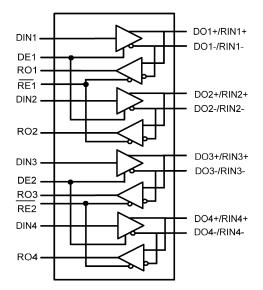


DS92LV040A 4 Channel Bus LVDS Transceiver

Check for Samples: DS92LV040A

FEATURES

- Bus LVDS Signaling
- Propagation Delay: Driver 2.3ns max, Receiver 3.2ns max
- Low power CMOS Design
- 100% Transition Time 1ns Driver Typical, 1.3ns Receiver Typical
- High Signaling Rate Capability (above 155 Mbps)
- 0.1V to 2.3V Common Mode Range for V_{ID} = 200mV
- 70 mV Receiver Sensitivity
- Supports Open and Terminated Failsafe on Port Pins
- 3.3V Operation
- Glitch Free Power up/down (Driver & Receiver Disabled)
- Light Bus Loading (5 pF typical) per Bus LVDS Load
- Designed for Double Termination Applications
- Balanced Output Impedance
- Product Offered in 44 Pin WQFN Package
- High Impedance Bus Pins on Power Off (V_{CC} = 0V)


DESCRIPTION

The DS92LV040A is one in a series of Bus LVDS transceivers designed specifically for high speed, low power backplane or cable interfaces. The device operates from a single 3.3V power supply and includes four differential line drivers and four receivers. To minimize bus loading, the driver outputs and receiver inputs are internally connected. The device also features a flow through pin out which allows easy PCB routing for short stubs between its pins and the connector.

The driver translates 3V LVTTL levels (single-ended) to differential Bus LVDS (BLVDS) output levels. This allows for high speed operation while consuming minimal power and reducing EMI. In addition, the differential signaling provides common mode noise rejection greater than ±1V.

The receiver threshold is less than +0/-70 mV. The receiver translates the differential Bus LVDS to standard (LVTTL/LVCMOS) levels. (See the Applications Information Section for more details.)

Simplified Functional Diagram

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings (1)(2)(3)

	4.0V
(DE, RE)	-0.3V to (V _{CC} +0.3V)
	-0.3V to (V _{CC} +0.3V)
(R _{OUT})	-0.3V to (V _{CC} +0.3V)
	-0.3V to +3.9V
	>4kV
	>250V
WQFN ⁽⁶⁾	4.8 W
Derate WQFN Package	38.8mW/°C
$\theta_{ja}^{(6)}$	25.8°C/W
$\theta_{\rm jc}$	25.5°C/W
	−65°C to +150°C
	260°C
	WQFN ⁽⁶⁾ Derate WQFN Package θ _{ja} ⁽⁶⁾

- If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and
- All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified except V_{OD} , ΔV_{OD} and V_{ID} .
- "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be ensured. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device
- All typicals are given for V_{CC} = +3.3V and T_A = +25°C, unless otherwise stated. ESD Rating: HBM (1.5 k Ω , 100 pF) > 4 kV EIAJ (0 Ω , 200 pF) > 250.
- Package must be mounted to pc board in accordance with AN-1187 (SNOA401) to achieve thermals.

Recommended Operating Conditions

		Min	Max	Units
Supply Voltage (V _{CC})		3.0	3.6	V
Receiver Input Voltage		0.0	2.4	V
Operating Free Air Temperature	-40 +85			
Slowest Input Edge Rate	(20% to 80%) ⁽¹⁾			Δt/ΔV
	Data		1.0	ns/V
	Control		3.0	ns/V

(1) Generator waveforms for all tests unless otherwise specified: f = 25 MHz, $Z_0 = 50\Omega$, t_r , $t_f = <1.0$ ns (0%–100%). To ensure fastest propagation delay and minimum skew, data input edge rates should be equal to or faster than 1ns/V; control signals equal to or faster than 3ns/V. In general, the faster the input edge rate, the better the AC performance.

Product Folder Links: DS92LV040A

DC Electrical Characteristics(1)

Over recommended operating supply voltage and temperature ranges unless otherwise specified. (2)(3)

Symbol	Parameter	Condit	Pin	Min	Тур	Max	Unit s	
V _{OD}	Output Differential Voltage	$R_L = 27\Omega$, Figure 1		DO+/RI+,	200	300	460	mV
ΔV_{OD}	V _{OD} Magnitude Change			DO-/RI-		5	27	mV
Vos	Offset Voltage				1.1	1.3	1.5	V
ΔV _{OS}	Offset Magnitude Change					5	10	mV
V _{OHD}	Driver Output High Voltage	$R_L = 27\Omega$				1.4	1.65	V
V _{OLD}	Driver Output Low Voltage	$R_L = 27\Omega$			0.95	1.1		V
I _{OSD}	Driver Output Short Circuit Current ⁽⁴⁾	$V_{OD} = 0V$, DE = V_{CC} , shorted together	Driver outputs			30	45	mA
V _{OHR}	Receiver Voltage Output	V _{ID} = +300 mV	I _{OH} = −4 mA	R _{OUT}	V _{CC} -0.2			V
	High ⁽⁵⁾	Inputs Open			V _{CC} -0.2			V
		Inputs Terminated, $R_L = 27\Omega$			V _{CC} -0.2			V
V _{OLR}	Receiver Voltage Output Low	$I_{OL} = 4.0 \text{ mA}, V_{ID} = -3$	00 mV			0.05	0.100	V
I _{OD}	Receiver Output Dynamic	$V_{ID} = 300$ mV, $V_{OUT} =$	V _{CC} -1.0V		-50	33		mA
	Current ⁽⁴⁾	$V_{ID} = -300$ mV, $V_{OUT} =$	= 1.0V			36	60	mA
V _{TH}	Input Threshold High (6)	DE = 0V, Over commo	on mode range	DO+/RI+,		-40	0	mV
V _{TL}	Input Threshold Low ⁽⁶⁾			DO-/RI-	-70	-40		mV
V_{CMR}	Receiver Common Mode Range				V _{ID} /2		2.4 - V _{ID} /2	V
I _{IN}	Input Current	DE = 0V, \overline{RE} = 2.4V, V _{IN} = +2.4V or 0V			-20	±1	+20	μA
		$V_{CC} = 0V, V_{IN} = +2.4V$	or 0V		-20	±1	+20	μA
V _{IH}	Minimum Input High Voltage			D _{IN} , DE, RE	2.0		V _{CC}	V
V _{IL}	Maximum Input Low Voltage				GND		0.8	V
I _{IH}	Input High Current	$V_{IN} = V_{CC}$ or 2.4V			-20	±2.5	+20	μA
I _{IL}	Input Low Current	$V_{IN} = GND \text{ or } 0.4V$			-20	±2.5	+20	μΑ
V_{CL}	Input Diode Clamp Voltage	I _{CLAMP} = −18 mA			− 1.5	-0.8		V
I _{CCD}	Power Supply Current Drivers Enabled, Receivers Disabled	No Load, DE = \overline{RE} = \ DIN = V_{CC} or GND	/ _{CC} ,	V _{CC}		20	40	mA
I _{CCR}	Power Supply Current Drivers Disabled, Receivers Enabled	$DE = \overline{RE} = 0V, V_{ID} = \pm 0$	±300mV			27	40	mA
I _{CCZ}	Power Supply Current, Drivers and Receivers TRI- STATE	$ DE = 0V; \overline{RE} = V_{CC}, $ $DIN = V_{CC} \text{ or GND} $				28	40	mA
I _{CC}	Power Supply Current, Drivers and Receivers Enabled	$ \begin{aligned} \text{DE} &= \text{V}_{\text{CC}}; \ \overline{\text{RE}} = 0\text{V}, \\ \text{DIN} &= \text{V}_{\text{CC}} \ \text{or GND}, \\ \text{R}_{\text{L}} &= 27\Omega \end{aligned} $				70	100	mA
l _{OFF}	Power Off Leakage Current	$V_{CC} = 0V \text{ or } OPEN,$ D_{IN} , DE , $\overline{RE} = 0V \text{ or } C$ $V_{APPLIED} = 3.6V \text{ (Port)}$	PEN, Pins)	DO+/RI+, DO-/RI-	-20		+20	μА
C _{OUTPUT}	Capacitance @ Bus Pins			DO+/RI+, DO-/RI-		5		pF
COUTPUT	Capacitance @ R _{OUT}			R _{OUT}		5		pF

- (1) The DS92LV040A functions within datasheet specification when a resistive load is applied to the driver outputs.
- (2) All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified except V_{OD} , ΔV_{OD} and V_{ID} . All typicals are given for V_{CC} = +3.3V and T_A = +25°C, unless otherwise stated. Only one output at a time should be shorted, do not exceed maximum package power dissipation capacity.

- V_{OH} fail-safe terminated test performed with 27Ω connected between RI+ and RI- inputs. No external voltage is applied.
- Propagation delays, transition times, and receiver threshold are ensured by design and characterization.

AC Electrical Characteristics

Over recommended operating supply voltage and temperature ranges unless otherwise specified. (1)

Symbol	Parameter	Conditions ⁽²⁾	Min	Тур	Max	Unit s
DIFFERENT	IAL DRIVER TIMING REQUIREMENTS	1				
t _{PHLD}	Differential Prop. Delay High to Low ⁽³⁾	$R_L = 27\Omega$,	1.0	1.5	2.3	ns
t _{PLHD}	Differential Prop. Delay Low to High ⁽³⁾	Figure 2, Figure 3, $C_1 = 10 \text{ pF}$	1.0	1.5	2.3	ns
t _{SKD1}	Differential Skew t _{PHLD} -t _{PLHD} (duty cycle) ⁽⁴⁾			80	160	ps
t _{CCSK}	Channel to Channel Skew (all 4 channels) (3)(5)			220	400	ps
t _{TLH}	Transition Time Low to High (20% to 80%)		0.4	0.75	1.3	ns
t _{THL}	Transition Time High to Low (80% to 20%)		0.4	0.75	1.3	ns
t _{PHZ}	Disable Time High to Z	$R_L = 27\Omega$,		5.0	10	ns
t _{PLZ}	Disable Time Low to Z	Figure 4, Figure 5, C _I = 10 pF		5.0	10	ns
t _{PZH}	Enable Time Z to High	OL = 10 pi		5.0	10	ns
t _{PZL}	Enable Time Z to Low			5.0	10	ns
f _{MAXD}	Ensured operation per data sheet up to the Min. Duty Cycle 45/55%,Transition time ≤ 25% of period (3)		85	125		MHz
DIFFERENT	IAL RECEIVER TIMING REQUIREMENTS					
t _{PHLDR}	Differential Prop. Delay High to Low ⁽³⁾	Figure 6, Figure 7,	1.6	2.4	3.2	ns
t _{PLHDR}	Differential Prop Delay Low to High ⁽³⁾	C _L = 15 pF	1.6	2.4	3.2	ns
t _{SDK1R}	Differential Skew t _{PHLD} -t _{PLHD} (duty cycle) ⁽⁴⁾⁽³⁾			85	160	ps
t _{CCSKR}	Channel to Channel Skew (all 4 channels) (3) (5)			140	300	ps
t _{TLHR}	Transition Time Low to High (10% to 90%) ⁽³⁾		0.850	1.250	2.0	ns
t _{THLR}	Transition Time High to Low (90% to 10%) ⁽³⁾		0.850	1.030	2.0	ns
t _{PHZ}	Disable Time High to Z	$R_L = 500\Omega$,		3.0	10	ns
t _{PLZ}	Disable Time Low to Z	Figure 8, Figure 9, $C_1 = 15 \text{ pF}$		3.0	10	ns
t _{PZH}	Enable Time Z to High	OL - 10 Pi		3.0	10	ns
t _{PZL}	Enable Time Z to Low			3.0	10	ns
f _{MAXR}	Ensured operation per data sheet up to the Min. Duty Cycle 45/55%,Transition time ≤ 25% of period (3)		85	125		MHz

⁽¹⁾ Generator waveforms for all tests unless otherwise specified: f = 25 MHz, $Z_O = 50\Omega$, t_r , $t_f = <1.0$ ns (0%–100%). To ensure fastest propagation delay and minimum skew, data input edge rates should be equal to or faster than 1ns/V; control signals equal to or faster than 3ns/V. In general, the faster the input edge rate, the better the AC performance. C_L includes probe and fixture capacitance.

Propagation delays, transition times, and receiver threshold are ensured by design and characterization.

t_{SKD1} |t_{PHLD}-t_{PLHD}| is the worst case pulse skew (measure of duty cycle) over recommended operation conditions. Chip to Chip skew is the difference in differential propagation delay between any channels of any devices, either edge.

APPLICATIONS INFORMATION

General application guidelines and hints may be found in the following application notes: AN-808 (SNLA028), AN-977 (SNLA166), AN-971 (SNLA165), and AN-903 (SNLA034).

BLVDS drivers and receivers are intended to be used in a differential backplane configuration. Transceivers or receivers are connected to the driver through a balanced media such as differential PCB traces. Typically, the characteristic differential impedance of the media (Zo) is in the range of 50Ω to 100Ω . Two termination resistors of $Zo\Omega$ each are placed at the ends of the transmission line backplane. The termination resistor converts the current sourced by the driver into a voltage that is detected by the receiver. The effects of mid-stream connector(s), cable stub(s), and other impedance discontinuity as well as ground shifting, noise margin limits, and total termination loading must be taken into account.

The DS92LV040A differential line driver is a balanced current mode design. A current mode driver, generally speaking has a high output impedance (100 ohms) and supplies a reasonably constant current for a range of loads (a voltage mode driver on the other hand supplies a constant voltage for a range of loads). The current is switched through the load in one direction to produce a logic state and in the other direction to produce the other logic state. The output current is typically 12 mA. The current changes as a function of load resistor. The current mode requires (as discussed above) that a resistive termination be employed to terminate the signal and to complete the loop. Unterminated configurations are not allowed. The 12 mA loop current will develop a differential voltage of about 300mV across a 27 Ω (double terminated 54 Ω differential transmission backplane) effective resistance, which the receiver detects with a 230 mV minimum differential noise margin neglecting resistive line losses (driven signal minus receiver threshold (300 mV – 70 mV = 230 mV)). The signal is centered around +1.2V (Driver Offset, VOS) with respect to ground. Note that the steady-state voltage (VSS) peak-to-peak swing is twice the differential voltage (VOD) and is typically 600 mV.

The current mode driver provides substantial benefits over voltage mode drivers, such as an RS-422 driver. Its quiescent current remains relatively flat versus switching frequency. Whereas the RS-422 voltage mode driver increases exponentially in most case between 20 MHz-50 MHz. This is due to the overlap current that flows between the rails of the device when the internal gates switch. Whereas the current mode driver switches a fixed current between its output without any substantial overlap current. This is similar to some ECL and PECL devices, but without the heavy static ICC requirements of the ECL/PECL designs. LVDS requires 80% less current than similar PECL devices. AC specifications for the driver are a tenfold improvement over other existing RS-422 drivers. The TRI-STATE function allows the driver outputs to be disabled, thus obtaining an even lower power state when the transmission of data is not required.

There are a few common practices which should be implied when designing PCB for Bus LVDS signaling. Recommended practices are:

- Use at least 4 PCB board layer (Bus LVDS signals, ground, power and TTL signals).
- Keep drivers and receivers as close to the (Bus LVDS port side) connector as possible.
- Bypass each Bus LVDS device and also use distributed bulk capacitance between power planes. Surface
 mount capacitors placed close to power and ground pins work best. Three or more high frequency, multi-layer
 ceramic (MLC) surface mount (0.1 μF, 0.01 μF, 0.001 μF) in parallel should be used between each V_{CC} and
 ground.
 - Multiple vias should be used to connect V_{CC} and Ground planes to the pads of the by-pass capacitors.
 - In addition, it may be necessary to randomly distribute by-pass capacitors of different values (200pF to 1000pF) to achieve different resonant frequencies.
- Use the termination resistor which best matches the differential impedance of your transmission line.
- Leave unused Bus LVDS receiver inputs open (floating). Limit traces on unused inputs to <0.5 inches.
- Isolate TTL signals from Bus LVDS signals

MEDIA (CONNECTOR or BACKPLANE) SELECTION:

• The backplane and connectors should have a matched differential impedance. Use controlled impedance traces which match the differential impedance of your transmission medium (ie. backplane or cable) and termination resistor(s). Run the differential pair trace lines as close together as possible as soon as they leave the IC. This will help eliminate reflections and ensure noise is coupled as common-mode. In fact, we have seen that differential signals which are 1mm apart radiate far less noise than traces 3mm apart since magnetic field cancellation is much better with the closer traces. Plus, noise induced on the differential lines is much more likely to appear as common-mode which is rejected by the receiver. Match electrical lengths between traces to reduce skew. Skew between the signals of a pair means a phase difference between

Product Folder Links: DS92LV040A

signals which destroys the magnetic field cancellation benefits of differential signals and EMI will result. (Note the velocity of propagation, v = c/Er where c (the speed of light) = 0.2997mm/ps or 0.0118 in/ps). Do not rely solely on the autoroute function for differential traces. Carefully review dimensions to match differential impedance and provide isolation for the differential lines. Minimize the number of vias and other discontinuity on the line. Avoid 90° turns (these cause impedance discontinuity). Use arcs or 45° bevels. Within a pair of traces, the distance between the two traces should be minimized to maintain common-mode rejection of the receivers. On the printed circuit board, this distance should remain constant to avoid discontinuity in differential impedance. Minor violations at connection points are allowable.

• Stub Length: Stub lengths should be kept to a minimum. The typical transition time of the DS92LV040A BLVDS output is 0.75ns (20% to 80%). The extrapolated 100 percent time is 0.75/0.6 or 1.25ns. For a general approximation, if the electrical length of a trace is greater than 1/5 of the transition edge, then the trace is considered a transmission line. For example, 1.25ns/5 is 250 picoseconds. Let velocity equal 160ps per inch for a typical loaded backplane. Then maximum stub length is 250ps/160ps/in or 1.56 inches. To determine the maximum stub for your backplane, you need to know the propagation velocity for the actual conditions (refer to application notes AN 905 and AN 808).

PACKAGE and SOLDERING INFORMATION:

 Refer to packaging application note AN-1187 (SNOA401). This application note details the package attachment methods to achieve the correct solderability and thermal results.

 MODE SELECTED
 DE
 RE

 DRIVER MODE
 H
 H

 RECEIVER MODE
 L
 L

 TRI-STATE MODE
 L
 H

 LOOP BACK MODE
 H
 L

Table 1. Functional Table

Table 2. Transmitter	N	Иοι	dε
----------------------	---	-----	----

	INPUTS	OUT	PUTS
DE	D _{IN}	DO+	DO-
Н	L	L	Н
Н	Н	Н	L
Н	0.8V< D _{IN} <2.0V	X	Х
L	Χ	Z	Z

Table 3. Receiver Mode

	INPUTS							
RE	(RI+) – (RI−)							
L	L (< −70 mV)	L						
L	H (> 0 mV)	Н						
L	$-70 \text{ mV} < V_{\text{ID}} < 0 \text{ mV}$	X						
Н	X	Z						

Test Circuits and Timing Waveforms

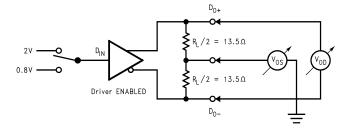


Figure 1. Differential Driver DC Test Circuit

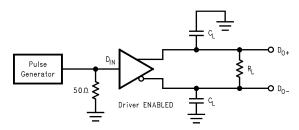


Figure 2. Differential Driver Propagation Delay and Transition Time Test Circuit

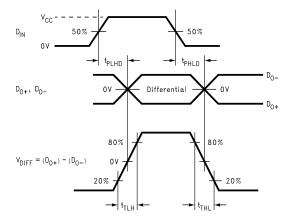


Figure 3. Differential Driver Propagation Delay and Transition Time Waveforms

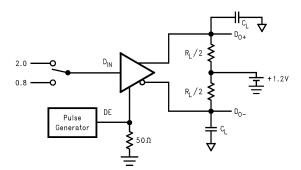


Figure 4. Driver TRI-STATE Delay Test Circuit

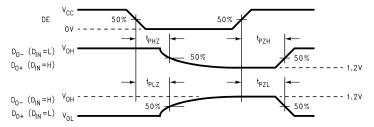


Figure 5. Driver TRI-STATE Delay Waveforms

Copyright © 2001–2013, Texas Instruments Incorporated Submit Documentation Feedback

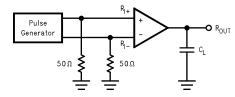


Figure 6. Receiver Propagation Delay and Transition Time Test Circuit

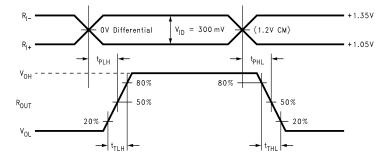


Figure 7. Receiver Propagation Delay and Transition Time Waveforms

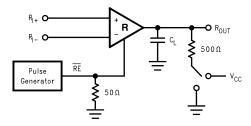


Figure 8. Receiver TRI-STATE Delay Test Circuit

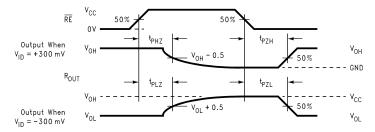


Figure 9. Receiver TRI-STATE Delay Waveforms

Typical Bus Application Configurations

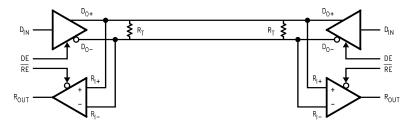


Figure 10. Bidirectional Half-Duplex Point-to-Point Applications

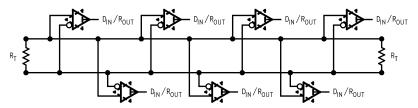


Figure 11. Multi-Point Bus Applications

Connection Diagram

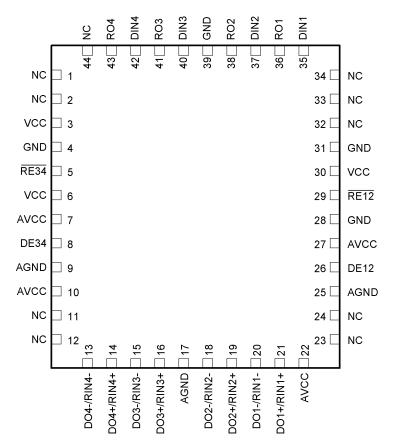


Figure 12. Top View See Package Number NJN0044A

Pinout Description

Pin Name	Pin #	Input/Output	Descriptions
DO+/RI+	14, 16, 19, 21	I/O	True Bus LVDS Driver Outputs and Receiver Inputs.
DO-/RI-	13, 15, 18, 20	I/O	Complimentary Bus LVDS Driver Outputs and Receiver Inputs.
D _{IN}	35, 37, 40, 42	I	LVTTL Driver Input. No pull up or pull down is attached to this pin
RO	36, 38, 41, 43	0	LVTTL Receiver Output.
RE12	29	I	Receiver Enable LVTTL Input (Active Low). This pin, when low, configures receiver outputs, RO1 and RO2 active. When this pin is high, RO1 and RO2 are TRI-STATE. If this pin is floating, a weak current source to $V_{\rm CC}$ causes RO1 and RO2 to be TRI-STATE
RE34	5	I	Receiver Enable LVTTL Input (Active Low). This pin, when low, configures receiver outputs, RO3 and RO4 active. When this pin is high, RO3 and RO4 are TRI-STATE. If this pin is floating, a weak current source to $V_{\rm CC}$ causes RO3 and RO4 to be TRI-STATE
DE12	26	I	Driver Enable LVTTL Input (Active High). This pin, when high, configures driver outputs, DO1+/RIN1+, DO1-/RIN1- and DO2+/RIN2+, DO2-/RIN2- active. When this pin is low, driver outputs 1 and 2 are TRI-STATE. If this pin is floating, a weak current source to V _{CC} causes driver outputs 1 and 2 to be active
DE34	8	I	Driver Enable LVTTL Input (Active High). This pin, when high, configures driver outputs, DO3+/RIN3+, DO3-/RIN3- and DO4+/RIN4+, DO4-/RIN4- active. When this pin is low, driver outputs 3 and 4 are TRI-STATE. If this pin is floating, a weak current source to V_{CC} causes driver outputs 3 and 4 to be active
GND	4, 28, 31, 39	Ground	Ground for digital circuitry (must connect to GND on PC board). These pins connected internally.
V _{CC}	3, 6, 30	Power	V_{CC} for digital circuitry (must connect to V_{CC} on PC board). These pins connected internally.
AGND	9, 17, 25	Ground	Ground for analog circuitry (must connect to GND on PC board). These pins connected internally.
AV _{CC}	7, 10, 22, 27	Power	Analog V_{CC} (must connect to V_{CC} on PC board). These pins connected internally.
NC	1, 2, 11, 12, 23, 24, 32, 33, 34, 44	N/A	Reserved for future use, leave open circuit.
DAP		GND	Must connect to GND plane through vias to achieve the theta ja specified under Absolute Maximum Ratings. The DAP (die attach pad) is the heat transfer material that is centered on the bottom of the WQFN package. Refer to application note AN-1187 () for attachment details.

REVISION HISTORY

Cł	nanges from Revision C (April 2013) to Revision D	Pa	ge
•	Changed layout of National Data Sheet to TI format		10

Copyright © 2001–2013, Texas Instruments Incorporated

PACKAGE OPTION ADDENDUM

13-Sep-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
DS92LV040ATLQA	NRND	WQFN	NJN	44	250	TBD	Call TI	Call TI	-40 to 85	LV040A	
DS92LV040ATLQA/NOPB	ACTIVE	WQFN	NJN	44	250	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	-40 to 85	LV040A	Samples
DS92LV040ATLQAX/NOPB	ACTIVE	WQFN	NJN	44	2500	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	-40 to 85	LV040A	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

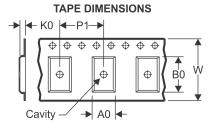
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

PACKAGE OPTION ADDENDUM

13-Sep-2014

continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

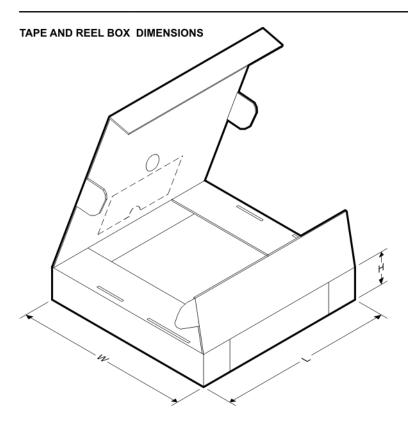

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

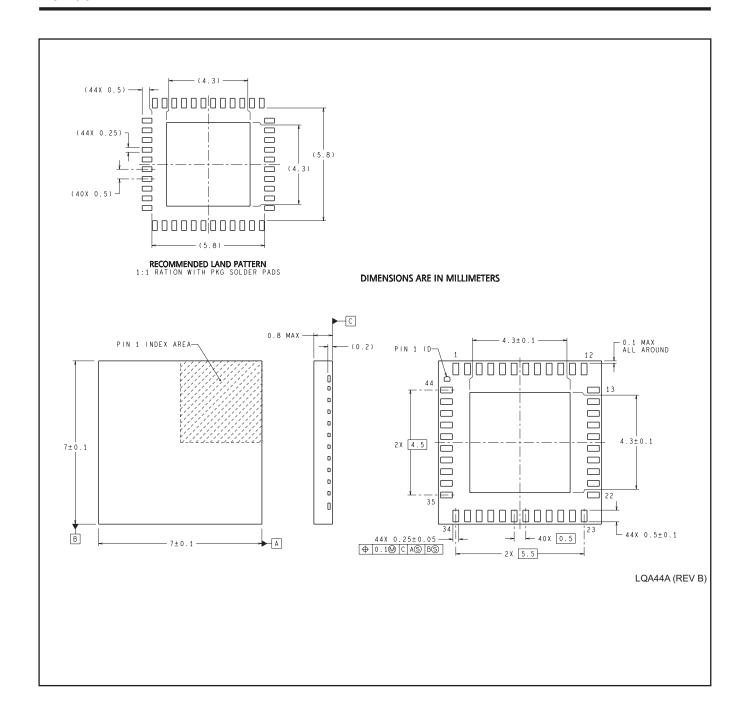
www.ti.com 20-Sep-2016

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
DS92LV040ATLQA	WQFN	NJN	44	250	178.0	16.4	7.3	7.3	1.3	12.0	16.0	Q1
DS92LV040ATLQA/NOPB	WQFN	NJN	44	250	178.0	16.4	7.3	7.3	1.3	12.0	16.0	Q1
DS92LV040ATLQAX/NOP B	WQFN	NJN	44	2500	330.0	16.4	7.3	7.3	1.3	12.0	16.0	Q1

www.ti.com 20-Sep-2016

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
DS92LV040ATLQA	WQFN	NJN	44	250	210.0	185.0	35.0
DS92LV040ATLQA/NOPB	WQFN	NJN	44	250	210.0	185.0	35.0
DS92LV040ATLQAX/NOP B	WQFN	NJN	44	2500	367.0	367.0	38.0

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity