} - 0.4$	$V_{CC2} - 0.2$		V
V _{OL}	Low-level output voltage	I _{OL} = 2 mA; see Figure 7			0.2	0.4	V
V _{I(HYS)}	Input threshold voltage hysteresis			0.1 x V _{CC2}			V
I _{IH}	High-level input current	/ _{IH} = V _{CC1} at INx				10	
I _{IL}	Low-level input current	V _{IL} = 0 V at INx		-10			μA
CMTI	Common-mode transient immunity	$V_I = V_{CC1}$ or 0 V; see Figure	10	100			kV/µs
I _{CC1}	Supply current, Disable				0.8	1.3	_
I _{CC2}	(ISO7820DWW and ISO7820FDWW only)	$EN2 = 0V, V_1 = 0 V (ISO7820)$	N2 = 0V, V ₁ = 0 V (ISO7820FDWW) , V ₁ = V _{CC1} (ISO7820DWW)		0.2	0.4	mA
I _{CC1}	Supply current, Disable				3.2	4.6	
I _{CC2}	(ISO7820DWW and ISO7820FDWW only)	$EN2 = 0V, V_I = V_{CC1} (ISO782)$	20FDWW) , V _I = 0 V(ISO7820DWW)		0.2	0.4	mA
I _{CC1}	Supply current, DC Signal	V _I = 0 V (ISO7820F) , V _I = V	(1607820)		0.9	1.3	mA
I _{CC2}	Supply current, DC Signal	$v_1 = 0 v (1307620F), v_1 = v$	CC1(ISO7620)		1.2	1.8	ШA
I _{CC1}	Supply current, DC Signal	$V_{I} = V_{CC1}$ (ISO7820F), $V_{I} = 0$	0.1/ (1007820)		3.2	4.6	mA
I _{CC2}	Supply current, DC Signal	$v_{\rm I} = v_{\rm CC1} (1307020F), v_{\rm I} = 0$	0 v (1307820)		1.3	2	ШA
I _{CC1}	- Supply current	1 Mbps			2.1	3	mA
I_{CC2}	Supply current		AC Signal: All channels		1.3	2	ma
I _{CC1}	Supply current	10 Mbps	AC Signal: All channels switching with square wave clock input;		2.1	3	mA
I _{CC2}					2.3	3.8	111/4
I _{CC1}		100 Mbps	C _L = 15 pF		2.5	3.2	mA
I _{CC2}	Supply current 100 Mbps				8.9	11.5	11/5

SLLSEP0A – JULY 2015–REVISED MARCH 2016

www.ti.com

STRUMENTS

ÈXAS

6.8 Electrical Characteristics, 2.5 V

 $V_{CC1} = V_{CC2} = 2.5 \text{ V} \pm 10\%$ (over recommended operating conditions unless otherwise noted)

	PARAMETER	TEST	CONDITIONS	MIN	TYP	MAX	UNIT
V _{OH}	High-level output voltage	I _{OH} = -1 mA; see Figure 7		$V_{CC2} - 0.4$	V _{CC2} - 0.2		V
V _{OL}	Low-level output voltage	I _{OL} = 1 mA; see Figure 7	_{OL} = 1 mA; see Figure 7			0.4	V
V _{I(HYS)}	Input threshold voltage hysteresis						V
I _{IH}	High-level input current	$V_{IH} = V_{CC1}$ at INx				10	μA
I _{IL}	Low-level input current	$V_{IL} = 0 V at INx$		-10			μΑ
CMTI	Common-mode transient immunity	$V_I = V_{CC1}$ or 0 V; see Figure 1	0	100			kV/µs
I _{CC1}	Supply current, Disable				0.8	1.3	
I _{CC2}	(ISO7820DWW and ISO7820FDWW only)	$EN2 = 0V, V_1 = 0 V (ISO7820)$	N2 = 0V, V ₁ = 0 V (ISO7820FDWW), V ₁ = V _{CC1} (ISO7820DWW)		0.2	0.4	mA
I _{CC1}	Supply current, Disable	END 01/11/11/1000000			3.2	4.6	
I _{CC2}	(ISO7820DWW and ISO7820FDWW only)	$EN2 = 0V, V_1 = V_{CC1} (ISO/82)$	0FDWW) , V _I = 0 V(ISO7820DWW)		0.2	0.4	mA
I _{CC1}	Supply surrent DC Signal		(1607820)		0.9	1.3	
I _{CC2}	Supply current, DC Signal	$V_{I} = 0 V (ISO7820F) , V_{I} = V_{C}$	_{C1} (ISO7820)		1.2	1.8	mA
I _{CC1}	Supply current, DC Signal	V _I = V _{CC1} (ISO7820F) , V _I = 0	\/ (ISO7820)		3.2	4.6	mA
I _{CC2}	Supply current, DC Signal	$v_{\rm I} = v_{\rm CC1} (1307020F), v_{\rm I} = 0$	v (ISC/820)		1.3	2	IIIA
I _{CC1}	Supply current	1 Mbps			2.1	3	mA
I _{CC2}	Supply current		AC Signal: All channels		1.3	2	IIIA
I _{CC1}	Supply current	10 Mbps	switching with square wave		2.1	3	mA
I _{CC2}			clock input; CL = 15 pF		1.8	2.7	ША
I _{CC1}	Supply current	100 Mbps	0L = 13 pi		2.4	3.2	mA
I _{CC2}		pply current 100 Mbps			7	9.1	IIIA

Copyright © 2015–2016, Texas Instruments Incorporated

6.9 Switching Characteristics, 5 V

 $V_{CC1} = V_{CC2} = 5 \text{ V} \pm 10\%$ (over recommended operating conditions unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} , t _{PHL}	Propagation delay time	Saa Figura 7	6	10.7	16	
PWD ⁽¹⁾	Pulse width distortion t _{PHL} - t _{PLH}	See Figure 7		0.6	4.6	ns
t _{sk(0)} (2)	Channel-to-channel output skew time				2.5	ns
t _{sk(pp)} ⁽³⁾	Part-to-part skew time				4.5	ns
t _r	Output signal rise time	Octo Firmer 7		2.4	3.9	
t _f	Output signal fall time	See Figure 7		2.4	3.9	ns
t _{PHZ}	Disable propagation delay, high-to-high impedance output for ISO7820DWW and ISO7820FDWW			12	20	ns
t _{PLZ}	Disable propagation delay, low-to-high impedance output for ISO7820DWW and ISO7820FDWW			12	20	ns
	Enable propagation delay, high impedance-to-high output for ISO7820DWW			10	20	ns
t _{PZH}	Enable propagation delay, high impedance-to-high output for ISO7820FDWW	See Figure 8		2	2.5	μs
	Enable propagation delay, high impedance-to-low output for ISO7820DWW			2	2.5	μs
t _{PZL}	Enable propagation delay, high impedance-to-low output for ISO7820FDWW			10	20	ns
t _{fs}	Default output delay time from input power loss	Measured from the time V_{CC} goes below 1.7 V. See Figure 9		0.2	9	μs
t _{ie}	Time interval error	2 ¹⁶ - 1 PRBS data at 100 Mbps		1		ns

(1) Also known as Pulse Skew.

(2) t_{sk(0)} is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads.

(3) t_{sk(pp)} is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads.

6.10 Switching Characteristics, 3.3 V

 $V_{CC1} = V_{CC2} = 3.3 \text{ V} \pm 10\%$ (over recommended operating conditions unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} , t _{PHL}	Propagation delay time	See Figure 7	6	10.8	16	
PWD ⁽¹⁾	Pulse width distortion $ t_{PHL} - t_{PLH} $	See Figure 7		0.7	4.7	ns
t _{sk(o)} ⁽²⁾	Channel-to-channel output skew time				2.2	ns
t _{sk(pp)} ⁽³⁾	Part-to-part skew time				4.5	
t _r	Output signal rise time	See Figure 7		1.3	3	ns
t _f	Output signal fall time	See Figure 7		1.3	3	
t _{PHZ}	Disable propagation delay, high-to-high impedance output for ISO7820DWW and ISO7820FDWW			17	32	ns
t _{PLZ}	Disable propagation delay, low-to-high impedance output for ISO7820DWW and ISO7820FDWW			17	32	ns
	Enable propagation delay, high impedance-to-high output for ISO7820DWW			17	32	ns
t _{PZH}	Enable propagation delay, high impedance-to-high output for ISO7820FDWW	- See Figure 8		2	2.5	μs
	Enable propagation delay, high impedance-to-low output for ISO7820DWW			2	2.5	μs
t _{P2L} Enable propagation delay, high impedance-to-low output for ISO7820FDWW				17	32	ns
t _{fs}	Default output delay time from input power loss	Measured from the time V_{CC} goes below 1.7 V. See Figure 9		0.2	9	μs
t _{ie}	Time interval error	2 ¹⁶ - 1 PRBS data at 100 Mbps		1		ns

(1) Also known as Pulse Skew.

(2) t_{sk(0)} is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads.

(3) t_{sk(pp)} is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads.

ISO7820, ISO7820F

SLLSEP0A – JULY 2015–REVISED MARCH 2016

www.ti.com

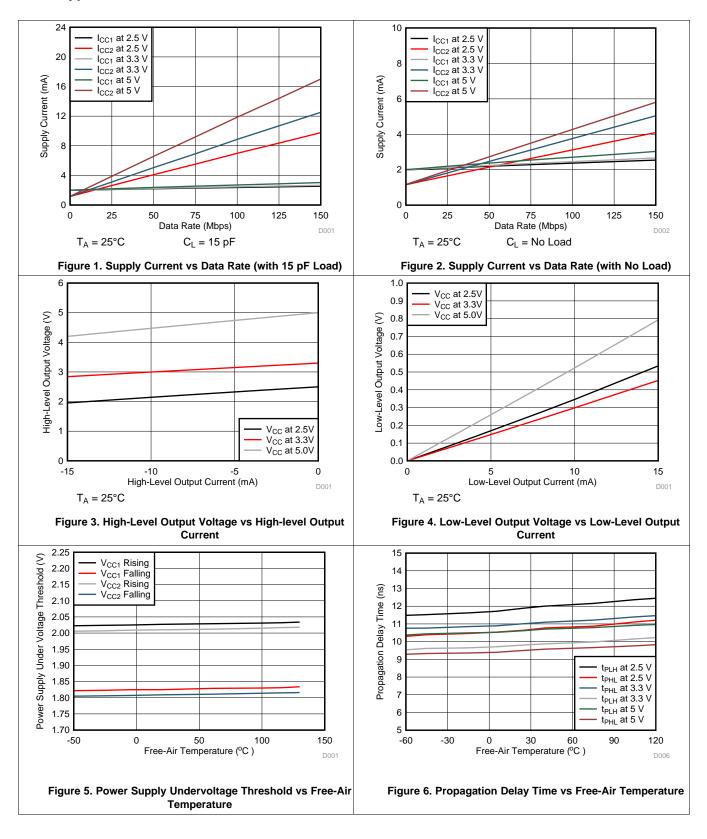
STRUMENTS

EXAS

6.11 Switching Characteristics, 2.5 V

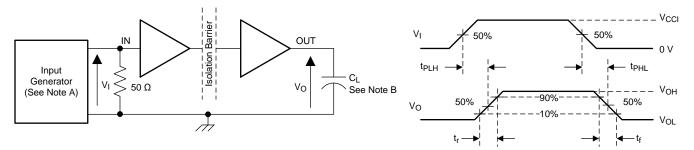
 $V_{CC1} = V_{CC2} = 2.5 \text{ V} \pm 10\%$ (over recommended operating conditions unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} , t _{PHL}	Propagation delay time	See Figure 7	7.5	11.7	17.5	
PWD ⁽¹⁾	Pulse width distortion t _{PHL} - t _{PLH}	See Figure 7		0.7	4.7	ns
t _{sk(o)} ⁽²⁾	Channel-to-channel output skew time				2.2	ns
t _{sk(pp)} ⁽³⁾	Part-to-part skew time				4.5	
t _r	Output signal rise time	See Figure 7		1.8	3.5	ns
t _f	Output signal fall time	See Figure 7		1.8	3.5	
t _{PHZ}	Disable propagation delay, high-to-high impedance output for ISO7820DWW and ISO7820FDWW			22	45	ns
PLZ	Disable propagation delay, low-to-high impedance output for ISO7820DWW and ISO7820FDWW			22	45	ns
	Enable propagation delay, high impedance-to-high output for ISO7820DWW	Octor Firmer 0		18	45	ns
PZH	Enable propagation delay, high impedance-to-high output for ISO7820FDWW	See Figure 8		2	2.5	μs
	Enable propagation delay, high impedance-to-low output for ISO7820DWW			2	2.5	μs
PZL	Enable propagation delay, high impedance-to-low output for ISO7820FDWW			18	45	ns
fs	Default output delay time from input power loss	Measured from the time V_{CC} goes below 1.7 V. See Figure 9		0.2	9	μs
ie	Time interval error	2 ¹⁶ - 1 PRBS data at 100 Mbps		1		ns

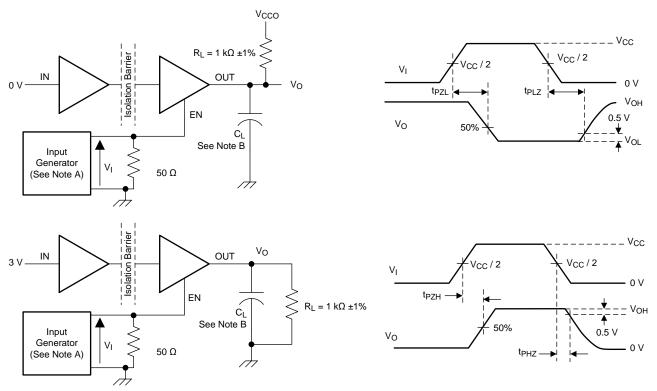

(1) Also known as Pulse Skew.

(2) t_{sk(0)} is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads.

(3) t_{sk(pp)} is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads.

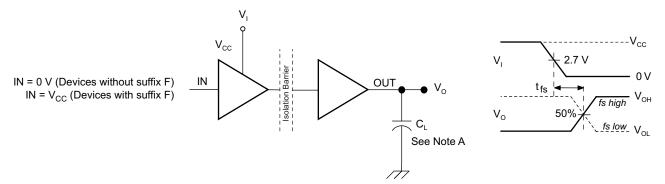


6.12 Typical Characteristics



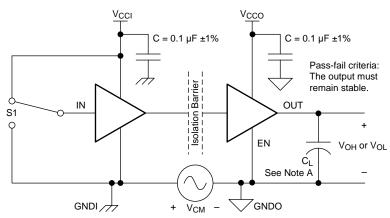
7 Parameter Measurement Information

- A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 50 kHz, 50% duty cycle, t_r \leq 3 ns, t_f \leq 3ns, Z_O = 50 Ω . At the input, 50 Ω resistor is required to terminate Input Generator signal. It is not needed in actual application.
- B. $C_L = 15 \text{ pF}$ and includes instrumentation and fixture capacitance within ±20%.



- A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 10 kHz, 50% duty cycle, $t_r \leq 3$ ns, $t_f \leq 3$ ns, $Z_0 = 50 \Omega$.
- B. $C_L = 15 \text{ pF}$ and includes instrumentation and fixture capacitance within ±20%.

Figure 8. Enable/Disable Propagation Delay Time Test Circuit and Waveform



A. $C_L = 15 \text{ pF}$ and includes instrumentation and fixture capacitance within ±20%.

Figure 9. Default Output Delay Time Test Circuit and Voltage Waveforms

A. $C_L = 15 \text{ pF}$ and includes instrumentation and fixture capacitance within ±20%.

Figure 10. Common-Mode Transient Immunity Test Circuit

8 Detailed Description

8.1 Overview

ISO7820 employs an ON-OFF Keying (OOK) modulation scheme to transmit the digital data across a silicon dioxide based isolation barrier. The transmitter sends a high frequency carrier across the barrier to represent one digital state and sends no signal to represent the other digital state. The receiver demodulates the signal after advanced signal conditioning and produces the output through a buffer stage. These devices also incorporates advanced circuit techniques to maximize the CMTI performance and minimize the radiated emissions due the high frequency carrier and IO buffer switching. The conceptual block diagram of a digital capacitive isolator, Figure 11, shows a functional block diagram of a typical channel.

8.2 Functional Block Diagram

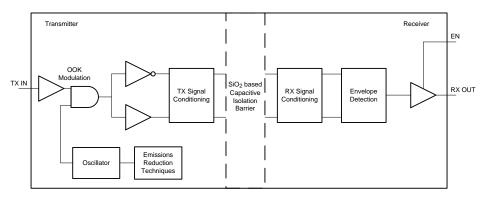


Figure 11. Conceptual Block Diagram of a Digital Capacitive Isolator

Also a conceptual detail of how the ON/OFF Keying scheme works is shown in Figure 12.

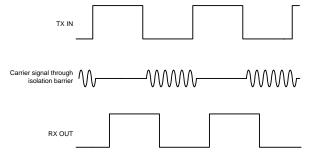


Figure 12. On-Off Keying (OOK) Based Modulation Scheme

8.3 Feature Description

ISO7820 is available in two channel configurations and default output state options to enable a variety of application uses.

PRODUCT	CHANNEL DIRECTION	RATED ISOLATION	MAX DATA RATE	DEFAULT OUTPUT
ISO7820	2 Forward, 0 Reverse	5700 V_{RMS} / 8000 V_{PK} $^{(1)}$	100 Mbps	High
ISO7820F	2 Forward, 0 Reverse	5700 V_{RMS} / 8000 V_{PK} $^{(1)}$	100 Mbps	Low

(1) See the *Regulatory Information* section for detailed isolation ratings.

8.3.1 High Voltage Feature Description

NOTE

This coupler is suitable for 'safe electrical insulation' only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.

Table 1. Package Insulation and Safety-Related Specifications (over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
CLR	External clearance	Shortest terminal-to-terminal distance	DW-16	8			m m
ULK		through air	DWW-16	14.5			mm
CPG	Fotossia	Shortest terminal-to-terminal distance	DW-16	8			m m
CPG	External creepage	across the package surface	DWW-16	14.5			mm
CTI	Comparative tracking index	DIN EN 60112 (VDE 0303-11); IEC 60	112; UL 746A	600			V
Р	lociation registered input to output ⁽¹⁾	V _{IO} = 500 V, T _A = 25°C		10 ¹²			Ω
R _{IO}	Isolation resistance, input to $output^{(1)}$	$V_{IO} = 500 \text{ V}, 100^{\circ}\text{C} \le \text{T}_{A} \le \text{max}$		10 ¹¹			Ω
C _{IO}	Barrier capacitance, input to output ⁽¹⁾	$V_{IO} = 0.4 \text{ x} \sin (2\pi ft), f = 1 \text{ MHz}$			1		pF
CI	Input capacitance ⁽²⁾	$V_{I} = V_{CC}/2 + 0.4 \text{ x} \sin (2\pi ft), f = 1 \text{ MHz}$, V _{CC} = 5 V		2		pF

(1) All pins on each side of the barrier tied together creating a two-terminal device.

(2) Measured from input pin to ground.

NOTE

Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed-circuit board do not reduce this distance.

Creepage and clearance on a printed-circuit board become equal in certain cases. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications.

ISO7820, ISO7820F SLLSEP0A – JULY 2015 – REVISED MARCH 2016

www.ti.com

STRUMENTS

ÈXAS

Table 2. Insulation Characteristics

	PARAMETER	TEST CONDITIONS	SPECIF	CATION	UNIT
			DW	DWW	
DTI	Distance through the insulation	Minimum internal gap (internal clearance)	21	21	μm
V	Maximum working isolation voltage	Time dependent dielectric breekdeure (TDDP) teet	1500	2000	V _{RMS}
V _{IOWM}	Maximum working isolation voltage	Time dependent dielectric breakdown (TDDB) test	2121	2828	V _{DC}
DIN V	VDE V 0884-10 (VDE V 0884-10):200	06-12			
V _{IOTM}	Maximum transient isolation voltage	V _{TEST} = V _{IOTM} t = 60 sec (qualification) t= 1 sec (100% production)	8000	8000	V _{PK}
V _{IOSM}	Maximum surge isolation voltage	Test method per IEC 60065, 1.2/50 μ s waveform, V _{TEST} = 1.6 x V _{IOSM} = 12800 V _{PK} ⁽¹⁾ (qualification)	8000	8000	V _{PK}
V _{IORM}	Maximum repetitive peak isolation voltage		2121	2828	V _{PK}
		Method a, After Input/Output safety test subgroup 2/3, $V_{PR} = V_{IORM} \times 1.2$, t = 10 s, Partial discharge < 5 pC	2545	3394	
V _{PR}	Input-to-output test voltage	Method a, After environmental tests subgroup 1, $V_{PR} = V_{IORM} \times 1.6$, t = 10 s, Partial Discharge < 5 pC	3394	4525	V _{PK}
		Method b1,After environmental tests subgroup 1, $V_{PR} = V_{IORM} \times 1.875$, t = 1 s (100% Production test) Partial discharge < 5 pC	3977	5303	
R_S	Isolation resistance	$V_{IO} = 500 \text{ V at } T_{S}$	>10 ⁹	>10 ⁹	Ω
	Pollution degree		2	2	
	Climatic category		55/125/21	55/125/21	
UL 157	7				
V _{ISO}	Withstanding isolation voltage	V_{TEST} = V_{ISO} = 5700 $V_{RMS},$ t = 60 sec (qualification); V_{TEST} = 1.2 x V_{ISO} = 6840 V_{RMS} , t = 1 sec (100% production)	5700	5700	V _{RMS}

(1) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.

Table 3. IEC 60664-1 Ratings Table

PARAMETER		TEST CONDITIONS	SPECIFICATION
Material group			I
	DW/ no sko no	Rated mains voltage ≤ 600 V _{RMS}	I–IV
Overvoltage category / Installation classification	DW package	Rated mains voltage ≤ 1000 V _{RMS}	I–III
	DWW package	Rated mains voltage ≤ 1000 V _{RMS}	I–IV

8.3.1.1 Regulatory Information

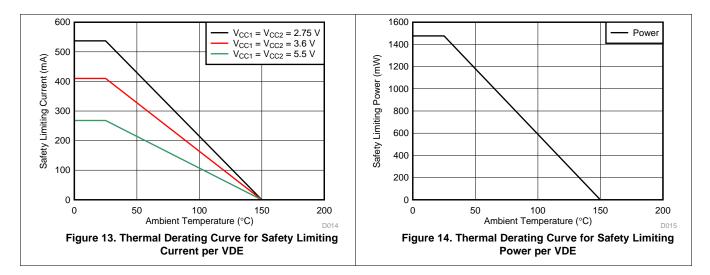
DW package certifications are complete; DWW package certifications completed for UL and TUV and planned for VDE, CSA, and CQC.

VDE	CSA	UL	CQC	TUV
Certified according to DIN V VDE V 0884-10 (VDE V 0884-10):2006- 12 and DIN EN 60950-1 (VDE 0805 Teil 1):2011- 01	Approved under CSA Component Acceptance Notice 5A, IEC 60950-1 and IEC 60601-1	Recognized under UL 1577 Component Recognition Program	Certified according to GB 4943.1-2011	Certified according to EN 61010-1:2010 (3rd Ed) and EN 60950-1:2006/A11:2009/ A1:2010/A12:2011/A2:2013
Reinforced insulation Maximum transient isolation voltage, 8000 V _{PK} ; Maximum repetitive peak isolation voltage, 2121 V _{PK} (DW), 2828 V _{PK} (DWW); Maximum surge isolation voltage, 8000 V _{PK}	Reinforced insulation per CSA 60950-1-07+A1+A2 and IEC 60950-1 2nd Ed., 800 V_{RMS} (DW package) and 1450 V_{RMS} (DWW package) max working voltage (pollution degree 2, material group I); 2 MOPP (Means of Patient Protection) per CSA 60601-1:14 and IEC 60601-1 Ed. 3.1, 250 V_{RMS} (354 V_{PK}) max working voltage (DW package)	Single protection, 5700 V _{RMS}	Reinforced Insulation, Altitude ≤ 5000 m, Tropical Climate, 250 V _{RMS} maximum working voltage	$\begin{array}{c} 5700 \ V_{RMS} \ Reinforced \ insulation \\ per \ EN \ 61010-1:2010 \ (3rd \ Ed) \\ up \ to \ working \ voltage \ of \ 600 \\ V_{RMS} \ (DW \ package) \ and \ 1000 \\ V_{RMS} \ (DWW \ package) \end{array}$
Certificate number: 40040142	Master contract number: 220991	File number: E181974	Certificate number: CQC15001121716	Client ID number: 77311

Table 4. Regulatory Information

ISO7820, ISO7820F

SLLSEP0A – JULY 2015–REVISED MARCH 2016


8.3.1.2 Safety Limiting Values

Safety limiting intends to prevent potential damage to the isolation barrier upon failure of input or output circuitry. A failure of the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat the die and damage the isolation barrier potentially leading to secondary system failures.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Safety input, output, or supply		$R_{\theta JA} = 84.7^{\circ}C/W, V_{I} = 5.5 V, T_{J} = 150^{\circ}C, T_{A} = 25^{\circ}C$			268	
I _S	current for DW-16 package	$R_{\theta JA} = 84.7^{\circ}C/W, V_I = 3.6 V, T_J = 150^{\circ}C, T_A = 25^{\circ}C$			410	mA
	and DWW-16 Packages	$R_{\theta JA} = 84.7^{\circ}C/W, V_{I} = 2.75 V, T_{J} = 150^{\circ}C, T_{A} = 25^{\circ}C$			537	
P _S	Safety input, output, or total power	$R_{\theta JA} = 84.7^{\circ}C/W, T_{J} = 150^{\circ}C, T_{A} = 25^{\circ}C$			1476	mW
T _S	Maximum safety temperature				150	°C

Table 5. Safety Limiting

The maximum safety temperature is the maximum junction temperature specified for the device. The power dissipation and junction-to-air thermal impedance of the device installed in the application hardware determines the junction temperature. The assumed junction-to-air thermal resistance in the is that of a device installed on a High-K test board for Leaded Surface Mount Packages. The power is the recommended maximum input voltage times the current. The junction temperature is then the ambient temperature plus the power times the junction-to-air thermal resistance.

8.4 Device Functional Modes

ISO7820 functional modes are shown in Table 6.

V _{CCI}	V _{cco}	INPUT (INx) ⁽²⁾	OUTPUT ENABLE (EN2) (DWW Package Only)	OUTPUT (OUTx)	COMMENTS
		Н	H or open	н	Normal Operation:
		L	H or open	L	A channel output assumes the logic state of its input.
PU	PU	Open	H or open	Default	Default mode: When INx is open, the corresponding channel output goes to its default high logic state. Default= High for ISO7820 and Low for ISO7820F.
Х	PU	х	L	Z	A low value of Output Enable causes the outputs to be high- impedance.
PD	PU	х	H or open	Default	Default mode: When V_{CCI} is unpowered, a channel output assumes the logic state based on the selected default option.Default= High for ISO7820 and Low for ISO7820F. When V_{CCI} transitions from unpowered to powered-up, a channel output assumes the logic state of its input. When V_{CCI} transitions from powered-up to unpowered, channel output assumes the selected default state.
х	PD	Х	х	Undetermined	When V_{CCO} is unpowered, a channel output is undetermined ⁽³⁾ . When V_{CCO} transitions from unpowered to powered-up, a channel output assumes the logic state of its input

Table 6. ISO7820 Function Table⁽¹⁾

V_{CCI} = Input-side V_{CC}; V_{CCO} = Output-side V_{CC}; PU = Powered up (V_{CC} ≥ 2.25 V); PD = Powered down (V_{CC} ≤ 1.7 V); X = Irrelevant; H = High level; L = Low level; Z = High impedance
 A strongly driven input signal can weakly power the floating V_{CC} via an internal protection diode and cause undetermined output.
 The outputs are in undetermined state when 1.7 V < V_{CCI}, V_{CCO} < 2.25 V.

ISO7820, ISO7820F

SLLSEP0A – JULY 2015–REVISED MARCH 2016

www.ti.com

8.4.1 Device I/O Schematics

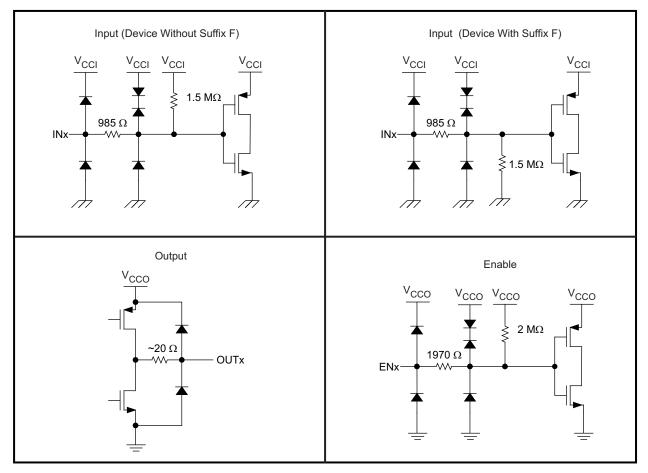


Figure 15. Device I/O Schematics

9 Applications and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The ISO7820 is a high-performance, dual-channel digital isolator with 5.7 kV_{RMS} isolation voltage per UL 1577. It utilizes single-ended CMOS-logic switching technology. Its supply voltage range is from 2.25 V to 5.5 V for both supplies, V_{CC1} and V_{CC2} . When designing with digital isolators, it is important to keep in mind that due to the single-ended design structure, digital isolators do not conform to any specific interface standard and are only intended for isolating single-ended CMOS or TTL digital signal lines. The isolator is typically placed between the data controller (that is, μ C or UART), and a data converter or a line transceiver, regardless of the interface type or standard.

9.2 Typical Application

ISO7820F can be used to isolate power MOSFETs from sensitive logic circuitry in Switch Mode Power Supplies (SMPS) as shown below.

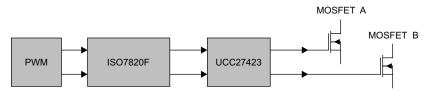


Figure 16. Isolated Switch Mode Power Supply

9.2.1 Design Requirements

For the ISO7820, use the parameters shown in Table 7.

Table 7. Design Parameters

PARAMETER	VALUE
Supply voltage	2.25 V to 5.5 V
Decoupling capacitor between V_{CC1} and GND1	0.1 µF
Decoupling capacitor from V _{CC2} and GND2	0.1 µF

9.2.2 Detailed Design Procedure

SLLSEP0A - JULY 2015-REVISED MARCH 2016

Unlike optocouplers, which need external components to improve performance, provide bias, or limit current, ISO7820 only needs two external bypass capacitors to operate.

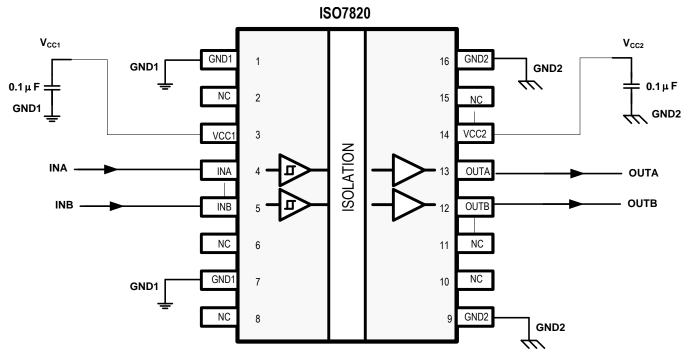


Figure 17. Typical ISO7820 Circuit Hook-up

9.2.2.1 Electromagnetic Compatibility (EMC) Considerations

Many applications in harsh industrial environment are sensitive to disturbances such as electrostatic discharge (ESD), electrical fast transient (EFT), surge and electromagnetic emissions. These electromagnetic disturbances are regulated by international standards such as IEC 61000-4-x and CISPR 22. Although system-level performance and reliability depends, to a large extent, on the application board design and layout, the ISO7820 incorporate many chip-level design improvements for overall system robustness. Some of these improvements include:

- Robust ESD protection for input and output signal pins and inter-chip bond pads.
- Low-resistance connectivity of ESD cells to supply and ground pins.
- Enhanced performance of high voltage isolation capacitor for better tolerance of ESD, EFT and surge events.
- Bigger on-chip decoupling capacitors to bypass undesirable high energy signals through a low impedance path.
- PMOS and NMOS devices isolated from each other by using guard rings to avoid triggering of parasitic SCRs.
- Reduced common mode currents across the isolation barrier by ensuring purely differential internal operation.

ISO7820, ISO7820F SLLSEP0A – JULY 2015–REVISED MARCH 2016

www.ti.com

9.2.3 Application Performance Curve

Typical eye diagram of ISO7820 indicate low jitter and wide open eye at the maximum data rate of 100 Mbps.

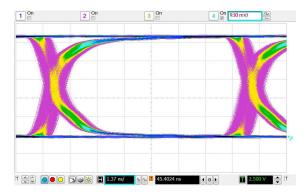


Figure 18. Eye Diagram at 100 Mbps PRBS, 5 V and 25°C

10 Power Supply Recommendations

To ensure reliable operation at all data rates and supply voltages, a 0.1 μ F bypass capacitor is recommended at input and output supply pins (V_{CC1} and V_{CC2}). The capacitors should be placed as close to the supply pins as possible. If only a single primary-side power supply is available in an application, isolated power can be generated for the secondary-side with the help of a transformer driver such as Texas Instruments' SN6501. For such applications, detailed power supply design and transformer selection recommendations are available in SN6501 datasheet (SLLSEA0).

11 Layout

11.1 PCB Material

For digital circuit boards operating below 150 Mbps, (or rise and fall times higher than 1 ns), and trace lengths of up to 10 inches, use standard FR-4 epoxy-glass as PCB material. FR-4 (Flame Retardant 4) meets the requirements of Underwriters Laboratories UL94-V0, and is preferred over cheaper alternatives due to its lower dielectric losses at high frequencies, less moisture absorption, greater strength and stiffness, and its self-extinguishing flammability-characteristics.

11.2 Layout Guidelines

A minimum of four layers is required to accomplish a low EMI PCB design (see Figure 19). Layer stacking should be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and low-frequency signal layer.

- Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits of the data link.
- Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for transmission line interconnects and provides an excellent low-inductance path for the return current flow.
- Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of approximately 100 pF/in².
- Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links usually have margin to tolerate discontinuities such as vias.

If an additional supply voltage plane or signal layer is needed, add a second power / ground plane system to the stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also the power and ground plane of each power system can be placed closer together, thus increasing the high-frequency bypass capacitance significantly.

For detailed layout recommendations, see Application Note SLLA284, Digital Isolator Design Guide.

11.3 Layout Example

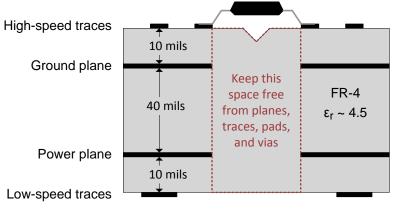


Figure 19. Layout Example

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

See the Isolation Glossary (SLLA353)

12.2 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 8, Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY			
ISO7820	Click here	Click here	Click here	Click here	Click here			
ISO7820F	Click here	Click here	Click here	Click here	Click here			

.

12.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.4 Trademarks

E2E is a trademark of Texas Instruments.

12.5 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.6 Glossary

SLYZ022 — TI Glossary.

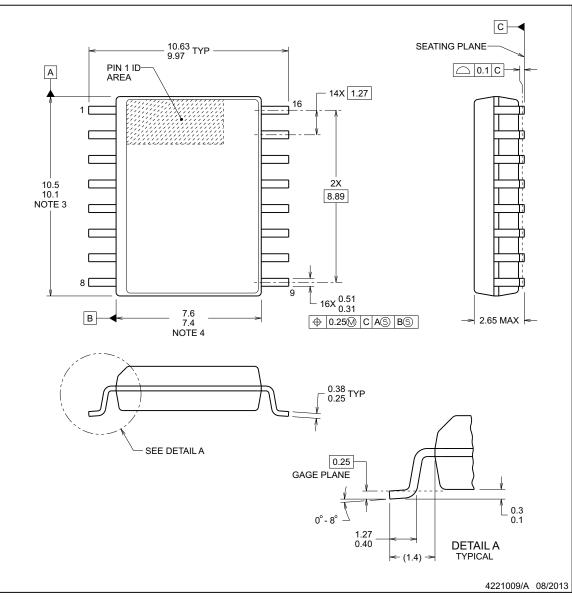
This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

EXAS **ISTRUMENTS**

www.ti.com

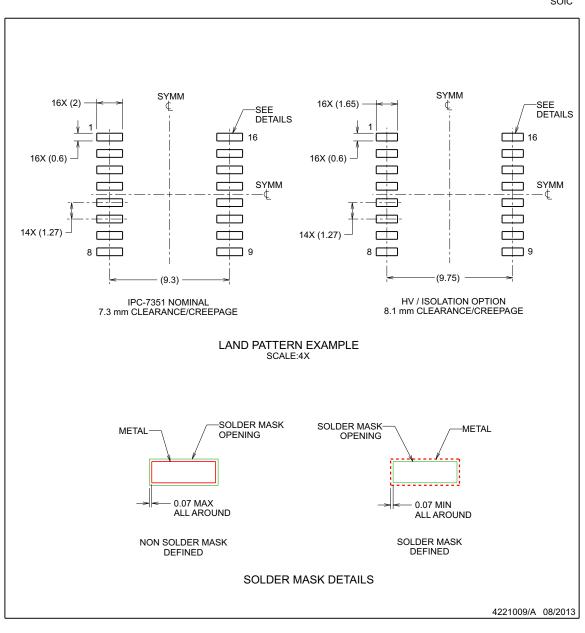

PACKAGE OUTLINE

DW0016B

SOIC

NOTES:

- All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm, per side. 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.
- 5. Reference JEDEC registration MO-013, variation AA.


www.ti.com

EXAMPLE BOARD LAYOUT

DW0016B

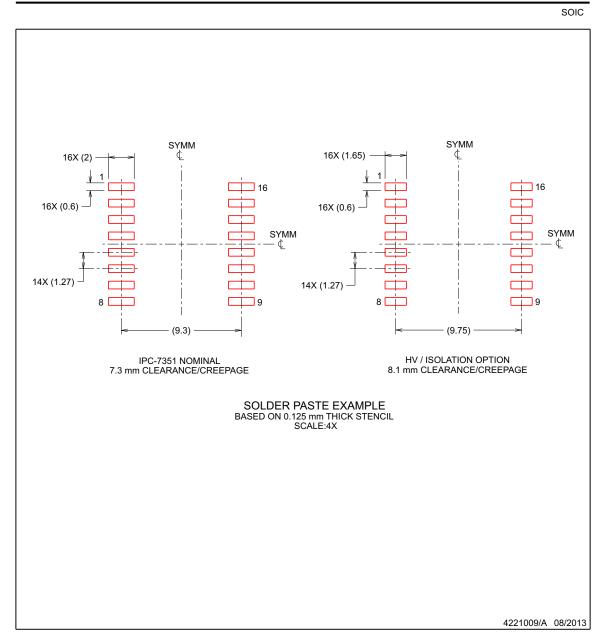
SOIC - 2.65 mm max height

NOTES: (continued)

Publication IPC-7351 may have alternate designs.
 Solder mask tolerances between and around signal pads can vary based on board fabrication site.

www.ti.com

SOIC


NSTRUMENTS

EXAS

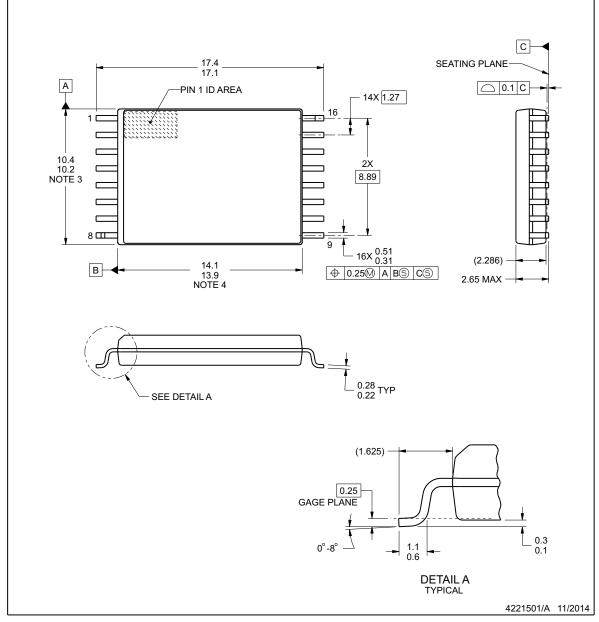
EXAMPLE STENCIL DESIGN

DW0016B

SOIC - 2.65 mm max height

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design.


www.ti.com

PACKAGE OUTLINE

SOIC - 2.65 mm max height

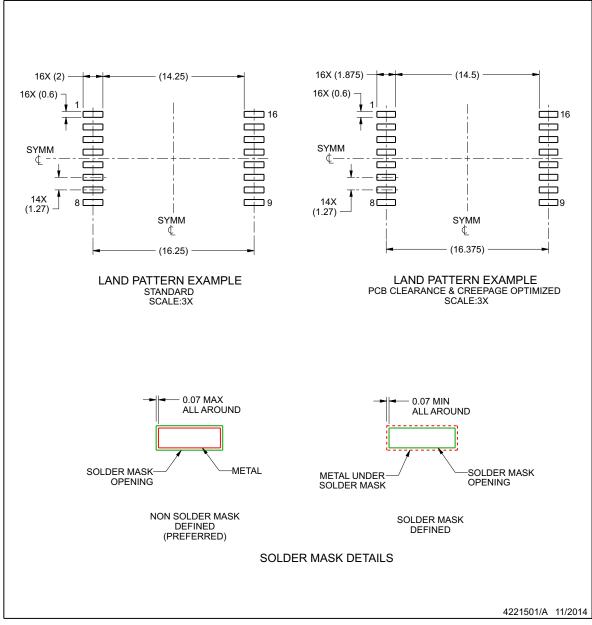
PLASTIC SMALL OUTLINE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0,15 mm per side.
- 4. This dimension does not include interlead flash.

www.ti.com

www.ti.com

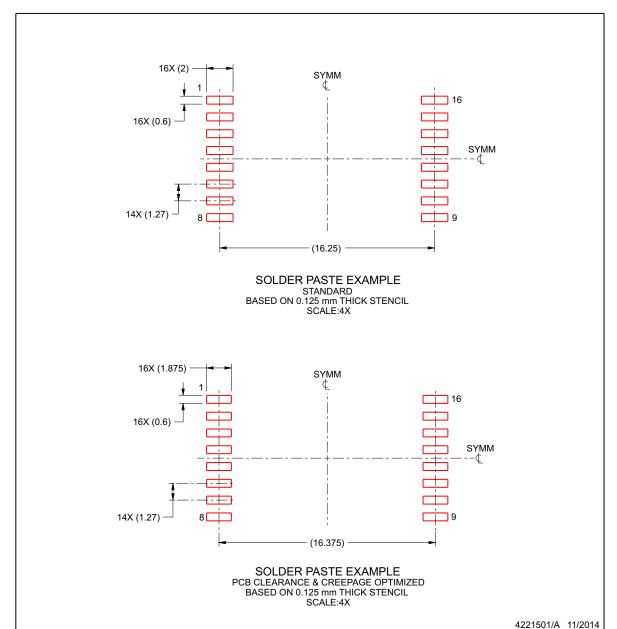

DWW0016A

EXAMPLE BOARD LAYOUT

DWW0016A

SOIC - 2.65 mm max height PLASTIC SMALL OUTLINE

NOTES: (continued)


5. Publication IPC-7351 may have alternate designs.6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

www.ti.com

EXAMPLE STENCIL DESIGN

SOIC - 2.65 mm max height

PLASTIC SMALL OUTLINE

NOTES: (continued)

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

8. Board assembly site may have different recommendations for stencil design.

www.ti.com

www.ti.com

DWW0016A

2-Sep-2016

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing		Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
ISO7820DW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-55 to 125	ISO7820	Samples
ISO7820DWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-55 to 125	ISO7820	Samples
ISO7820DWW	ACTIVE	SOIC	DWW	16	45	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-55 to 125	ISO7820	Samples
ISO7820DWWR	ACTIVE	SOIC	DWW	16	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-55 to 125	ISO7820	Samples
ISO7820FDW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-55 to 125	ISO7820F	Samples
ISO7820FDWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-55 to 125	ISO7820F	Samples
ISO7820FDWW	ACTIVE	SOIC	DWW	16	45	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-55 to 125	ISO7820F	Samples
ISO7820FDWWR	ACTIVE	SOIC	DWW	16	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-55 to 125	ISO7820F	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

2-Sep-2016

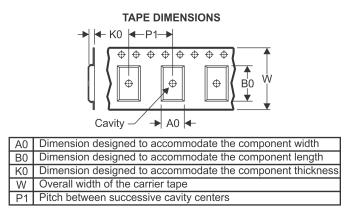
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

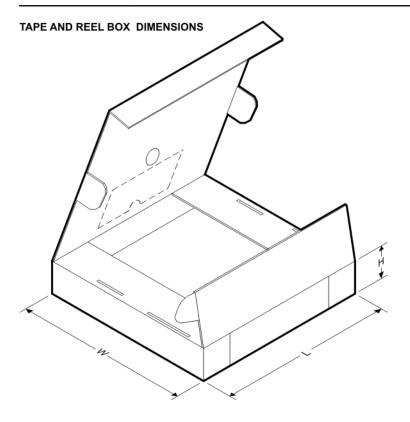

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	•	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ISO7820DWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
ISO7820FDWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
ISO7820FDWWR	SOIC	DWW	16	1000	330.0	24.4	18.0	10.0	3.0	20.0	24.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

28-Jun-2016

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ISO7820DWR	SOIC	DW	16	2000	367.0	367.0	38.0
ISO7820FDWR	SOIC	DW	16	2000	367.0	367.0	38.0
ISO7820FDWWR	SOIC	DWW	16	1000	367.0	367.0	45.0

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated