#### CDC208 DUAL 1-LINE TO 4-LINE CLOCK DRIVER WITH 3-STATE OUTPUTS SCAS109F – APRIL 1990 – REVISED OCTOBER 1998

|   |                                                                                                 | 30A31031 - AI KIE 1330 - KEVIC                                     |  |
|---|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|
| • | Low-Skew Propagation Delay<br>Specifications for Clock-Driver                                   | DW PACKAGE<br>(TOP VIEW)                                           |  |
| • | Applications<br>TTL-Compatible Inputs and<br>CMOS-Compatible Outputs                            | 1Y2 1 20 1Y1<br>1Y3 2 19 1A                                        |  |
| • | Flow-Through Architecture Optimizes PCB Layout                                                  | 1Y4 3 18 1 <u>0E1</u><br>GND 4 17 10E2<br>GND 5 16 V <sub>CC</sub> |  |
| • | Center-Pin V <sub>CC</sub> and GND Pin<br>Configurations Minimize High-Speed<br>Switching Noise | GND 6 15 V <sub>CC</sub><br>GND 7 14 2A<br>2Y1 8 13 2OE1           |  |
| • | <i>EPIC</i> ™ (Enhanced-Performance Implanted CMOS) 1-μm Process                                | 2Y2 9 12 2OE2<br>2Y3 10 11 2Y4                                     |  |
| • | 500-mA Typical Latch-Up Immunity at 125°C                                                       |                                                                    |  |

 Package Options Include Plastic Small-Outline (DW)

#### description

The CDC208 contains dual clock-driver circuits that fanout one input signal to four outputs with minimum skew for clock distribution (see Figure 2). The device also offers two output-enable ( $\overline{OE1}$  and  $\overline{OE2}$ ) inputs for each circuit that can force the outputs to be disabled to a high-impedance state or to a high- or low-logic level independent of the signal on the respective A input.

Skew parameters are specified for a reduced temperature and voltage range common to many applications.

The CDC208 is characterized for operation from -40°C to 85°C.

| _    | FUNCTION TABLES |    |     |     |      |     |  |  |  |  |  |  |  |
|------|-----------------|----|-----|-----|------|-----|--|--|--|--|--|--|--|
|      | INPUTS          |    |     | OUT | PUTS |     |  |  |  |  |  |  |  |
| 10E1 | 10E2            | 1A | 1Y1 | 1Y2 | 1Y3  | 1Y4 |  |  |  |  |  |  |  |
| L    | L               | L  | L   | L   | L    | L   |  |  |  |  |  |  |  |
| L    | L               | Н  | н   | Н   | Н    | н   |  |  |  |  |  |  |  |
| L    | н               | Х  | L   | L   | L    | L   |  |  |  |  |  |  |  |
| Н    | L               | Х  | н   | н   | Н    | н   |  |  |  |  |  |  |  |
| н    | н               | Х  | Z   | Ζ   | Ζ    | Z   |  |  |  |  |  |  |  |

|           | INPUTS |    | OUTPUTS |     |     |     |  |  |  |
|-----------|--------|----|---------|-----|-----|-----|--|--|--|
| 20E1 20E2 |        | 2A | 2Y1     | 2Y2 | 2Y3 | 2Y4 |  |  |  |
| L         | L      | L  | L       | L   | L   | L   |  |  |  |
| L         | L      | Н  | Н       | Н   | Н   | Н   |  |  |  |
| L         | Н      | Х  | L       | L   | L   | L   |  |  |  |
| н         | L      | Х  | Н       | Н   | Н   | Н   |  |  |  |
| н         | Н      | Х  | Z       | Z   | Z   | Z   |  |  |  |

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

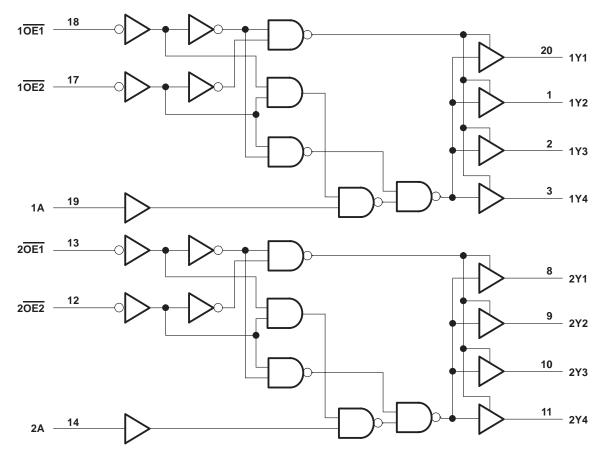
EPIC is a trademark of Texas Instruments Incorporated.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



Copyright © 1998, Texas Instruments Incorporated

### **CDC208 DUAL 1-LINE TO 4-LINE CLOCK DRIVER** WITH 3-STATE OUTPUTS


SCAS109F - APRIL 1990 - REVISED OCTOBER 1998

### logic symbol<sup>†</sup>



<sup>†</sup> This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

#### logic diagram (positive logic)





#### **CDC208 DUAL 1-LINE TO 4-LINE CLOCK DRIVER** WITH 3-STATE OUTPUTS SCAS109F - APRIL 1990 - REVISED OCTOBER 1998

#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)<sup>†</sup>

<sup>†</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils. For more information, refer to the Package Thermal Considerations application note in the 1994 ABT Advanced BiCMOS Technology Data Book, literature number SCBD002B.

#### recommended operating conditions

|                     |                                    | MIN | NOM | MAX | UNIT |
|---------------------|------------------------------------|-----|-----|-----|------|
| VCC                 | Supply voltage                     | 4.5 | 5   | 5.5 | V    |
| $V_{IH}$            | High-level input voltage           | 2   |     |     | V    |
| $V_{IL}$            | Low-level input voltage            |     |     | 0.8 | V    |
| VI                  | Input voltage                      | 0   |     | VCC | V    |
| ЮН                  | High-level output current          |     |     | -24 | mA   |
| IOL                 | Low-level output current           |     |     | 24  | mA   |
| $\Delta t/\Delta v$ | Input transition rise or fall rate | 0   |     | 10  | ns/V |
| fclock              | Input clock frequency              |     |     | 60  | MHz  |
| TA                  | Operating free-air temperature     | -40 |     | 85  | °C   |



# **CDC208 DUAL 1-LINE TO 4-LINE CLOCK DRIVER** WITH 3-STATE OUTPUTS SCAS109F – APRIL 1990 – REVISED OCTOBER 1998

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

|                            |                                                               |       | Т    | <b>₄ = 25°C</b> | ;    |      |      |      |
|----------------------------|---------------------------------------------------------------|-------|------|-----------------|------|------|------|------|
| PARAMETER                  | TEST CONDITIONS                                               | VCC   | MIN  | TYP             | MAX  | MIN  | MAX  | UNIT |
|                            | 10                                                            | 4.5 V | 4.4  |                 |      | 4.4  |      |      |
|                            | I <sub>OH</sub> = -50 μA                                      | 5.5 V | 5.4  |                 |      | 5.4  |      |      |
| VOH                        | 1 24 mA                                                       | 4.5 V | 3.94 |                 |      | 3.8  |      | V    |
|                            | I <sub>OH</sub> = -24 mA                                      | 5.5 V | 4.94 |                 |      | 4.8  |      |      |
|                            | $I_{OH} = -75 \text{ mA}^{\dagger}$                           | 5.5 V |      |                 |      | 3.85 |      |      |
|                            |                                                               | 4.5 V |      |                 | 0.1  |      | 0.1  |      |
|                            | I <sub>OL</sub> = 50 μA                                       | 5.5 V |      |                 | 0.1  |      | 0.1  |      |
| VOL                        | l = -24  mA                                                   | 4.5 V |      |                 | 0.36 |      | 0.44 | V    |
|                            | $I_{OL} = 24 \text{ mA}$                                      | 5.5 V |      |                 | 0.36 |      | 0.44 |      |
|                            | $I_{OL} = 75 \text{ mA}^{\dagger}$                            | 5.5 V |      |                 |      |      | 1.65 |      |
| l                          | $V_{I} = V_{CC} \text{ or } GND$                              | 5.5 V |      |                 | ±0.1 |      | ±1   | μA   |
| IOZ                        | $V_{O} = V_{CC}$ or GND                                       | 5.5 V |      |                 | ±0.5 |      | ±5   | μA   |
| ICC                        | $V_{I} = V_{CC} \text{ or } GND, \qquad I_{O} = 0$            | 5.5 V |      |                 | 8    |      | 80   | μA   |
| $\Delta I_{CC}^{\ddagger}$ | One input at 3.4 V,<br>Other inputs at V <sub>CC</sub> or GND | 5.5 V |      |                 | 0.9  |      | 1    | mA   |
| Ci                         | $V_{I} = V_{CC}$ or GND                                       | 5 V   |      | 4               |      |      |      | pF   |
| Co                         | $V_{O} = V_{CC}$ or GND                                       | 5 V   |      | 10              |      |      |      | pF   |

<sup>†</sup> Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

<sup>‡</sup>This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0 V or V<sub>CC</sub>.



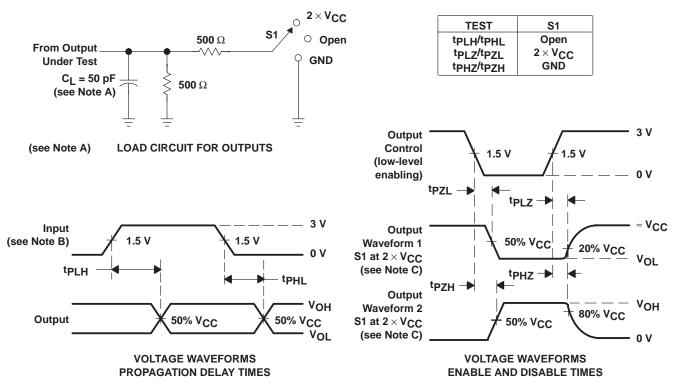
# switching characteristics over recommended operating free-air temperature range, $V_{CC}$ = 5 V $\pm$ 0.5 V (unless otherwise noted) (see Figure 1)

|                  | 1               |          |     |                 |      |     |      |      |
|------------------|-----------------|----------|-----|-----------------|------|-----|------|------|
| DADAMETED        | FROM            | то       | T,  | <b>₄ = 25°C</b> | ;    |     | MAY  |      |
| PARAMETER        | (INPUT)         | (OUTPUT) | MIN | TYP             | MAX  | MIN | MAX  | UNIT |
| <sup>t</sup> PLH | 14 and 24       | 1 m / 1  | 5.3 | 8.5             | 10.9 | 5.3 | 11.7 |      |
| <sup>t</sup> PHL | 1A and 2A       | Any Y    | 3.6 | 7.7             | 11   | 3.6 | 11.5 | ns   |
| <sup>t</sup> PLH | 10E1, 10E2, and | A        | 4.7 | 8.5             | 11.7 | 4.7 | 12.8 | ns   |
| <sup>t</sup> PHL | 20E1, 20E2      | Any Y    | 4.4 | 8.4             | 11.3 | 4.4 | 12.4 |      |
| <sup>t</sup> PZH | 10E2 or 20E2    | A        | 4.4 | 8.1             | 11.3 | 4.4 | 12.4 |      |
| <sup>t</sup> PZL | 10E1 or 20E1    | Any Y    | 5   | 9.6             | 13.3 | 5   | 14.9 | ns   |
| <sup>t</sup> PHZ | 10E2 or 20E2    | Anvill   | 4.2 | 7.4             | 9.3  | 4.2 | 10.2 |      |
| <sup>t</sup> PLZ | 10E1 or 20E1    | Any Y    | 5.4 | 7.5             | 9.2  | 5.4 | 9.9  | ns   |

### switching characteristics, V<sub>CC</sub> = 5 V $\pm$ 0.25 V, T<sub>A</sub> = 25°C to 70°C (see Note 3 and Figures 1 and 2)

| PARAMETER          | FROM<br>(INPUT) | TO<br>(OUTPUT) | MIN | MAX  | UNIT |
|--------------------|-----------------|----------------|-----|------|------|
| <sup>t</sup> PLH   |                 | Arres          | 6.6 | 10.2 |      |
| <sup>t</sup> PHL   | 1A and 2A       | Any Y          | 6.6 | 9.8  | ns   |
| <sup>t</sup> sk(o) | 1A and 2A       | Any Y          |     | 1    | ns   |

NOTE 3: All specifications are valid only for all outputs switching simultaneously and in phase.


## operating characteristics, $V_{CC}$ = 5 V, $T_A$ = 25°C

|                 | PARAMETER                              | TEST CONDITIONS  | TYP                                              | UNIT |    |
|-----------------|----------------------------------------|------------------|--------------------------------------------------|------|----|
| C <sub>pd</sub> | Power dissinction conscitance per bank | Outputs enabled  | Cı = 50 pF. f = 1 MHz                            | 96   | рF |
|                 | Power dissipation capacitance per bank | Outputs disabled | $C_L = 50 \text{ pF}, \text{ f} = 1 \text{ MHz}$ | 12   |    |



### **CDC208 DUAL 1-LINE TO 4-LINE CLOCK DRIVER** WITH 3-STATE OUTPUTS

SCAS109F - APRIL 1990 - REVISED OCTOBER 1998



#### PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

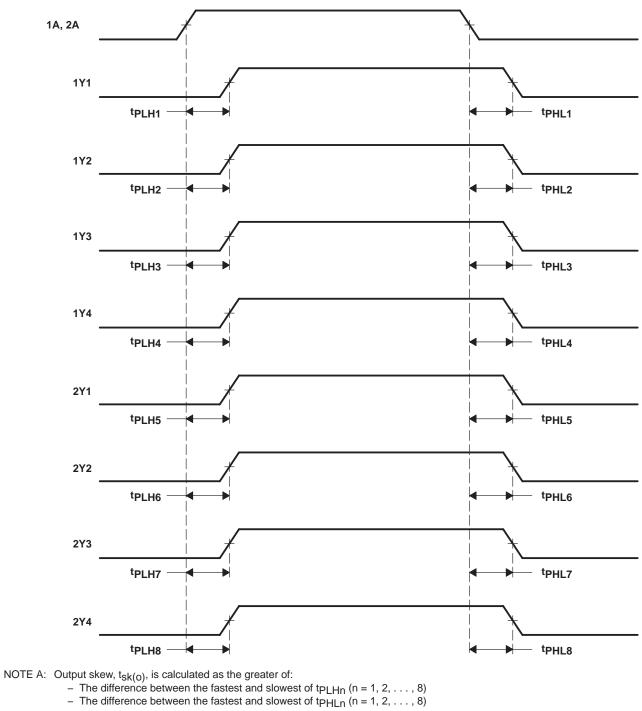

- B. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  10 MHz, Z<sub>O</sub> = 50  $\Omega$ , t<sub>f</sub>  $\leq$  3 ns, t<sub>f</sub>  $\leq$  3 ns. For testing pulse duration:  $t_r = t_f = 1$  to 3 ns. Pulse polarity can be either high-to-low-to-high or low-to-high-to-low.
- C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

Figure 1. Load Circuit and Voltage Waveforms



### **CDC208 DUAL 1-LINE TO 4-LINE CLOCK DRIVER** WITH 3-STATE OUTPUTS

SCAS109F - APRIL 1990 - REVISED OCTOBER 1998



#### PARAMETER MEASUREMENT INFORMATION

Figure 2. Waveforms for Calculation of tsk(o)





11-Apr-2013

### PACKAGING INFORMATION

| Orderable Device | Status<br>(1) | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan<br>(2)            | Lead/Ball Finish | MSL Peak Temp      | Op Temp (°C) | Top-Side Markings | Samples |
|------------------|---------------|--------------|--------------------|------|----------------|----------------------------|------------------|--------------------|--------------|-------------------|---------|
| CDC208DBLE       | OBSOLETE      | SSOP         | DB                 | 20   |                | TBD                        | Call TI          | Call TI            |              |                   |         |
| CDC208DW         | ACTIVE        | SOIC         | DW                 | 20   | 25             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | CDC208            | Samples |
| CDC208DWG4       | ACTIVE        | SOIC         | DW                 | 20   | 25             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | CDC208            | Samples |
| CDC208DWR        | ACTIVE        | SOIC         | DW                 | 20   | 2000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | CDC208            | Samples |
| CDC208DWRG4      | ACTIVE        | SOIC         | DW                 | 20   | 2000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM |              | CDC208            | Samples |
| CDC208N          | OBSOLETE      | E PDIP       | Ν                  | 20   |                | TBD                        | Call TI          | Call TI            |              |                   |         |
| CDC208NS         | ACTIVE        | SO           | NS                 | 20   | 40             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 85    | CDC208            | Samples |
| CDC208NSG4       | ACTIVE        | SO           | NS                 | 20   | 40             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 85    | CDC208            | Samples |
| CDC208NSR        | ACTIVE        | SO           | NS                 | 20   | 2000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 85    | CDC208            | Samples |
| CDC208NSRG4      | ACTIVE        | SO           | NS                 | 20   | 2000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 85    | CDC208            | Samples |

<sup>(1)</sup> The marketing status values are defined as follows:

**ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

**PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

**TBD:** The Pb-Free/Green conversion plan has not been defined.

**Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

**Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)



www.ti.com

11-Apr-2013

<sup>(3)</sup> MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

**Important Information and Disclaimer:**The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

# PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

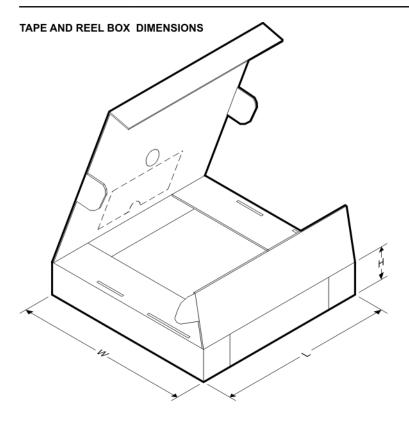
#### TAPE AND REEL INFORMATION





### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE




| *All dimensions are nominal |                 |                    |    |      |                          |                          |            |            |            |            |           |                  |
|-----------------------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| Device                      | Package<br>Type | Package<br>Drawing |    | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
| CDC208DWR                   | SOIC            | DW                 | 20 | 2000 | 330.0                    | 24.4                     | 10.8       | 13.3       | 2.7        | 12.0       | 24.0      | Q1               |
| CDC208NSR                   | SO              | NS                 | 20 | 2000 | 330.0                    | 24.4                     | 9.0        | 13.0       | 2.5        | 12.0       | 24.0      | Q1               |

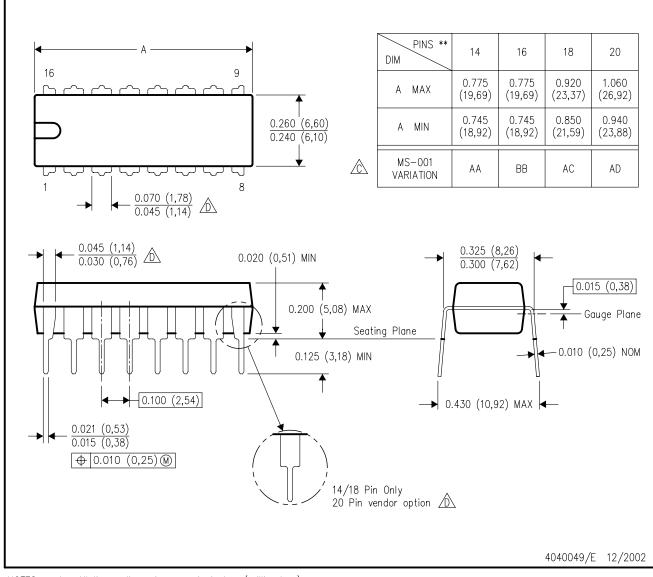
TEXAS INSTRUMENTS

www.ti.com

# PACKAGE MATERIALS INFORMATION

17-Aug-2016




\*All dimensions are nominal

| Device    | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|-----------|--------------|-----------------|------|------|-------------|------------|-------------|
| CDC208DWR | SOIC         | DW              | 20   | 2000 | 367.0       | 367.0      | 45.0        |
| CDC208NSR | SO           | NS              | 20   | 2000 | 367.0       | 367.0      | 45.0        |

# N (R-PDIP-T\*\*)

PLASTIC DUAL-IN-LINE PACKAGE

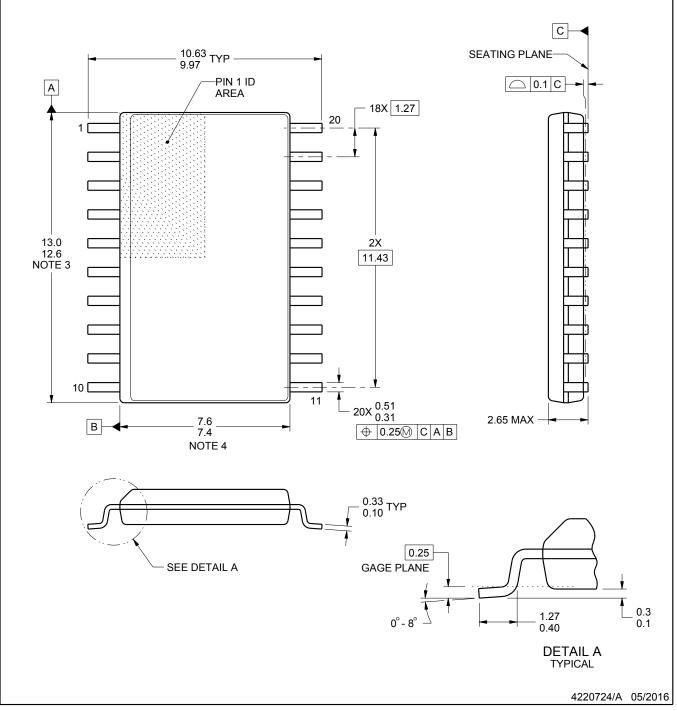
16 PINS SHOWN



NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- $\triangle$  The 20 pin end lead shoulder width is a vendor option, either half or full width.




# **DW0020A**



# **PACKAGE OUTLINE**

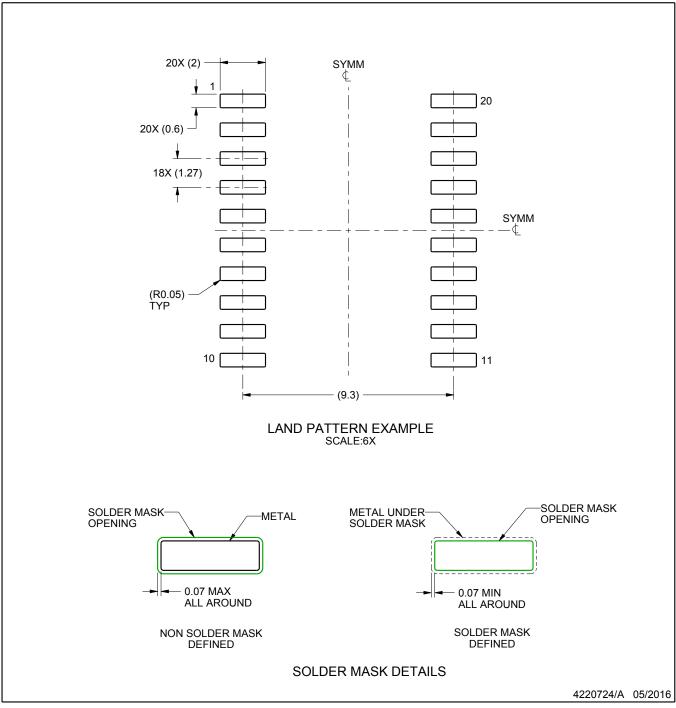
### SOIC - 2.65 mm max height

SOIC



NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
- 5. Reference JEDEC registration MS-013.




# DW0020A

# **EXAMPLE BOARD LAYOUT**

### SOIC - 2.65 mm max height

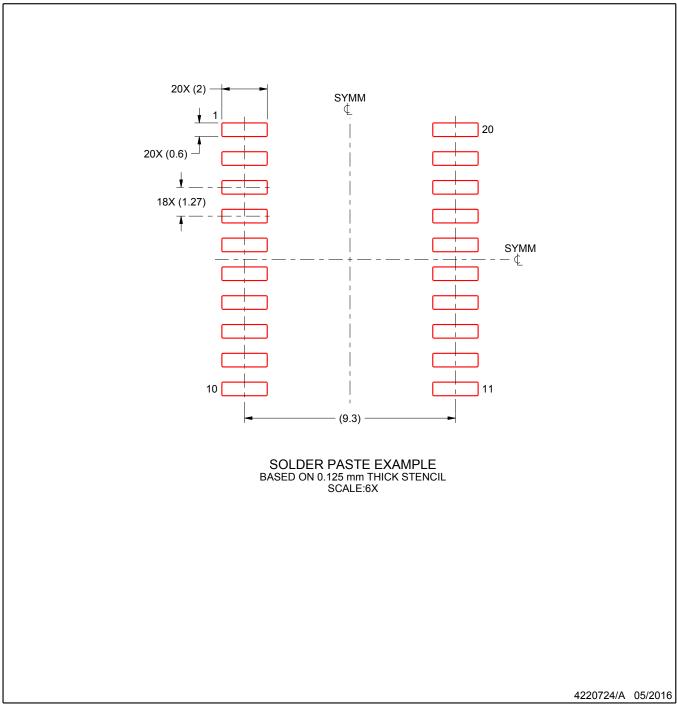
SOIC



NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.




# DW0020A

# **EXAMPLE STENCIL DESIGN**

### SOIC - 2.65 mm max height

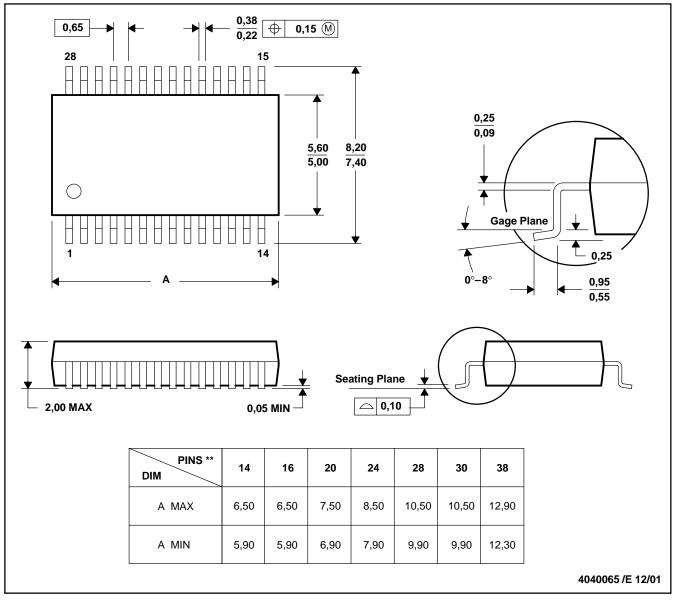
SOIC



NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.




### **MECHANICAL DATA**

MSSO002E - JANUARY 1995 - REVISED DECEMBER 2001

### DB (R-PDSO-G\*\*)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN



NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-150



### MECHANICAL DATA

#### PLASTIC SMALL-OUTLINE PACKAGE

#### 0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 $\bigcirc$ Gage Plane ₽ 0,25 7 1 1,05 0,55 0°-10° Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS \*\* 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G\*\*)

**14-PINS SHOWN** 

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.



#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

| Products                     |                                 | Applications                  |                                   |
|------------------------------|---------------------------------|-------------------------------|-----------------------------------|
| Audio                        | www.ti.com/audio                | Automotive and Transportation | www.ti.com/automotive             |
| Amplifiers                   | amplifier.ti.com                | Communications and Telecom    | www.ti.com/communications         |
| Data Converters              | dataconverter.ti.com            | Computers and Peripherals     | www.ti.com/computers              |
| DLP® Products                | www.dlp.com                     | Consumer Electronics          | www.ti.com/consumer-apps          |
| DSP                          | dsp.ti.com                      | Energy and Lighting           | www.ti.com/energy                 |
| Clocks and Timers            | www.ti.com/clocks               | Industrial                    | www.ti.com/industrial             |
| Interface                    | interface.ti.com                | Medical                       | www.ti.com/medical                |
| Logic                        | logic.ti.com                    | Security                      | www.ti.com/security               |
| Power Mgmt                   | power.ti.com                    | Space, Avionics and Defense   | www.ti.com/space-avionics-defense |
| Microcontrollers             | microcontroller.ti.com          | Video and Imaging             | www.ti.com/video                  |
| RFID                         | www.ti-rfid.com                 |                               |                                   |
| OMAP Applications Processors | www.ti.com/omap                 | TI E2E Community              | e2e.ti.com                        |
| Wireless Connectivity        | www.ti.com/wirelessconnectivity |                               |                                   |

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated